1
|
Kavikondala S, Haeussler K, Wang X, Spellman A, Bausch-Jurken MT, Sharma P, Amiri M, Krivelyova A, Vats S, Nassim M, Kumar N, Van de Velde N. Immunogenicity of mRNA-1273 and BNT162b2 in Immunocompromised Patients: Systematic Review and Meta-analysis Using GRADE. Infect Dis Ther 2024; 13:1419-1438. [PMID: 38802704 PMCID: PMC11219657 DOI: 10.1007/s40121-024-00987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024] Open
Abstract
INTRODUCTION Immunocompromised (IC) patients mount poor immune responses to vaccination. Higher-dose coronavirus disease 2019 (COVID-19) vaccines may offer increased immunogenicity. METHODS A pairwise meta-analysis of 98 studies reporting comparisons of mRNA-1273 (50 or 100 mcg/dose) and BNT162b2 (30 mcg/dose) in IC adults was performed. Outcomes were seroconversion, total and neutralizing antibody titers, and cellular immune responses. RESULTS mRNA-1273 was associated with a significantly higher seroconversion likelihood [relative risk, 1.11 (95% CI, 1.08, 1.14); P < 0.0001; I2 = 66.8%] and higher total antibody titers [relative increase, 50.45% (95% CI, 34.63%, 66.28%); P < 0.0001; I2 = 89.5%] versus BNT162b2. mRNA-1273 elicited higher but statistically nonsignificant relative increases in neutralizing antibody titers and cellular immune responses versus BNT162b2. CONCLUSION Higher-dose mRNA-1273 had increased immunogenicity versus BNT162b2 in IC patients.
Collapse
|
2
|
Law J, Sorrento C, Saxena A. Vaccination updates and special considerations for systemic lupus erythematosus patients. Curr Opin Rheumatol 2024; 36:148-153. [PMID: 37976046 DOI: 10.1097/bor.0000000000000992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW We review the latest guidelines and note special considerations for systemic lupus erythematosus (SLE) patients when approaching vaccination against SARS-CoV-2, influenza, pneumococcus, herpes zoster, and potentially respiratory syncytial virus (RSV) vaccine in the future. RECENT FINDINGS SLE patients have unique infectious risks due to newer treatments and the nature of the disease itself. It is important to balance the benefit of additional protective immunity from updated vaccines against the possible risk of disease activity exacerbations. SUMMARY It is important to continuously evaluate the safety and immunogenicity of updated vaccines specifically for SLE patients. Additionally, the newly approved RSV vaccine should be considered for this population to reduce severe respiratory illness.
Collapse
Affiliation(s)
- Jammie Law
- Division of Rheumatology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
3
|
Colmegna I, Valerio V, Amiable N, Useche M, Rampakakis E, Flamand L, Rollet-Labelle E, Bessette L, Fitzcharles MA, Hazel E, McCormack D, Michou L, Panopalis P, Langlois MA, Bernatsky S, Fortin PR. COVID-19 Vaccine in Immunosuppressed Adults with Autoimmune rheumatic Diseases (COVIAAD): safety, immunogenicity and antibody persistence at 12 months following Moderna Spikevax primary series. RMD Open 2023; 9:e003400. [PMID: 38030231 PMCID: PMC10689388 DOI: 10.1136/rmdopen-2023-003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
OBJECTIVE To assess the safety, immunogenicity and cellular responses following the Moderna Spikevax primary series in rheumatic disease. METHODS We conducted a 12-month, prospective, non-randomised, open-label, comparative trial of adults with either rheumatoid arthritis (RA, n=131) on stable treatment; systemic lupus erythematosus (SLE, n=23) on mycophenolate mofetil (MMF); other rheumatic diseases on prednisone ≥10 mg/day (n=8) or age-matched/sex-matched controls (healthy control, HC, n=58). Adverse events (AEs), humoral immune responses (immunogenicity: IgG positivity for anti-SARS-CoV-2 spike protein and its receptor binding domain, neutralising antibodies (NAbs)), cellular responses (ELISpot) and COVID-19 infection rates were assessed. RESULTS Frequency of solicited self-reported AEs following vaccination was similar across groups (HC 90%, RA 86%, SLE 90%); among them, musculoskeletal AEs were more frequent in RA (HC 48% vs RA 66% (Δ95% CI CI 3 to 32.6)). Disease activity scores did not increase postvaccination. No vaccine-related serious AEs were reported. Postvaccination immunogenicity was reduced in RA and SLE (RA 90.2%, SLE 86.4%; for both, ΔCIs compared with HC excluded the null). Similarly, NAbs were reduced among patients (RA 82.6%, SLE 81.8%). In RA, age >65 (OR 0.3, 95% CI 0.1 to 0.8) and rituximab treatment (OR 0.003, 95% CI 0.001 to 0.02) were negative predictors of immunogenicity. ELISpot was positive in 16/52 tested RA and 17/26 HC (ΔCI 11.2-53.3). During the study, 11 HC, 19 RA and 3 SLE patients self-reported COVID-infection. CONCLUSION In COVID-19 Vaccine in Immunosuppressed Adults with Autoimmune Diseases, the Moderna Spikevax primary series was safe. MMF, RA age >65 and rituximab were associated with reduced vaccine-induced protection.
Collapse
Affiliation(s)
- Ines Colmegna
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Valeria Valerio
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Nathalie Amiable
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Quebec, Quebec, Canada
| | - Mariana Useche
- Department of Family Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Louis Flamand
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Quebec, Quebec, Canada
| | - Emmanuelle Rollet-Labelle
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Quebec, Quebec, Canada
| | - Louis Bessette
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Quebec, Quebec, Canada
- Universite Laval Faculte de medecine, Quebec, Quebec, Canada
| | - Mary-Ann Fitzcharles
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Elizabeth Hazel
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Laëtitia Michou
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Quebec, Quebec, Canada
| | - Pantelis Panopalis
- Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Marc-André Langlois
- Department of Biochemistry Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sasha Bernatsky
- Clinical Epidemiology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Rheumatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Paul R Fortin
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Quebec, Quebec, Canada
- Medicine - Rheumatology, Centre Hospitalier de l'Universite Laval, Sainte-Foy, Quebec, Canada
| |
Collapse
|
4
|
Wang X, Haeussler K, Spellman A, Phillips LE, Ramiller A, Bausch-Jurken MT, Sharma P, Krivelyova A, Vats S, Van de Velde N. Comparative effectiveness of mRNA-1273 and BNT162b2 COVID-19 vaccines in immunocompromised individuals: a systematic review and meta-analysis using the GRADE framework. Front Immunol 2023; 14:1204831. [PMID: 37771594 PMCID: PMC10523015 DOI: 10.3389/fimmu.2023.1204831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023] Open
Abstract
Introduction Despite representing only 3% of the US population, immunocompromised (IC) individuals account for nearly half of the COVID-19 breakthrough hospitalizations. IC individuals generate a lower immune response after vaccination in general, and the US CDC recommended a third dose of either mRNA-1273 or BNT162b2 COVID-19 vaccines as part of their primary series. Influenza vaccine trials have shown that increasing dosage could improve effectiveness in IC populations. The objective of this systematic literature review and pairwise meta-analysis was to evaluate the clinical effectiveness of mRNA-1273 (50 or 100 mcg/dose) vs BNT162b2 (30 mcg/dose) in IC populations using the GRADE framework. Methods The systematic literature search was conducted in the World Health Organization COVID-19 Research Database. Studies were included in the pairwise meta-analysis if they reported comparisons of mRNA-1273 and BNT162b2 in IC individuals ≥18 years of age; outcomes of interest were symptomatic, laboratory-confirmed SARS-CoV-2 infection, SARS-CoV-2 infection, severe SARS-CoV-2 infection, hospitalization due to COVID-19, and mortality due to COVID-19. Risk ratios (RR) were pooled across studies using random-effects meta-analysis models. Outcomes were also analyzed in subgroups of patients with cancer, autoimmune disease, and solid organ transplant. Risk of bias was assessed using the Newcastle-Ottawa Scale for observational studies. Evidence was evaluated using the GRADE framework. Results Overall, 17 studies were included in the pairwise meta-analysis. Compared with BNT162b2, mRNA-1273 was associated with significantly reduced risk of SARS-CoV-2 infection (RR, 0.85 [95% CI, 0.75-0.97]; P=0.0151; I2 = 67.7%), severe SARS-CoV-2 infection (RR, 0.85 [95% CI, 0.77-0.93]; P=0.0009; I2 = 0%), COVID-19-associated hospitalization (RR, 0.88 [95% CI, 0.79-0.97]; P<0.0001; I2 = 0%), and COVID-19-associated mortality (RR, 0.63 [95% CI, 0.44-0.90]; P=0.0119; I2 = 0%) in IC populations. Results were consistent across subgroups. Because of sample size limitations, relative effectiveness of COVID-19 mRNA vaccines in IC populations cannot be studied in randomized trials. Based on nonrandomized studies, evidence certainty among comparisons was type 3 (low) and 4 (very low), reflecting potential biases in observational studies. Conclusion This GRADE meta-analysis based on a large number of consistent observational studies showed that the mRNA-1273 COVID-19 vaccine is associated with improved clinical effectiveness in IC populations compared with BNT162b2.
Collapse
|
5
|
Bass AR, Chakravarty E, Akl EA, Bingham CO, Calabrese L, Cappelli LC, Johnson SR, Imundo LF, Winthrop KL, Arasaratnam RJ, Baden LR, Berard R, Bridges SL, Cheah JTL, Curtis JR, Ferguson PJ, Hakkarinen I, Onel KB, Schultz G, Sivaraman V, Smith BJ, Sparks JA, Vogel TP, Williams EA, Calabrese C, Cunha JS, Fontanarosa J, Gillispie-Taylor MC, Gkrouzman E, Iyer P, Lakin KS, Legge A, Lo MS, Lockwood MM, Sadun RE, Singh N, Sullivan N, Tam H, Turgunbaev M, Turner AS, Reston J. 2022 American College of Rheumatology Guideline for Vaccinations in Patients With Rheumatic and Musculoskeletal Diseases. Arthritis Rheumatol 2023; 75:333-348. [PMID: 36597810 DOI: 10.1002/art.42386] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations on the use of vaccinations in children and adults with rheumatic and musculoskeletal diseases (RMDs). METHODS This guideline follows American College of Rheumatology (ACR) policy guiding management of conflicts of interest and disclosures and the ACR guideline development process, which includes the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. It also adheres to the Appraisal of Guidelines for Research and Evaluation (AGREE) criteria. A core leadership team consisting of adult and pediatric rheumatologists and a guideline methodologist drafted clinical population, intervention, comparator, outcomes (PICO) questions. A review team performed a systematic literature review for the PICO questions, graded the quality of evidence, and produced an evidence report. An expert Voting Panel reviewed the evidence and formulated recommendations. The panel included adult and pediatric rheumatology providers, infectious diseases specialists, and patient representatives. Consensus required ≥70% agreement on both the direction and strength of each recommendation. RESULTS This guideline includes expanded indications for some vaccines in patients with RMDs, as well as guidance on whether to hold immunosuppressive medications or delay vaccination to maximize vaccine immunogenicity and efficacy. Safe approaches to the use of live attenuated vaccines in patients taking immunosuppressive medications are also addressed. Most recommendations are conditional and had low quality of supporting evidence. CONCLUSION Application of these recommendations should consider patients' individual risk for vaccine-preventable illness and for disease flares, particularly if immunosuppressive medications are held for vaccination. Shared decision-making with patients is encouraged in clinical settings.
Collapse
Affiliation(s)
- Anne R Bass
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| | | | - Elie A Akl
- American University of Beirut, Beirut, Lebanon
| | | | | | | | - Sindhu R Johnson
- Toronto Western Hospital, Mount Sinai Hospital, and University of Toronto, Toronto, Ontario, Canada
| | - Lisa F Imundo
- Columbia University Irving Medical Center, New York, New York
| | | | - Reuben J Arasaratnam
- VA North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas
| | - Lindsey R Baden
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Roberta Berard
- Children's Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - S Louis Bridges
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| | | | | | | | | | - Karen B Onel
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| | | | - Vidya Sivaraman
- The Ohio State University and Nationwide Children's Hospital, Columbus
| | | | - Jeffrey A Sparks
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Joanne S Cunha
- Brown University, Brown Physicians Inc., and Providence Veterans Affairs Medical Center, East Providence, Rhode Island
| | | | | | | | - Priyanka Iyer
- University of California Irvine Medical Center, Orange
| | - Kimberly S Lakin
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| | - Alexandra Legge
- Dalhousie University and QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Mindy S Lo
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | | | | | - Herman Tam
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | - Amy S Turner
- American College of Rheumatology, Atlanta, Georgia
| | | |
Collapse
|
6
|
Bass AR, Chakravarty E, Akl EA, Bingham CO, Calabrese L, Cappelli LC, Johnson SR, Imundo LF, Winthrop KL, Arasaratnam RJ, Baden LR, Berard R, Louis Bridges S, Cheah JTL, Curtis JR, Ferguson PJ, Hakkarinen I, Onel KB, Schultz G, Sivaraman V, Smith BJ, Sparks JA, Vogel TP, Williams EA, Calabrese C, Cunha JS, Fontanarosa J, Gillispie-Taylor MC, Gkrouzman E, Iyer P, Lakin KS, Legge A, Lo MS, Lockwood MM, Sadun RE, Singh N, Sullivan N, Tam H, Turgunbaev M, Turner AS, Reston J. 2022 American College of Rheumatology Guideline for Vaccinations in Patients With Rheumatic and Musculoskeletal Diseases. Arthritis Care Res (Hoboken) 2023; 75:449-464. [PMID: 36597813 PMCID: PMC10291822 DOI: 10.1002/acr.25045] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 10/13/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To provide evidence-based recommendations on the use of vaccinations in children and adults with rheumatic and musculoskeletal diseases (RMDs). METHODS This guideline follows American College of Rheumatology (ACR) policy guiding management of conflicts of interest and disclosures and the ACR guideline development process, which includes the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. It also adheres to the Appraisal of Guidelines for Research and Evaluation (AGREE) criteria. A core leadership team consisting of adult and pediatric rheumatologists and a guideline methodologist drafted clinical population, intervention, comparator, outcomes (PICO) questions. A review team performed a systematic literature review for the PICO questions, graded the quality of evidence, and produced an evidence report. An expert Voting Panel reviewed the evidence and formulated recommendations. The panel included adult and pediatric rheumatology providers, infectious diseases specialists, and patient representatives. Consensus required ≥70% agreement on both the direction and strength of each recommendation. RESULTS This guideline includes expanded indications for some vaccines in patients with RMDs, as well as guidance on whether to hold immunosuppressive medications or delay vaccination to maximize vaccine immunogenicity and efficacy. Safe approaches to the use of live attenuated vaccines in patients taking immunosuppressive medications are also addressed. Most recommendations are conditional and had low quality of supporting evidence. CONCLUSION Application of these recommendations should consider patients' individual risk for vaccine-preventable illness and for disease flares, particularly if immunosuppressive medications are held for vaccination. Shared decision-making with patients is encouraged in clinical settings.
Collapse
Affiliation(s)
- Anne R. Bass
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| | | | - Elie A. Akl
- American University of Beirut, Beirut, Lebanon
| | | | | | | | - Sindhu R. Johnson
- Toronto Western Hospital, Mount Sinai Hospital, and University of Toronto, Toronto, Ontario, Canada
| | - Lisa F. Imundo
- Columbia University Irving Medical Center, New York, New York
| | | | - Reuben J. Arasaratnam
- VA North Texas Health Care System and University of Texas Southwestern Medical Center, Dallas
| | - Lindsey R. Baden
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Roberta Berard
- Children’s Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - S. Louis Bridges
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| | | | | | | | | | - Karen B. Onel
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| | | | - Vidya Sivaraman
- The Ohio State University and Nationwide Children’s Hospital, Columbus
| | | | - Jeffrey A. Sparks
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | - Joanne S. Cunha
- Brown University, Brown Physicians Inc., and Providence Veterans Affairs Medical Center, East Providence, Rhode Island
| | | | | | | | - Priyanka Iyer
- University of California Irvine Medical Center, Orange
| | - Kimberly S. Lakin
- Hospital for Special Surgery and Weill Cornell Medicine, New York, New York
| | - Alexandra Legge
- Dalhousie University and QEII Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Mindy S. Lo
- Boston Children’s Hospital, Boston, Massachusetts
| | | | | | | | | | - Herman Tam
- British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
7
|
Vaccinations in Patients with Rheumatic Disease: Consider Disease and Therapy. Rheum Dis Clin North Am 2022; 48:397-409. [PMID: 35400367 DOI: 10.1016/j.rdc.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Patients with rheumatic diseases are susceptible to infections due to their underlying disease states as well as from immunosuppressive medications, highlighting the importance of vaccination, these same factors also pose challenges to vaccine efficacy, safety, and uptake. This article reviews the impact of immunosuppressive therapies and rheumatic disease on vaccine efficacy in this vulnerable patient population as well as discusses best practices.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Influenza vaccines are the most useful strategy for preventing influenza illness, especially in the setting of the COVID-19 pandemic. For the coming year (2021/2022) all vaccines will be quadrivalent and contain two influenza A strains [(H1N1)pdm09-like and (H3N2)-like viruses] and two influenza B strains (Victoria lineage-like and Yamagata lineage-like viruses). However, the currently licensed have suboptimal efficacy due to the emergence of new strains and vaccine production limitations. In this review, we summarize the current recommendations as well as new advancements in influenza vaccinations. RECENT FINDINGS Recent advances have been aimed at moving away from egg-based vaccines and toward cell culture and recombinant vaccines. This removes egg adaptations that decrease vaccine efficacy, removes the reliance on egg availability and decreases the time necessary to manufacture vaccines. However, even more radical changes are needed if we are to reach the ultimate goal of a universal vaccine capable of providing long-lasting protection against all or at least most influenza strains. We discuss various strategies, including using more stable influenza antigens such as the hemagglutinin stalk and internal proteins as well as new adjuvants, new vaccine formulations, and DNA/RNA-based vaccines that are currently being developed. SUMMARY The currently available vaccines have suboptimal efficacy and do not provide adequate protection against drifted and shifted strains. Thus, the development of a universal influenza vaccine that induces long-lasing immunity and protects against a broad range of strains is crucial.
Collapse
Affiliation(s)
- Nadim Khalil
- Division of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Infectious Diseases, Department Pediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - David I Bernstein
- Division of Pediatric Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
9
|
Comber L, O Murchu E, Jordan K, Hawkshaw S, Marshall L, O'Neill M, Teljeur C, Ryan M, Carnahan A, Pérez Martín JJ, Robertson AH, Johansen K, de Jonge J, Krause T, Nicolay N, Nohynek H, Pavlopoulou I, Pebody R, Penttinen P, Soler-Soneira M, Wichmann O, Harrington P. Systematic review of the efficacy, effectiveness and safety of high-dose seasonal influenza vaccines for the prevention of laboratory-confirmed influenza in individuals ≥18 years of age. Rev Med Virol 2022; 33:e2330. [PMID: 35119149 DOI: 10.1002/rmv.2330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
Abstract
This review sought to assess the efficacy, effectiveness and safety of high-dose inactivated influenza vaccines (HD-IIV) for the prevention of laboratory-confirmed influenza in individuals aged 18 years or older. A systematic literature search was conducted in electronic databases and grey literature sources up to 7 February 2020. Randomised controlled trials (RCTs) and non-randomised studies of interventions (NRSIs) were included. The search returned 28,846 records, of which 36 studies were included. HD-IIV was shown to have higher relative vaccine efficacy in preventing influenza compared with standard-dose influenza vaccines (SD-IIV3) in older adults (Vaccine effectiveness (VE) = 24%, 95% CI 10-37, one RCT). One NRSI demonstrated significant effect for HD-IIV3 against influenza B (VE = 89%, 95% CI 47-100), but not for influenza A(H3N2) (VE = 22%, 95% CI -82 to 66) when compared with no vaccination in older adults. HD-IIV3 showed significant relative effect compared with SD-IIV3 for influenza-related hospitalisation (VE = 11.8%, 95% CI 6.4-17.0, two NRSIs), influenza- or pneumonia-related hospitalisation (VE = 13.7%, 95% CI 9.5-17.7, three NRSIs), influenza-related hospital encounters (VE = 13.1%, 95% CI 8.4-17.7, five NRSIs), and influenza-related office visits (VE = 3.5%, 95% CI 1.5-5.5, two NRSIs). For safety, HD-IIV were associated with significantly higher rates of local and systemic adverse events compared with SD-IIV (combined local reactions, pain at injection site, swelling, induration, headache, chills and malaise). From limited data, compared with SD-IIV, HD-IIV were found to be more effective in the prevention of laboratory-confirmed influenza, for a range of proxy outcome measures, and associated with more adverse events.
Collapse
Affiliation(s)
- Laura Comber
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Eamon O Murchu
- Health Information and Quality Authority (HIQA), Dublin, Ireland.,Department of Health Policy & Management, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Karen Jordan
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Sarah Hawkshaw
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Liam Marshall
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Michelle O'Neill
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Conor Teljeur
- Health Information and Quality Authority (HIQA), Dublin, Ireland
| | - Máirín Ryan
- Health Information and Quality Authority (HIQA), Dublin, Ireland.,Department of Pharmacology & Therapeutics, Trinity College Dublin, Trinity Health Sciences, Dublin, Ireland
| | - AnnaSara Carnahan
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,Public Health Agency of Sweden, Solna, Sweden
| | - Jaime Jesús Pérez Martín
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,General Directorate of Public Health and Addictions, IMIB-Arrixaca, Murcia University, Region of Murcia, Spain
| | - Anna Hayman Robertson
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kari Johansen
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Jorgen de Jonge
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,National Institute for Public Health and the Environment, Center for Infectious Disease Control, Bilthoven, The Netherlands
| | - Tyra Krause
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,Statens Serum Institut, Copenhagen, Denmark
| | - Nathalie Nicolay
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Hanna Nohynek
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ioanna Pavlopoulou
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,Pediatric Research Laboratory, School of Health Sciences, Faculty of Nursing, National & Kapodistrian University of Athens, Goudi, Greece.,National Advisory Committee on Immunisation, Hellenic Ministry of Health, Athens, Greece
| | - Richard Pebody
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,Institute of Epidemiology & Health, University College London, London, UK
| | - Pasi Penttinen
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Marta Soler-Soneira
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,Vigilancia de Enfermedades Prevenibles por Vacunación, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Ole Wichmann
- European Centre for Disease Prevention and Control, EU/EEA National Immunisation Technical Advisory Group (NITAG) Collaboration on Newer and Enhanced Inactivated Seasonal Influenza Vaccines, Solna, Sweden.,Immunization Unit, Robert Koch-Institute, Berlin, Germany
| | | |
Collapse
|
10
|
Doherty J, Fennessy S, Stack R, O’ Morain N, Cullen G, Ryan EJ, De Gascun C, Doherty GA. Review Article: vaccination for patients with inflammatory bowel disease during the COVID-19 pandemic. Aliment Pharmacol Ther 2021; 54:1110-1123. [PMID: 34472643 PMCID: PMC8653045 DOI: 10.1111/apt.16590] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Poor immune responses are frequently observed in patients with inflammatory bowel disease (IBD) receiving established vaccines; risk factors include immunosuppressants and active disease. AIMS To summarise available information regarding immune responses achieved in patients with IBD receiving established vaccines. Using this information, to identify risk factors in the IBD population related to poor vaccine-induced immunity that may be applicable to vaccines against COVID-19. METHODS We undertook a literature review on immunity to currently recommended vaccines for patients with IBD and to COVID-19 vaccines and summarised the relevant literature. RESULTS Patients with IBD have reduced immune responses following vaccination compared to the general population. Factors including the use of immunomodulators and anti-TNF agents reduce response rates. Patients with IBD should be vaccinated against COVID-19 at the earliest opportunity as recommended by International Advisory Committees, and vaccination should not be deferred because a patient is receiving immune-modifying therapies. Antibody titres to COVID-19 vaccines appear to be reduced in patients receiving anti-TNF therapy, especially in combination with immunomodulators after one vaccination. Therefore, we should optimise any established risk factors that could impact response to vaccination in patients with IBD before vaccination. CONCLUSIONS Ideally, patients with IBD should be vaccinated at the earliest opportunity against COVID-19. Patients should be in remission and, if possible, have their corticosteroid dose minimised before vaccination. Further research is required to determine the impact of different biologics on vaccine response to COVID-19 and the potential for booster vaccines or heterologous prime-boost vaccinations in the IBD population.
Collapse
Affiliation(s)
- Jayne Doherty
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Sean Fennessy
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Roisin Stack
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Neil O’ Morain
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Garret Cullen
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| | - Elizabeth J. Ryan
- Department of Biological SciencesHealth Research InstituteUniversity of LimerickLimerickIreland
| | - Cillian De Gascun
- National Virus Reference LaboratoryUniversity College DublinDublinIreland
| | - Glen A. Doherty
- Centre for Colorectal DiseaseSt. Vincent’s University Hospital & School of MedicineUniversity College DublinDublinIreland
| |
Collapse
|
11
|
Christenn M. [Immunogenicity and safety of high dose vs. standard dose of inactivated influenza vaccine in patients with rheumatoid arthritis]. Z Rheumatol 2021; 80:756-757. [PMID: 34170415 PMCID: PMC8229263 DOI: 10.1007/s00393-021-01030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/05/2022]
Affiliation(s)
- Michaela Christenn
- Praxis für Rheumatologie, Schwerpunkt klinische Immunologie, Beethovenstr. 2, 76530, Baden-Baden, Deutschland.
| |
Collapse
|
12
|
Friedman MA, Curtis JR, Winthrop KL. Impact of disease-modifying antirheumatic drugs on vaccine immunogenicity in patients with inflammatory rheumatic and musculoskeletal diseases. Ann Rheum Dis 2021; 80:1255-1265. [PMID: 34493491 PMCID: PMC8494475 DOI: 10.1136/annrheumdis-2021-221244] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Patients with rheumatic diseases are at increased risk of infectious complications; vaccinations are a critical component of their care. Disease-modifying antirheumatic drugs may reduce the immunogenicity of common vaccines. We will review here available data regarding the effect of these medications on influenza, pneumococcal, herpes zoster, SARS-CoV-2, hepatitis B, human papilloma virus and yellow fever vaccines. Rituximab has the most substantial impact on vaccine immunogenicity, which is most profound when vaccinations are given at shorter intervals after rituximab dosing. Methotrexate has less substantial effect but appears to adversely impact most vaccine immunogenicity. Abatacept likely decrease vaccine immunogenicity, although these studies are limited by the lack of adequate control groups. Janus kinase and tumour necrosis factor inhibitors decrease absolute antibody titres for many vaccines, but do not seem to significantly impact the proportions of patients achieving seroprotection. Other biologics (interleukin-6R (IL-6R), IL-12/IL-23 and IL-17 inhibitors) have little observed impact on vaccine immunogenicity. Data regarding the effect of these medications on the SARS-CoV-2 vaccine immunogenicity are just now emerging, and early glimpses appear similar to our experience with other vaccines. In this review, we summarise the most recent data regarding vaccine response and efficacy in this setting, particularly in light of current vaccination recommendations for immunocompromised patients.
Collapse
Affiliation(s)
| | - Jeffrey R Curtis
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham Department of Medicine, Birmingham, Alabama, USA
| | - Kevin L Winthrop
- Medicine, Oregon Health & Science University, Portland, Oregon, USA
- School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
13
|
Wong PKK, Lahiri M, Lye DC, Johnson D, Charles PGP. A vaccination update for rheumatologists-SARS-CoV-2, influenza and herpes zoster. Int J Rheum Dis 2021; 24:979-983. [PMID: 34350721 PMCID: PMC8441936 DOI: 10.1111/1756-185x.14179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Peter K. K. Wong
- Department of RheumatologyWestmead HospitalSydneyNSWAustralia
- Westmead Clinical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
- Rural Medical SchoolUniversity of New South WalesCoffs HarbourNSWAustralia
| | - Manjari Lahiri
- Division of RheumatologyDepartment of MedicineNational University HospitalSingapore CitySingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - David Chien Lye
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
- National Centre for Infectious DiseasesSingapore CitySingapore
- Department of Infectious DiseasesTan Tock Seng HospitalSingapore CitySingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore CitySingapore
| | - Douglas Johnson
- Departments of Infectious Diseases and General MedicineRoyal Melbourne HospitalMelbourneVic.Australia
- Department of MedicineUniversity of MelbourneMelbourneVic.Australia
| | - Patrick G. P. Charles
- Departments of Infectious Diseases and General MedicineAustin HealthMelbourneVic.Australia
- The Peter Doherty Institute for Infection and ImmunityMelbourneVic.Australia
| |
Collapse
|
14
|
Doneddu PE, Spina E, Briani C, Fabrizi GM, Manganelli F, Nobile-Orazio E. Acute and chronic inflammatory neuropathies and COVID-19 vaccines: Practical recommendations from the task force of the Italian Peripheral Nervous System Association (ASNP). J Peripher Nerv Syst 2021; 26:148-154. [PMID: 33620123 DOI: 10.1111/jns.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS To develop recommendations for vaccination for coronavirus-19 (COVID-19) in patients with inflammatory neuropathies. METHODS Key questions were formulated in order to perform a literature review on the safety and efficacy of vaccines in patients with inflammatory neuropathies. Based on the best evidence and expert opinion, a list of recommendations was formulated to inform decision on vaccination for COVID-19 in patients with inflammatory neuropathies and increase adherence to vaccination programmes. RESULTS Recommendations addressing safety and efficacy of vaccination in patients with inflammatory neuropathies were formulated. No data are currently available on the safety and efficacy of COVID-19 vaccines in patients with inflammatory neuropathies or other immune-mediated conditions. There is only sparse data on the safety of previous available vaccines in patients with inflammatory neuropathies, but studies on other autoimmune disorders indicate that these are safe and mostly efficacious. Patients with inflammatory neuropathies might be at increased risk for severe illness from COVID-19. INTERPRETATION Patients with inflammatory neuropathies should be encouraged to adhere to the vaccination campaign for COVID-19. These recommendations provide guidance on the management of vaccinations for COVID-19 in patients with inflammatory neuropathies. More research is needed regarding the safety and efficacy of vaccination in patients with inflammatory neuropathies and other immune conditions.
Collapse
Affiliation(s)
- Pietro E Doneddu
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Emanuele Spina
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Chiara Briani
- Neurology Unit, Department of Neuroscience, University of Padova, Padova, Italy
| | - Gian Maria Fabrizi
- Neurology Unit, Department of Neuroscienze, University of Verona, Policlinico Hospital G.B. Rossi, Verona, Italy
| | - Fiore Manganelli
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, Italy
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Milan University, Milan, Italy
| | | |
Collapse
|
15
|
Abstract
Patients with rheumatic diseases are susceptible to infections due to their underlying disease states as well as from immunosuppressive medications, highlighting the importance of vaccination, these same factors also pose challenges to vaccine efficacy, safety, and uptake. This article reviews the impact of immunosuppressive therapies and rheumatic disease on vaccine efficacy in this vulnerable patient population as well as discusses best practices.
Collapse
Affiliation(s)
- Cassandra Calabrese
- Department of Rheumatologic & Immunologic Disease, Cleveland Clinic Foundation, 9500 Euclid Avenue, Desk A50, Cleveland, OH 44195, USA.
| |
Collapse
|
16
|
Velikova T, Georgiev T. SARS-CoV-2 vaccines and autoimmune diseases amidst the COVID-19 crisis. Rheumatol Int 2021; 41:509-518. [PMID: 33515320 PMCID: PMC7846902 DOI: 10.1007/s00296-021-04792-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 02/05/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has become challenging even for the most durable healthcare systems. It seems that vaccination, one of the most effective public-health interventions, presents a ray of hope to end the pandemic by achieving herd immunity. In this review, we aimed to cover aspects of the current knowledge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and vaccine candidates in the light of autoimmune inflammatory diseases (AIIDs) and to analyze their potential in terms of safety and effectiveness in patients with AIIDs. Therefore, a focused narrative review was carried out to predict the possible implications of different types of SARS-CoV-2 vaccines which confer distinct immune mechanisms to establish immune response and protection against COVID-19: whole virus (inactivated or weakened), viral vector (replicating and non-replicating), nucleic acid (RNA, DNA), and protein-based (protein subunit, virus-like particle). Still, there is uncertainty among patients with AIIDs and clinicians about the effectiveness and safety of the new vaccines. There are a variety of approaches towards building a protective immunity against SARS-CoV-2. Only high-quality clinical trials would clarify the underlying immunological mechanisms of the newly implemented vaccines/adjuvants in patients living with AIIDs.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Clinical Immunology, Medical Faculty, University Hospital “Lozenetz”, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Tsvetoslav Georgiev
- First Department of Internal Medicine, Faculty of Medicine, Medical University-Varna, 55 Marin Drinov Str., Varna, 9002 Bulgaria
- Clinic of Rheumatology, University Hospital “St. Marina”, 1 Hristo Smirnenski Blvd., 9010 Varna, Bulgaria
| |
Collapse
|
17
|
Caldera F, Mercer M, Samson SI, Pitt JM, Hayney MS. Influenza vaccination in immunocompromised populations: Strategies to improve immunogenicity. Vaccine 2021; 39 Suppl 1:A15-A23. [PMID: 33422377 DOI: 10.1016/j.vaccine.2020.11.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/22/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Immunocompromised individuals are at high risk of severe illness and complications from influenza infection. For this reason, immunization using inactivated influenza vaccines is recommended for transplant patients, individuals receiving immunosuppressant treatments, and other persons with immunodeficiency. However, these immunocompromised populations are more likely to have lower and non-protective responses to annual vaccination with a standard influenza vaccine. Here, we review strategies aimed to improve the immunogenicity of influenza vaccines in immunocompromised populations. The different strategies employed have included adjuvanted vaccines, high-dose vaccines, booster doses, intradermal vaccination, and temporary discontinuation of immunosuppressant treatment regimens. High-dose trivalent, inactivated, split-virus influenza vaccine (IIV3-HD) is so far one of the leading strategies for improving vaccine responses in HIV patients, transplant patients, and persons receiving immunosuppressant therapies for inflammatory diseases. Several studies in these populations have shown stronger humoral responses with IIV3-HD than existing standard-dose trivalent vaccine, and comparable safety. Accordingly, some scientific societies have stated that high-dose influenza vaccine could be a preferred option for immunocompromised patients. However, larger randomized controlled studies are needed to validate relative immunogenicity and safety of IIV3-HD and other enhanced vaccines and vaccination strategies in immunocompromised individuals.
Collapse
Affiliation(s)
- Freddy Caldera
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | | | | | | | - Mary S Hayney
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Jethwa H, Sullivan A, Abraham S. COVID-19 and Immunomodulatory Therapy - Can We Use Data from Previous Viral Pandemics? J Rheumatol 2020; 47:1734-1737. [PMID: 32423974 DOI: 10.3899/jrheum.200527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hannah Jethwa
- H. Jethwa, BSc, MBChB, MRCP, Clinical Research Fellow, Department of Rheumatology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridgeshire;
| | - Ann Sullivan
- A. Sullivan, MBBS, DipGUM, DFFP, MD, FRCP, Consultant in Public Health, Chelsea and Westminster Healthcare NHS Foundation Trust and North West London Clinical Research Network Lead for Urgent Public Health Research, London
| | - Sonya Abraham
- S. Abraham, MBBS, FRCP, PhD, FHEA, Consultant Research Fellow, Rheumatologist, Imperial College London, London, UK
| |
Collapse
|