1
|
Yu Y, Li GF, Li J, Han LY, Zhang ZL, Liu TS, Jiao SX, Qiao YW, Zhang N, Zhan DC, Tang SQ, Yu G. Ursodeoxycholic acid and COVID-19 outcomes: a cohort study and data synthesis of state-of-art evidence. Expert Rev Anti Infect Ther 2024; 22:1239-1250. [PMID: 38975666 DOI: 10.1080/14787210.2024.2376153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND The potential of ursodeoxycholic acid (UDCA) in inhibiting angiotensin-converting enzyme 2 was demonstrated. However, conflicting evidence emerged regarding the association between UDCA and COVID-19 outcomes, prompting the need for a comprehensive investigation. RESEARCH DESIGN AND METHODS Patients diagnosed with COVID-19 infection were retrospectively analyzed and divided into two groups: the UDCA-treated group and the control group. Kaplan-Meier recovery analysis and Cox proportional hazards models were used to evaluate the recovery time and hazard ratios. Additionally, study-level pooled analyses for multiple clinical outcomes were performed. RESULTS In the 115-patient cohort, UDCA treatment was significantly associated with a reduced recovery time. The subgroup analysis suggests that the 300 mg subgroup had a significant (adjusted hazard ratio: 1.63 [95% CI, 1.01 to 2.60]) benefit with a shorter duration of fever. The results of pooled analyses also show that UDCA treatment can significantly reduce the incidence of severe/critical diseases in COVID-19 (adjusted odds ratio: 0.68 [95% CI, 0.50 to 0.94]). CONCLUSIONS UDCA treatment notably improves the recovery time following an Omicron strain infection without observed safety concerns. These promising results advocate for UDCA as a viable treatment for COVID-19, paving the way for further large-scale and prospective research to explore the full potential of UDCA.
Collapse
Affiliation(s)
- Yang Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
- General Foundation Department, Polixir.ai, Nanjing, China
| | - Guo-Fu Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jian Li
- Hospital of Nanjing University, Nanjing University, Nanjing, China
| | - Lu-Yao Han
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhi-Long Zhang
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
- General Foundation Department, Polixir.ai, Nanjing, China
| | - Tian-Shuo Liu
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
- General Foundation Department, Polixir.ai, Nanjing, China
| | - Shu-Xin Jiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu-Wei Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Na Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - De-Chuan Zhan
- National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
| | - Shao-Qiu Tang
- Hospital of Nanjing University, Nanjing University, Nanjing, China
| | - Guo Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Anshori I, Marcius D, Syaifie PH, Siregar KAAK, Syakuran LA, Jauhar MM, Arda AG, Shalannanda W, Mardliyati E. Therapeutic Potential of Propolis Extract in Managing Hyperinflammation and Long COVID-19: A Bioinformatics Study. Chem Biodivers 2024:e202401947. [PMID: 39576127 DOI: 10.1002/cbdv.202401947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
Hyperinflammation is a significant factor in long COVID, impacting over 65 million post-COVID-19 individuals globally. Herbal remedies, including propolis, show promise in reducing severity and pro-inflammatory cytokines. However, the natural pharmacological role of propolis in COVID-19 management remains underexplored. Employing network pharmacology and in silico techniques, we assessed propolis extract's potential in countering SARS-CoV-2-induced inflammation. We identified 80 flavonoids via LC-MS/MS QTOF and employed 11 anti-inflammatory drugs as references for inflammation target fishing. Utilizing in silico techniques encompassing target fishing, molecular docking, and dynamics, we examined propolis' effects. We identified 1105 gene targets connected to inflammation through multiple validated target predictors. By integrating SARS-CoV-2 DEGs from GSE147507 with these targets, we identify 25 inflammation-COVID-19-associated propolis targets, including STAT1, NOS2, CFB, EIF2K2, NPY5R, and BTK. Enrichment analyses highlighted primary pharmacological pathways related to Epstein-Barr virus infection and COVID-19. Molecular docking validated isokaempferide, iristectorigenin B, 3'-methoxypuerarin, cosmosiin, and baicalein-7-O-β-d-glucopyranoside, which exhibited strong binding affinity and stability with relevant genes. Moreover, our findings indicate that propolis ligands could potentially suppress reactivation of Epstein-Barr Virus infections in post-COVID-19 cases. However, this study has a limitation in that the concentration of each propolis compound has not been quantified. Therefore, further exploration of propolis compounds quantification and experimental validation are needed to support these findings.
Collapse
Affiliation(s)
- Isa Anshori
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| | - Donny Marcius
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Putri Hawa Syaifie
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
| | - Khalish Arsy Al Khairy Siregar
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, East Borneo, Indonesia
| | | | | | | | - Wervyan Shalannanda
- School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia
| | - Etik Mardliyati
- Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, Indonesia
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| |
Collapse
|
3
|
Wang Y, Zhao Y, Gong W, Hou Y, Ren J, Duan C, Zhang H, Nie X, Li J. Aspirin exposure coupled with hypoxia interferes energy metabolism, antioxidant and autophagic processes and causes liver injury in estuarine goby Mugilogobius chulae. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135071. [PMID: 38996678 DOI: 10.1016/j.jhazmat.2024.135071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Toxicity assessments of pollutants often overlook the impact of environmental factors like hypoxia, which can alter chemical toxicity with unexpected consequences. In this study, Mugilogobius chulae, an estuarine fish, was used to investigate the effects of hypoxia (H), aspirin (ASA), and their combination (H_ASA) exposure over 24, 72, and 168 h. We employed RNA-seq analysis, expression of key gene expression profiling, enzymatic activity assays, and histopathological and ultrastructural examinations of liver tissue to explore the effects and mechanisms of ASA-coupled hypoxia exposure in fish. Results showed that glycolysis was inhibited, and lipolysis was enhanced in ASA/H_ASA groups. The PPAR signaling pathway was activated, increasing fatty acid β-oxidation and lipophagy to mitigate energy crisis. Both ASA and H_ASA exposures induced p53 expression and inhibited the TOR pathway to combat environmental stress. However, a greater energy demand and heightened sensitivity to ASA were observed in H_ASA compared to ASA exposure. Disruptions in energy and detoxification pathways led to increased stress responses, including enhanced antioxidant activities, autophagy, and apoptotic events, as observed in organelle structures. Overall, sub-chronic H_ASA exposure caused liver injury in M. chulae by affecting energy metabolism, antioxidant regulation, and autophagy processes. This study highlights the influence of hypoxia on ASA toxicity in fish, providing valuable insights for ecological risk assessment of NSAIDs.
Collapse
Affiliation(s)
- Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| | - Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Weibo Gong
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Jinzhi Ren
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Chunni Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Huiyu Zhang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China.
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China
| |
Collapse
|
4
|
Velikova T, Valkov H, Aleksandrova A, Peshevska-Sekulovska M, Sekulovski M, Shumnalieva R. Harnessing immunity: Immunomodulatory therapies in COVID-19. World J Virol 2024; 13:92521. [PMID: 38984079 PMCID: PMC11229839 DOI: 10.5501/wjv.v13.i2.92521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 06/24/2024] Open
Abstract
An overly exuberant immune response, characterized by a cytokine storm and uncontrolled inflammation, has been identified as a significant driver of severe coronavirus disease 2019 (COVID-19) cases. Consequently, deciphering the intricacies of immune dysregulation in COVID-19 is imperative to identify specific targets for intervention and modulation. With these delicate dynamics in mind, immunomodulatory therapies have emerged as a promising avenue for mitigating the challenges posed by COVID-19. Precision in manipulating immune pathways presents an opportunity to alter the host response, optimizing antiviral defenses while curbing deleterious inflammation. This review article comprehensively analyzes immunomodulatory interventions in managing COVID-19. We explore diverse approaches to mitigating the hyperactive immune response and its impact, from corticosteroids and non-steroidal drugs to targeted biologics, including anti-viral drugs, cytokine inhibitors, JAK inhibitors, convalescent plasma, monoclonal antibodies (mAbs) to severe acute respiratory syndrome coronavirus 2, cell-based therapies (i.e., CAR T, etc.). By summarizing the current evidence, we aim to provide a clear roadmap for clinicians and researchers navigating the complex landscape of immunomodulation in COVID-19 treatment.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Hristo Valkov
- Department of Gastroenterology, University Hospital “Tsaritsa Yoanna-ISUL”, Medical University of Sofia, Sofia 1527, Bulgaria
| | | | - Monika Peshevska-Sekulovska
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, Sofia 1407, Bulgaria
| | - Russka Shumnalieva
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Medical University-Sofia, Sofia 1612, Bulgaria
| |
Collapse
|
5
|
Gadelha LR, Costa MJB, Abreu JPAD, Venancio LPR, Fabres-Klein MH, Klein RC, Lima JB, Araújo-Santos T. Prostaglandin E 2/Leukotriene B 4 balance and viral load in distinct clinical stages of COVID-19: A cross-sectional study. Prostaglandins Other Lipid Mediat 2024; 172:106820. [PMID: 38346573 DOI: 10.1016/j.prostaglandins.2024.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/16/2023] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) are eicosanoids involved in modulation of the antiviral immune response. Recent studies have identified increased levels of several eicosanoids in the plasma and bronchoalveolar lavage of patients with coronavirus disease (COVID-19). This study investigated correlations between plasma levels of PGE2 and LTB4 and clinical severity of COVID-19. METHODS This cross-sectional study involved non-infected (n = 10) individuals and COVID-19 patients classified as cured (n = 13), oligosymptomatic (n = 29), severe (n = 15) or deceased (n = 11). Levels of D-dimer a, known COVID-19 severity marker, PGE2 and LTB4 were measured by ELISAs and data were analysed with respect to viral load. RESULTS PGE2 plasma levels were decreased in COVID-19 patients compared to the non-infected group. Changes in PGE2 and LTB4 levels did not correlate with any particular clinical presentations of COVID-19. However, LTB4 was related to decreased SARS-CoV-2 burden in patients, suggesting that only LTB4 is associated with control of viral load. CONCLUSIONS Our data indicate that PGE2/LTB4 plasma levels are not associated with COVID-19 clinical severity. Hospitalized patients with COVID-19 are treated with corticosteroids, which may influence the observed eicosanoid imbalance. Additional analyses are required to fully understand the participation of PGE2 receptors in the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Larisse Ricardo Gadelha
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Maria Juliana Bezerra Costa
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - João Paulo Alecrim de Abreu
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Larissa Paola Rodrigues Venancio
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Mary Hellen Fabres-Klein
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Raphael Contelli Klein
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Jonilson Berlink Lima
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil
| | - Théo Araújo-Santos
- Universidade Federal do Oeste da Bahia (UFOB), Núcleo de Estudos de Agentes Infecciosos e Vetores (NAIVE), Centro das Ciências Biológicas e da Saúde, Barreiras, BA, Brazil.
| |
Collapse
|
6
|
Andrade HND, Oliveira JFD, Siniscalchi LAB, Costa JDD, Fia R. Global insight into the occurrence, treatment technologies and ecological risk of emerging contaminants in sanitary sewers: Effects of the SARS-CoV-2 coronavirus pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171075. [PMID: 38402973 DOI: 10.1016/j.scitotenv.2024.171075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The SARS-CoV-2 pandemic caused changes in the consumption of prescribed/non-prescribed drugs and the population's habits, influencing the detection and concentration of emerging contaminants (ECs) in sanitary sewage and harming environmental and health risks. Therefore, the present work sought to discuss current literature data on the effects of the "COVID-19 pandemic factor" on the quality of raw sewage produced over a five-year period (2018-2019: pre-pandemic; 2020-2022: during the pandemic) and biological, physical, chemical and hybrid treatment technologies, influencing factors in the removal of ECs and potential ecological risks (RQs). Seven hundred thirty-one publications correlating sewage and COVID-19 were identified: 184 pre-pandemic and 547 during the pandemic. Eight classes and 37 ECs were detected in sewage between 2018 and 2022, with the "COVID-19 pandemic factor" promoting an increase in estrogens (+31,775 %), antibiotics (+19,544 %), antiepileptics and antipsychotics (+722 %), pesticides (+200 %), analgesics, anti-inflammatories and anticoagulants (+173 %), and stimulant medications (+157 %) in sanitary sewage. Among the treatment systems, aerated reactors integrated into biomembranes removed >90 % of cephalexin, clarithromycin, ibuprofen, estrone, and 17β-estradiol. The absorption, adsorption, and biodegradation mechanisms of planted wetland systems contributed to better cost-benefit in reducing the polluting load of sewage ECs in the COVID-19 pandemic, individually or integrated into the WWTP. The COVID-19 pandemic factor increased the potential ecological risks (RQs) for aquatic organisms by 40 %, with emphasis on clarithromycin and sulfamethoxazole, which changed from negligible risk and low risk to (very) high risk and caffeine with RQ > 2500. Therefore, it is possible to suggest that the COVID-19 pandemic intensified physiological, metabolic, and physical changes to different organisms in aquatic biota by ECs during 2020 and 2022.
Collapse
Affiliation(s)
- Heloisa Nascimento de Andrade
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Jacineumo Falcão de Oliveira
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil.
| | | | - Joseane Dunga da Costa
- Department of Engineering and Technology, Federal University of the Semi-Arid Region, UFERSA, Pau dos Ferros, Rio Grande do Norte 59900-000, Brazil
| | - Ronaldo Fia
- Department of Environmental Engineering, Federal University of Lavras, UFLA, Minas Gerais 37200-000, Brazil
| |
Collapse
|
7
|
Salvador E, Mazzi C, De Santis N, Bertoli G, Jonjić A, Coklo M, Majdan M, Peñalvo JL, Buonfrate D. Impact of domiciliary administration of NSAIDs on COVID-19 hospital outcomes: an unCoVer analysis. Front Pharmacol 2023; 14:1252800. [PMID: 37876733 PMCID: PMC10591104 DOI: 10.3389/fphar.2023.1252800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background: Effective domiciliary treatment can be useful in the early phase of COVID-19 to limit disease progression, and pressure on hospitals. There are discrepant data on the use of non-steroidal anti-inflammatory drugs (NSAIDs). Aim of this study is to evaluate whether the clinical outcome of patients who were hospitalized for COVID-19 is influenced by domiciliary treatment with NSAIDs. Secondary objective was to explore the association between other patient characteristics/therapies and outcome. Methods: A large dataset of COVID-19 patients was created in the context of a European Union-funded project (unCoVer). The primary outcome was explored using a study level random effects meta-analysis for binary (multivariate logistic regression models) outcomes adjusted for selected factors, including demographics and other comorbidities. Results: 218 out of 1,144 patients reported use of NSAIDs before admission. No association between NSAIDs use and clinical outcome was found (unadj. OR: 0.96, 95%CI: 0.68-1.38). The model showed an independent upward risk of death with increasing age (OR 1.06; 95% CI 1.05-1.07) and male sex (1.36; 95% CI 1.04-1.76). Conclusion: In our study, the domiciliary use of NSAIDs did not show association with clinical outcome in patients hospitalized with COVID-19. Older ages and male sex were associated to an increased risk of death.
Collapse
Affiliation(s)
- Elena Salvador
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Cristina Mazzi
- Clinical Research Unit, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Nicoletta De Santis
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Giulia Bertoli
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Antonija Jonjić
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Miran Coklo
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia
| | - Marek Majdan
- Institute for Global Health and Epidemiology, Trnava University, Trnava, Slovakia
| | - José L. Peñalvo
- Unit of Non-Communicable Diseases, Institute of Tropical Medicine, Antwerp, Belgium
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dora Buonfrate
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| |
Collapse
|
8
|
Pawełczyk A, Nowak R, Gazecka M, Jelińska A, Zaprutko L, Zmora P. Novel Molecular Consortia of Cannabidiol with Nonsteroidal Anti-Inflammatory Drugs Inhibit Emerging Coronaviruses' Entry. Pathogens 2023; 12:951. [PMID: 37513798 PMCID: PMC10383849 DOI: 10.3390/pathogens12070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/07/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The COVID-19 pandemic provoked a global health crisis and highlighted the need for new therapeutic strategies. In this study, we explore the potential of the molecular consortia of cannabidiol (CBD) and non-steroidal anti-inflammatory drugs (NSAIDs) as novel antiviral dual-target agents against SARS-CoV-2/COVID-19. CBD is a natural compound with a wide range of therapeutic activities, including antiviral and anti-inflammatory properties, while NSAIDs are commonly used to mitigate the symptoms of viral infections. Chemical modifications of CBD with NSAIDs were performed to obtain dual-target agents with enhanced activity against SARS-CoV-2. The synthesised compounds were characterised using spectroscopic techniques. The biological activity of three molecular consortia (CBD-ibuprofen, CBD-ketoprofen, and CBD-naproxen) was evaluated in cell lines transduced with vesicular stomatitis virus-based pseudotypes bearing the SARS-CoV-1 or SARS-CoV-2 spike proteins or infected with influenza virus A/Puerto Rico/8/34. The results showed that some CBD-NSAID molecular consortia have superior antiviral activity against SARS-CoV-1 and SARS-CoV-2, but not against the influenza A virus. This may suggest a potential therapeutic role for these compounds in the treatment of emerging coronavirus infections. Further studies are needed to investigate the efficacy of these compounds in vivo, and their potential use in clinical settings. Our findings provide a promising new approach to combatting current and future viral emergencies.
Collapse
Affiliation(s)
- Anna Pawełczyk
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Rafał Nowak
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Monika Gazecka
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Anna Jelińska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, 60-780 Poznan, Poland
| | - Paweł Zmora
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| |
Collapse
|
9
|
Lim SYM, Al Bishtawi B, Lim W. Role of Cytochrome P450 2C9 in COVID-19 Treatment: Current Status and Future Directions. Eur J Drug Metab Pharmacokinet 2023; 48:221-240. [PMID: 37093458 PMCID: PMC10123480 DOI: 10.1007/s13318-023-00826-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
The major human liver drug metabolising cytochrome P450 (CYP) enzymes are downregulated during inflammation and infectious disease state, especially during coronavirus disease 2019 (COVID-19) infection. The influx of proinflammatory cytokines, known as a 'cytokine storm', during severe COVID-19 leads to the downregulation of CYPs and triggers new cytokine release, which further dampens CYP expression. Impaired drug metabolism, along with the inevitable co-administration of drugs or 'combination therapy' in patients with COVID-19 with various comorbidities, could cause drug-drug interactions, thus worsening the disease condition. Genetic variability or polymorphism in CYP2C9 across different ethnicities could contribute to COVID-19 susceptibility. A number of drugs used in patients with COVID-19 are inducers or inhibitors of, or are metabolised by, CYP2C9, and co-administration might cause pharmacokinetic and pharmacodynamic interactions. It is also worth mentioning that some of the COVID-19 drug interactions are due to altered activity of other CYPs including CYP3A4. Isoniazid/rifampin for COVID-19 and tuberculosis co-infection; lopinavir/ritonavir and cobicistat/remdesivir combination therapy; or multi-drug therapy including ivermectin, azithromycin, montelukast and acetylsalicylic acid, known as TNR4 therapy, all improved recovery in patients with COVID-19. However, a combination of CYP2C9 inducers, inhibitors or both, and plausibly different CYP isoforms could lead to treatment failure, hepatotoxicity or serious side effects including thromboembolism or bleeding, as observed in the combined use of azithromycin/warfarin. Further, herbs that are CYP2C9 inducers and inhibitors, showed anti-COVID-19 properties, and in silico predictions postulated that phytochemical compounds could inhibit SARS-CoV-2 virus particles. COVID-19 vaccines elicit immune responses that activate cytokine release, which in turn suppresses CYP expression that could be the source of compromised CYP2C9 drug metabolism and the subsequent drug-drug interaction. Future studies are recommended to determine CYP regulation in COVID-19, while recognising the involvement of CYP2C9 and possibly utilising CYP2C9 as a target gene to tackle the ever-mutating SARS-CoV-2.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| | - Basel Al Bishtawi
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Willone Lim
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, 93350, Kuching, Malaysia
| |
Collapse
|
10
|
Nayak SS, Naidu A, Sudhakaran SL, Vino S, Selvaraj G. Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease. J Pers Med 2023; 13:664. [PMID: 37109050 PMCID: PMC10142859 DOI: 10.3390/jpm13040664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is intricately linked with SARS-CoV-2-associated disease severity and mortality, especially in patients with co-morbidities. Lung tissue injury caused as a consequence of ARDS leads to fluid build-up in the alveolar sacs, which in turn affects oxygen supply from the capillaries. ARDS is a result of a hyperinflammatory, non-specific local immune response (cytokine storm), which is aggravated as the virus evades and meddles with protective anti-viral innate immune responses. Treatment and management of ARDS remain a major challenge, first, because the condition develops as the virus keeps replicating and, therefore, immunomodulatory drugs are required to be used with caution. Second, the hyperinflammatory responses observed during ARDS are quite heterogeneous and dependent on the stage of the disease and the clinical history of the patients. In this review, we present different anti-rheumatic drugs, natural compounds, monoclonal antibodies, and RNA therapeutics and discuss their application in the management of ARDS. We also discuss on the suitability of each of these drug classes at different stages of the disease. In the last section, we discuss the potential applications of advanced computational approaches in identifying reliable drug targets and in screening out credible lead compounds against ARDS.
Collapse
Affiliation(s)
- Smruti Sudha Nayak
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sajitha Lulu Sudhakaran
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sundararajan Vino
- Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling, Department of Chemistry and Biochemistry, Concordia University-Loyola Campus, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
11
|
Karami S, Asonye C, Pinnow E, Pratt V, McCulley L, Dwumfour N, Zhou EH. Trends in pediatric nonprescription analgesic/antipyretic exposures during the COVID-19 pandemic. Clin Toxicol (Phila) 2023; 61:190-199. [PMID: 36892525 DOI: 10.1080/15563650.2022.2158847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
OBJECTIVE To examine pediatric exposure trends involving selected nonprescription analgesics/antipyretics, before and during the COVID-19 pandemic. METHODS Using descriptive and interrupted time-series analyses, we assessed monthly United States poison center data involving pediatric (<18 years) exposures to nonprescription paracetamol (acetaminophen), ibuprofen, acetylsalicylic acid, and naproxen before (January 2015-February 2020) and during (March 2020-April 2021) the pandemic. Statins and proton pump inhibitors (prescription or nonprescription) served as controls. RESULTS Most nonprescription analgesic/antipyretic exposures (75-90%) were single-substance; unintentional exposures typically involved children <6 years (84-92%), while intentional exposures involved females (82-85%) and adolescents, 13-17 years (91-93%). Unintentional exposures among children <6 years, declined for all four analgesics/antipyretics immediately after the World Health Organization declared COVID-19 a pandemic (March 11, 2020), but most significantly for ibuprofen (30-39%). Most intentional exposures were classified as suspected suicide. Intentional exposures were relatively low and stable among males. Intentional exposures in females declined immediately after the pandemic was announced but subsequently increased to pre-pandemic levels for acetylsalicylic acid and naproxen and above pre-pandemic levels for paracetamol and ibuprofen. For paracetamol, female intentional exposures increased from 513 average monthly cases in the pre-pandemic to 641 average monthly cases during the pandemic; and reached 888 cases by the end of the study period in April 2021. While for ibuprofen, average monthly cases rose from 194 in the pre-pandemic, to 223 during the pandemic; and reached 352 cases in April 2021. Patterns were similar among females 6-12 and 13-17 years. CONCLUSION Nonprescription analgesic/antipyretic unintentional exposure cases declined among young children, while intentional exposure cases increased among females, 6-17 years, during the pandemic. Findings highlight the importance of safely storing medications and being alert to signs that adolescents may be in need of mental health support services; caregivers should seek medical care or call poison control centers for any suspected poisoning event.
Collapse
Affiliation(s)
- Sara Karami
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Cooma Asonye
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Ellen Pinnow
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Valerie Pratt
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Lynda McCulley
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Nana Dwumfour
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Esther H Zhou
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| |
Collapse
|
12
|
Brown B, Ojha V, Fricke I, Al-Sheboul SA, Imarogbe C, Gravier T, Green M, Peterson L, Koutsaroff IP, Demir A, Andrieu J, Leow CY, Leow CH. Innate and Adaptive Immunity during SARS-CoV-2 Infection: Biomolecular Cellular Markers and Mechanisms. Vaccines (Basel) 2023; 11:408. [PMID: 36851285 PMCID: PMC9962967 DOI: 10.3390/vaccines11020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus 2019 (COVID-19) pandemic was caused by a positive sense single-stranded RNA (ssRNA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, other human coronaviruses (hCoVs) exist. Historical pandemics include smallpox and influenza, with efficacious therapeutics utilized to reduce overall disease burden through effectively targeting a competent host immune system response. The immune system is composed of primary/secondary lymphoid structures with initially eight types of immune cell types, and many other subtypes, traversing cell membranes utilizing cell signaling cascades that contribute towards clearance of pathogenic proteins. Other proteins discussed include cluster of differentiation (CD) markers, major histocompatibility complexes (MHC), pleiotropic interleukins (IL), and chemokines (CXC). The historical concepts of host immunity are the innate and adaptive immune systems. The adaptive immune system is represented by T cells, B cells, and antibodies. The innate immune system is represented by macrophages, neutrophils, dendritic cells, and the complement system. Other viruses can affect and regulate cell cycle progression for example, in cancers that include human papillomavirus (HPV: cervical carcinoma), Epstein-Barr virus (EBV: lymphoma), Hepatitis B and C (HB/HC: hepatocellular carcinoma) and human T cell Leukemia Virus-1 (T cell leukemia). Bacterial infections also increase the risk of developing cancer (e.g., Helicobacter pylori). Viral and bacterial factors can cause both morbidity and mortality alongside being transmitted within clinical and community settings through affecting a host immune response. Therefore, it is appropriate to contextualize advances in single cell sequencing in conjunction with other laboratory techniques allowing insights into immune cell characterization. These developments offer improved clarity and understanding that overlap with autoimmune conditions that could be affected by innate B cells (B1+ or marginal zone cells) or adaptive T cell responses to SARS-CoV-2 infection and other pathologies. Thus, this review starts with an introduction into host respiratory infection before examining invaluable cellular messenger proteins and then individual immune cell markers.
Collapse
Affiliation(s)
| | | | - Ingo Fricke
- Independent Immunologist and Researcher, 311995 Lamspringe, Germany
| | - Suhaila A Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Medical Microbiology, International School of Medicine, Medipol University-Istanbul, Istanbul 34810, Turkey
| | | | - Tanya Gravier
- Independent Researcher, MPH, San Francisco, CA 94131, USA
| | | | | | | | - Ayça Demir
- Faculty of Medicine, Afyonkarahisar University, Istanbul 03030, Turkey
| | - Jonatane Andrieu
- Faculté de Médecine, Aix–Marseille University, 13005 Marseille, France
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine, (INFORMM), Universiti Sains Malaysia, USM, Penang 11800, Malaysia
| |
Collapse
|
13
|
Mathai RV, Jindal MK, Mitra JC, Sar SK. COVID-19 and medicinal plants: A critical perspective. FORENSIC SCIENCE INTERNATIONAL: ANIMALS AND ENVIRONMENTS 2022; 2:100043. [PMID: 35187518 PMCID: PMC8837494 DOI: 10.1016/j.fsiae.2022.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/26/2022] [Accepted: 02/06/2022] [Indexed: 12/03/2022]
Abstract
On a global scale, the Coronavirus pandemic (COVID-19) is having a direct and indirect effect on human lives, socioeconomic conditions, and the natural environment. The measures are taken to prevent the spread of coronavirus and slowdown of economic activities could have major short and long term effects on the natural ecosystem and climate in the coming days. Based on the current scientific studies, the present perspective intends to examine the possible direct and indirect impacts of the COVID-19 pandemic on the ecosystem particularly on medicinal plants. The natural compounds obtained from medicinal plants and herbal formulations provide rich sources of novel effective measures to control viral infections. The unpredictable COVID situation has affected the environment based on several aspects which may play a key role in impact on plants. The positive perspectives of the world pandemic are a significant improvement in quality of air, reduced carbon emission, increased water purity and reduction in other types of pollution. But at the same time, the negative consequences are much more, which mainly includes increased consumption of preventive medical equipment and medical wastes due to treatment and human immortality, which is continuously endangering the medicinal plants. These wastes may affect the natural cycling process and the natural habitat of the medicinal plants which are a promising solution for the prevention of viral diseases in the years to come. Hence, this perspective will be beneficial for the possible research studies and proper implementation of the strategies that might be support the global climate sustainability.
Collapse
Affiliation(s)
- Reena V Mathai
- Department of Chemistry, Dr. C. V. Raman University, Chhattisgarh 495113, India
| | | | | | - Santosh Kumar Sar
- Department of Applied Chemistry, Bhilai Institute of Technology, Durg, India
| |
Collapse
|
14
|
Kushner P, McCarberg BH, Grange L, Kolosov A, Haveric AL, Zucal V, Petruschke R, Bissonnette S. The use of non-steroidal anti-inflammatory drugs (NSAIDs) in COVID-19. NPJ Prim Care Respir Med 2022; 32:35. [PMID: 36127354 PMCID: PMC9489480 DOI: 10.1038/s41533-022-00300-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
Early in the COVID-19 pandemic, anecdotal reports emerged suggesting non-steroidal anti-inflammatory drugs (NSAIDs) may increase susceptibility to infection and adversely impact clinical outcomes. This narrative literature review (March 2020–July 2021) attempted to clarify the relationship between NSAID use and COVID-19 outcomes related to disease susceptibility or severity. Twenty-four relevant publications (covering 25 studies) reporting original research data were identified; all were observational cohort studies, and eight were described as retrospective. Overall, these studies are consistent in showing that NSAIDs neither increase the likelihood of SARS-CoV-2 infection nor worsen outcomes in patients with COVID-19. This is reflected in current recommendations from major public health authorities across the world, which support NSAID use for analgesic or antipyretic treatment during COVID-19. Thus, there is no basis on which to restrict or prohibit use of these drugs by consumers or patients to manage their health conditions and symptoms during the pandemic.
Collapse
Affiliation(s)
- Pamela Kushner
- Kushner Wellness Center, Los Angeles, CA, USA. .,Department of Family Medicine, University of California, Irvine, CA, USA.
| | - Bill H McCarberg
- Department of Family Medicine, University of California at San Diego School of Medicine, San Diego, CA, USA
| | - Laurent Grange
- Rheumatology Department, Grenoble-Alpes University Hospital, Echirolles, France.,President of the French League Against Rheumatism (AFLAR), Paris, France
| | - Anton Kolosov
- Medical Affairs, GSK Consumer Healthcare, Rochester Park, Singapore, Singapore
| | | | - Vincent Zucal
- Consumer Safety, GSK Consumer Healthcare, Warren, NJ, USA
| | | | | |
Collapse
|
15
|
Liposome encapsulated clodronate mediated elimination of pathogenic macrophages and microglia: A promising pharmacological regime to defuse cytokine storm in COVID-19. MEDICINE IN DRUG DISCOVERY 2022; 15:100136. [PMID: 35721801 PMCID: PMC9190184 DOI: 10.1016/j.medidd.2022.100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022] Open
Abstract
The emergence of new SARS-CoV-2 variants continues to pose an enormous public health concern. The SARS-CoV-2 infection disrupted host immune response accounting for cytokine storm has been linked to multiorgan failure and mortality in a significant portion of positive cases. Abruptly activated macrophages have been identified as the key pathogenic determinant of cytokine storm in COVID-19. Besides, reactive microglia have been known to discharge a surplus amount of proinflammatory factors leading to neuropathogenic events in the brains of SARS-CoV-2 infected individuals. Considering the fact, depletion of activated macrophages and microglia could be proposed to eradicate the life-threatening cytokine storm in COVID-19. Clodronate, a non-nitrogenous bisphosphonate drug has been identified as a potent macrophage and microglial depleting agent. While recent advancement in the field of liposome encapsulation technology offers the most promising biological tool for drug delivery, liposome encapsulated clodronate has been reported to effectively target and induce prominent phagocytic cell death in activated macrophages and microglia compared to free clodronate molecules. Thus, in this review article, we emphasize that depletion of activated macrophages and microglial cells by administration of liposome encapsulated clodronate can be a potential therapeutic strategy to diminish the pathogenic cytokine storm and alleviate multiorgan failure in COVID-19. Moreover, recently developed COVID-19 vaccines appear to render the chronic activation of macrophages accounting for immunological dysregulation in some cases. Therefore, the use of liposome encapsulated clodronate can also be extended to the clinical management of unforeseen immunogenic reactions resulting from activated macrophages associated adverse effects of COVID-19 vaccines.
Collapse
|
16
|
Beng TS, Kim CLC, Shee CC, Ching DNL, Liang TJ, Kumar MKN, Guan NC, Khuen LP, Loong LC, Chin LE, Zainuddin SI, Capelle DP, Munn AC, Yen LK, Isahak NNHN. COVID-19, Suffering and Palliative Care: A Review. Am J Hosp Palliat Care 2022; 39:986-995. [PMID: 34525862 PMCID: PMC9294437 DOI: 10.1177/10499091211046233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
According to the WHO guideline, palliative care is an integral component of COVID-19 management. The relief of physical symptoms and the provision of psychosocial support should be practiced by all healthcare workers caring for COVID-19 patients. In this review, we aim to provide a simple outline on COVID-19, suffering in COVID-19, and the role of palliative care in COVID-19. We also introduce 3 principles of palliative care that can serve as a guide for all healthcare workers caring for COVID-19 patients, which are (1) good symptom control, (2) open and sensitive communication, and (3) caring for the whole team. The pandemic has brought immense suffering, fear and death to people everywhere. The knowledge, skills and experiences from palliative care could be used to relieve the suffering of COVID-19 patients.
Collapse
Affiliation(s)
- Tan Seng Beng
- Department of Medicine, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Carol Lai Cheng Kim
- Department of Medicine, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chai Chee Shee
- Department of Medicine, Faculty of
Medicine and Health Science, University Sarawak Malaysia, Sarawak, Malaysia
| | - Diana Ng Leh Ching
- Department of Medicine, Faculty of
Medicine and Health Science, University Sarawak Malaysia, Sarawak, Malaysia
| | - Tan Jiunn Liang
- Department of Medicine, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Ng Chong Guan
- Department of Psychological Medicine,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lim Poh Khuen
- Department of Psychological Medicine,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lam Chee Loong
- Department of Medicine, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Loh Ee Chin
- Department of Medicine, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheriza Izwa Zainuddin
- Department of Medicine, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - David Paul Capelle
- Department of Medicine, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ang Chui Munn
- Department of Medicine, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lim Kah Yen
- Department of Medicine, Faculty of
Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
17
|
Lerrick RI. Synthesis of Nonsteroidal Anti-Inflammatory Drug (NSAID) 2,4,5-Trimethoxybenzaldehyde from Indonesian Calamus oil and Its In Silico Pharmacokinetic Study. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seeking Nonsteroidal anti-inflammatory painkillers are in the race due to the escalating cases of the life-threatening COVID-19 pandemic. Those current Nonsteroidal Anti-inflammatory Drugs (NSAIDs) used as an inflammation adjunct treatment on the COVID-19 patients including Paracetamol, Ibuprofen, and Celecoxib, are still under dispute offering emergency development of a new potent NSAID. Meanwhile, a well-known COX-2 selective anti-inflammation 2,4,5-trimethoxybenzaldehye has not been developed further in terms of its synthetic methodology and as well its pharmacokinetic studies. Here, an article on the synthesis of 2,4,5-trimethoxybenzaldehyde from Indonesia Sweet Flag (Acorus calamus) and as well its pharmacokinetic properties studied through in silico calculation was published. A typical Asian tetraploid calamus oil was yielded in 90% pure after doing reduced pressure distillation of the crude Indonesian Sweet flag oil. Submission of that oil into a very cheap DIY ozone machine produced 95% of pure 2,4,5-trimethoxybenzaldehyde just in 10 minutes ozonised. The in silico Adsorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) prediction using free access ADMETlab 2.0 web server strongly recommended the 2,4,5-trimethoxybenzaldehyde to be an orally administered NSAID candidate.
Collapse
Affiliation(s)
- Reinner Ishaq Lerrick
- University of Nusa Cendana Faculty of Science and Engineering, 562405, School of Chemistry, Kupang, East Nusa Tenggara, Indonesia
| |
Collapse
|
18
|
Naveen KV, Saravanakumar K, Sathiyaseelan A, MubarakAli D, Wang MH. Human Fungal Infection, Immune Response, and Clinical Challenge-a Perspective During COVID-19 Pandemic. Appl Biochem Biotechnol 2022; 194:4244-4257. [PMID: 35648275 PMCID: PMC9156836 DOI: 10.1007/s12010-022-03979-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 12/15/2022]
Abstract
Fungi are a small but important part of the human microbiota and several fungi are familiar to the immune system, yet certain can cause infections in immunocompromised hosts and referred as opportunistic pathogens. The fungal coinfections in COVID-19 hosts with predisposing conditions and immunosuppressive medications are posing higher severity and death. The immunological counteraction (innate/adaptive immunity) is triggered when the PRRs on the host cells recognize the fungal PAMPs. However, in simultaneous infections (COVID-19 and fungal coinfection), the synergism of TLR and NLR may hyperactivate the immune cells which dramatically increase the cytokine level and generate cytokine storm. Fungal colonization in the human gut assists the development of microbiome assembly, ecology, and shaping immune response. However, SARS-CoV-2 infection represented unstable mycobiomes and long-term dysbiosis in a large proportion in COVID-19 patients. Normally, amphotericin B is considered as first-line treatment for invasive fungal infection. So, amphotericin B therapy is recommended in COVID-19 hosts with serious fungal infections. Still, the long-term corticosteroid supplementation prescribed in case of severe pneumonia and lower oxygen levels may result in systemic fungal infection in COVID-19 patients, eventually limiting the lifesaving benefits of available medications. Also, due to the evolution of fungal resistance to available antibiotics, the current treatments are becoming ineffective. Therefore, this review summarizes the concerns, needed to deal with the impending crises.
Collapse
Affiliation(s)
- Kumar Vishven Naveen
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, 600048, India
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
19
|
Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature 2022; 605:146-151. [PMID: 35314834 PMCID: PMC9783543 DOI: 10.1038/s41586-022-04630-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/11/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.
Collapse
|
20
|
Widowati W, Handono K, Marlina M, Sholihah IA, Jasaputra DK, Wargasetia TL, Subangkit M, Faried A, Girsang E, Lister IN, Ginting CN, Nainggolan IM, Rizal R, Kusuma H, Chiuman L. In Silico Approach for Pro-inflammatory Protein Interleukin 1β and Interleukin-1 Receptor Antagonist Protein Docking as Potential Therapy for COVID-19 Disease. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Interleukin-1 receptor antagonist (IL-1Ra) also known as Anakinra is a receptor antagonist of IL-1 especially IL-1β. IL-1β increased in infected COVID-19 patient groups. This study aimed that the IL-1Ra contained in Conditioned Medium Wharton’s Jelly Mesenchymal Stem Cells (CM-WJMSCs) has the potential to inhibit IL-1β which is one of the cytokine storms that occur in COVID patients through an in-silico approach. Objective: This study aims to determine the effect of in silico approach pro-inflammatory protein interleukin 1β (IL-1 β) and interleukin-1 receptor antagonist protein as cytokine WJ-MSCs for potential treatment of COVID-19 disease. Methods: 3D structure using the homology modeling method on Swiss Model web-server. Molecular docking was performed to analyze the binding mode of the IL-1β related to COVID-19 with IL-1Ra and the docking results were fixed using FireDock web-server. Results: These results of the docking of proteins between IL-1β and the CM-WJMSCs component, namely IL-1Ra showed that IL-1Ra has criteria for docking on IL-1β such as the good score for QMEAN, good CscoreLB, and BS-score results, and the lowest energy obtained was -585.1 KJ/mol. It can be predicted that IL-1Ra can inhibit IL-1β which causes cytokine storms in COVID-19 patients. Conclusion: So that there is a potential treatment of CM-WJMSCs on the severity of Covid-19 infection.
Collapse
|
21
|
Kuchar E, Karlikowska-Skwarnik M, Wawrzuta D. Anti-Inflammatory Therapy of Infections. ENCYCLOPEDIA OF INFECTION AND IMMUNITY 2022. [PMCID: PMC8496905 DOI: 10.1016/b978-0-12-818731-9.00181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anti-inflammatory treatment of infections is challenging due to the heterogeneity of etiologic agents and complex immune interactions. Nevertheless, anti-inflammatory medications are commonly used in infections to reduce unpleasant symptoms and to modify host response. They may play a fundamental role in managing infection with over-inflammation by decreasing inflammatory organ damage, e.g., COVID-19. However, by its inherent inhibition of immune functions, they might also contribute to the development of serious bacterial infections. Moreover, reducing a patient's symptoms and signs may provide a false sense of security and delay diagnosing threatening infections.
Collapse
|
22
|
Do NSAIDs increase the severity of COVID-19? REACTIONS WEEKLY 2021. [PMCID: PMC8137446 DOI: 10.1007/s40278-021-96000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|