1
|
Li Q, Yang J, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Sun D, Tian B, He Y, Wu Z, Cheng A, Zhang S. Global distribution and genomic characteristics analysis of avian-derived mcr-1-positive Escherichia coli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117109. [PMID: 39353372 DOI: 10.1016/j.ecoenv.2024.117109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
The prevalence of avian-derived Escherichia coli (E. coli) carrying mcr-1 poses a significant threat to the development of the poultry industry and public health safety. Despite ongoing in-depth epidemiological research worldwide, a comprehensive macroscopic study based on genomics is still lacking. In response, this study collected 1104 genomic sequences of avian-derived mcr-1-positive E. coli (MCRPEC) from the NCBI public database, covering 31 countries. The majority of sequences originated from China (48.82 %), followed by the Netherlands (10.41 %). In terms of avian hosts, chicken accounted for the largest proportion (44.11 %), followed by gallus (24.09 %). Avian-derived MCRPEC also serves as a reservoir for other antibiotic resistance genes (ARGs), with 179 ARGs coexisting with mcr-1 identified. A total of 206 virulence-associated genes were also identified, revealing the pathogenic risks of MCRPEC. Pan-genome analysis revealed that avian-derived MCRPEC from different hosts, countries of origin, and serotypes exhibit minor SNP differences, indicating a high risk of cross-regional and cross-host transmission. The ST types of MCRPRC are diverse, with ST10 being the most prevalent (n=70). Spearman analysis showed a significant correlation between the number of ARGs and the insertion sequences (ISs) as well as plasmid replicon in ST10 strains. Furthermore, ST10 strains share a similar genetic basis with human-derived MCRPEC, suggesting the possibility of clonal dissemination. Pan-genome-wide association studies (pan-GWAS) indicated that the differential genes of MCRPEC from different countries and host sources are significantly different, mainly related to genes encoding type IV secretion systems and mobile genetic elements (MGEs). Plasmid mapping of showed that the prevalent plasmid types vary by country and host, with IncI2 and IncX4 being the main mcr-1-positive plasmids. Among the 12 identified mcr-1 genetic contexts with ISs, the Tn6330 transposon was the predominant carrier of mcr-1. In summary, the potential threat of avian-derived MCRPEC cannot be ignored, and long-term and comprehensive monitoring are essential.
Collapse
Affiliation(s)
- Qianlong Li
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jing Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China.
| | - Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R.China, PR China.
| |
Collapse
|
2
|
Liu M, Wu J, Zhao J, Xi Y, Jin Y, Yang H, Chen S, Long J, Duan G. Global epidemiology and genetic diversity of mcr-positive Klebsiella pneumoniae: A systematic review and genomic analysis. ENVIRONMENTAL RESEARCH 2024; 259:119516. [PMID: 38950813 DOI: 10.1016/j.envres.2024.119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
The rapid increase of mcr-positive Klebsiella pneumoniae (K. pneumoniae) has received considerable attention and poses a major public health concern. Here, we systematically analyzed the global distribution of mcr-positive K. pneumoniae isolates based on published articles as well as publicly available genomes. Combining strain information from 78 articles and 673 K. pneumoniae genomes, a total of 1000 mcr-positive K. pneumoniae isolates were identified. We found that mcr-positive K. pneumoniae has disseminated widely worldwide, especially in Asia, with a higher diversity of sequence types (STs). These isolates were disseminated in 57 countries and were associated with 12 different hosts. Most of the isolates were found in China and were isolated from human sources. Moreover, MLST analysis showed that ST15 and ST11 accounted for the majority of mcr-positive K. pneumoniae, which deserve sustained attention in further surveillance programs. mcr-1 and mcr-9 were the dominant mcr variants in mcr-positive K. pneumoniae. Furthermore, a Genome-wide association study (GWAS) demonstrated that mcr-1- and mcr-9-producing genomes exhibited different antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), thereby indicating a distinct evolutionary path. Notably, the phylogenetic analysis suggested that certain mcr-positive K. pneumoniae genomes from various geographical areas and hosts harbored a high degree of genetic similarities (<20 SNPs), suggesting frequent cross-region and cross-host clonal transmission. Overall, our results emphasize the significance of monitoring and exploring the transmission and evolution of mcr-positive K. pneumoniae in the context of "One health".
Collapse
Affiliation(s)
- Mengyue Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Sy BT, Boutin S, Kieu Linh LT, Weikert-Asbeck S, Eger E, Hauswaldt S, Nhat My T, The NT, Rupp J, Song LH, Schaufler K, Velavan TP, Nurjadi D. Heterogeneity of colistin resistance mechanism in clonal populations of carbapenem-resistant Klebsiella pneumoniae in Vietnam. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 51:101204. [PMID: 39387065 PMCID: PMC11462480 DOI: 10.1016/j.lanwpc.2024.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Bui Tien Sy
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Sébastien Boutin
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Le Thi Kieu Linh
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Germany
| | - Simone Weikert-Asbeck
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Elias Eger
- Epidemiology and Ecology of Antimicrobial Resistance (GEAR), Helmholtz Institute for One Health (HIOH), Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
| | - Susanne Hauswaldt
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Truong Nhat My
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Nguyen Trong The
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Department of Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Jan Rupp
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Le Huu Song
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Department of Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Katharina Schaufler
- Epidemiology and Ecology of Antimicrobial Resistance (GEAR), Helmholtz Institute for One Health (HIOH), Helmholtz Centre for Infection Research (HZI), Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| | - Thirumalaisamy P. Velavan
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Tropical Medicine, University of Tübingen, Germany
- Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Dennis Nurjadi
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Medical Microbiology and Clinic for Infectious Diseases, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| |
Collapse
|
4
|
Hide M, Meng S, Cheng S, Bañuls AL, Ky S, Yay C, Laurent D, Delvallez G. Colistin resistance in ESBL- and Carbapenemase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Cambodia. J Glob Antimicrob Resist 2024; 38:236-244. [PMID: 39004342 DOI: 10.1016/j.jgar.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
OBJECTIVES Despite the critical importance of colistin as a last-resort antibiotic, limited studies have investigated colistin resistance in human infections in Cambodia. This study aimed to investigate the colistin resistance and its molecular determinants among Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing (CP) Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) isolated in Cambodia between 2016 and 2020. METHODS E. coli (n = 223) and K. pneumoniae (n = 39) were tested for colistin minimum inhibitory concentration (MIC) by broth microdilution. Resistant isolates were subjected to polymerase chain reaction (PCR) for detection of mobile colistin resistance genes (mcr) and chromosomal mutations in the two-component system (TCS). RESULTS Eighteen isolates (10 K. pneumoniae and 8 E. coli) revealed colistin resistance with a rate of 5.9% in E. coli and 34.8% in K. pneumoniae among ESBL isolates, and 1% in E. coli and 12.5% in K. pneumoniae among CP isolates. The resistance was associated with mcr variants (13/18 isolates, mcr-1, mcr-3, and mcr-8.2) and TCS mutations within E. coli and K. pneumoniae, with the first detection of mcr-8.2 in Cambodia, the discovery of new mutations potentially associated to colistin resistance in the TCS of E. coli (PhoP I47V, PhoQ N352K, PmrB G19R, and PmrD G85R) and the co-occurrence of mcr genes and colistin resistance conferring TCS mutations in 11 of 18 isolates. CONCLUSIONS The findings highlight the presence of colistin resistance in ESBL- and CP- Enterobacteriaceae involved in human infections in Cambodia as well as chromosomal mutations in TCS and the emergence of mcr-8.2 in E. coli and K. pneumoniae. It underscores the need for continuous surveillance, antimicrobial stewardship, and control measures to mitigate the spread of colistin resistance.
Collapse
Affiliation(s)
- Mallorie Hide
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | - Soda Meng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sokleaph Cheng
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Anne-Laure Bañuls
- MIVEGEC, Montpellier University, CNRS, IRD, Montpellier, France; LMI Drug Resistance in Southeast Asia, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Santy Ky
- Kantha Bopha Hospital, Phnom Penh, Cambodia
| | | | - Denis Laurent
- Kantha Bopha Hospital, Phnom Penh, Cambodia; Jayavarman VII Hospital, Siem Reap, Cambodia
| | - Gauthier Delvallez
- Medical Biology Laboratory, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
5
|
Binsker U, Jäckel C, Rau J, Borowiak M, Salzinger C, García-Meniño I, Käsbohrer A, Hammerl JA. Klebsiella pneumoniae arms itself: poultry food chain drives spread and evolution of mcr-1.26-IncX4 plasmids. Microbiol Spectr 2024; 12:e0421023. [PMID: 38690933 PMCID: PMC11237521 DOI: 10.1128/spectrum.04210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Affiliation(s)
- Ulrike Binsker
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Claudia Jäckel
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency Stuttgart (CVUAS), Fellbach, Germany
| | - Maria Borowiak
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Carina Salzinger
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Isidro García-Meniño
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Laboratorio de Referencia de Escherichia coli (LREC), Dpto. de Microbioloxía e Parasitoloxía, Universidade de Santiago de Compostela (USC), Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago, Spain
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Department for Farm Animals and Veterinary Public Health, Unit of Veterinary Public Health and Epidemiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens André Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
6
|
Phomsisavath V, Roberts T, Seupsanith A, Robinson MT, Nammanininh P, Chanthavong S, Chansamouth V, Vongsouvath M, Theppangna W, Christensen P, Blacksell SD, Mayxay M, Ashley EA. Investigation of Escherichia coli isolates from pigs and humans for colistin resistance in Lao PDR- a cross-sectional study. One Health 2024; 18:100745. [PMID: 38725959 PMCID: PMC11079391 DOI: 10.1016/j.onehlt.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Background In Laos, colistin is not currently registered for use in humans. This One Health study aimed to estimate the prevalence of meat-producing pigs carrying colistin-resistant Escherichia coli, and investigate if E. coli causing invasive human infections were colistin-resistant. Methods Between September 2022 and March 2023, rectal swabs were collected from 895 pigs from abattoirs in 9/17 Lao provinces. Pig rectal swabs and stored E. coli isolates from human blood cultures, submitted to Mahosot Hospital Microbiology laboratory between 2005 and 2022, were screened for colistin resistance on selective chromogenic agar with organism identification confirmed using MALDI-TOF MS. Suspected colistin-resistant isolates underwent colistin susceptibility testing by broth microdilution following European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Isolates with MIC values of ≥2 μg/ml were tested for plasmid-mediated colistin resistance genes (mcr-1, mcr-2, and mcr-3) by multiplex SYBR Green PCR. Results A total of 15/620 (2.41%) invasive human E. coli isolates were phenotypically colistin-resistant by broth microdilution (MIC values 4 to 8 μg/ml). The earliest isolate was from 2015 in a patient from Phongsaly province in Northern Laos. A total of 582/895 (65.02%) pig rectal swab samples contained colistin-resistant E. coli. The detected colistin resistance genes were predominantly mcr-1 (57.8%, 346/598), followed by mcr-3 (20.23%,121/598), and 22.24% (133/598) were found to co-harbour mcr-1 and mcr-3. Among the 15 human isolates with colistin MIC values of ≥4 μg/ml, 12/15 were mcr-1. Conclusions We found that colistin resistant E. coli is causing invasive infection in humans in Laos despite the fact it is not available for human use. Use in animals seems to be widespread, confirmed by high carriage rates of colistin-resistant E. coli in pigs. It is probable that food-producing animals are the source of colistin-resistant E. coli bloodstream infection in Laos, although these have been infrequent to date. This is a serious public health concern in the region that needs to be addressed by appropriate enforceable legislation.
Collapse
Affiliation(s)
- Vilaiphone Phomsisavath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Tamalee Roberts
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | - Amphayvanh Seupsanith
- Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Matthew T. Robinson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| | | | | | - Vilada Chansamouth
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Watthana Theppangna
- National Animal Health Laboratory, Vientiane, Lao People’s Democratic Republic
| | - Peter Christensen
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stuart D. Blacksell
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
- Institute of Research and Education Development (IRED), University of Health Sciences, Vientiane, Lao People’s Democratic Republic
- Lao One Health University Network (LAOHUN), Vientiane, Lao People’s Democratic Republic
| | - Elizabeth A. Ashley
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, United Kingdom
| |
Collapse
|
7
|
Mansoor MH, Lu X, Woksepp H, Sattar A, Humak F, Ali J, Li R, Bonnedahl J, Mohsin M. Detection and genomic characterization of Klebsiella pneumoniae and Escherichia coli harboring tet(X4) in black kites (Milvus migrans) in Pakistan. Sci Rep 2024; 14:9054. [PMID: 38643223 PMCID: PMC11032342 DOI: 10.1038/s41598-024-59201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
The emergence of plasmid-mediated tigecycline resistance gene tet(X4) among clinically relevant bacteria has promoted significant concerns, as tigecycline is considered a last-resort drug against serious infections caused by multidrug-resistant bacteria. We herein focused on the isolation and molecular characterization of tet(X4)-positive Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) in wild bird populations with anthropogenic interaction in Faisalabad, Pakistan. A total of 150 birds including black kites (Milvus migrans) and house crows (Corvus splendens) were screened for the presence of tigecycline resistance K. pneumoniae and E. coli. We found two K. pneumoniae and one E. coli isolate carrying tet(X4) originating from black kites. A combination of short- and long-read sequencing strategies showed that tet(X4) was located on a broad host range IncFII plasmid family in K. pneumoniae isolates whereas on an IncFII-IncFIB hybrid plasmid in E. coli. We also found an integrative and conjugative element ICEKp2 in K. pneumoniae isolate KP8336. We demonstrate the first description of tet(X4) gene in the WHO critical-priority pathogen K. pneumoniae among wild birds. The convergence of tet(X4) and virulence associated ICEKp2 in a wild bird with known anthropogenic contact should be further investigated to evaluate the potential epidemiological implications. The potential risk of global transmission of tet(X4)-positive K. pneumoniae and E. coli warrant comprehensive evaluation and emphasizes the need for effective mitigation strategies to reduce anthropogenic-driven dissemination of AMR in the environment.
Collapse
Affiliation(s)
| | - Xiaoyu Lu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Hanna Woksepp
- Department of Development and Public Health, Kalmar County Hospital, 391 85, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, 392 31, Kalmar, Sweden
| | - Amna Sattar
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Farwa Humak
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Jabir Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jonas Bonnedahl
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
- Department of Infectious Diseases, Region Kalmar County, 391 85, Kalmar, Sweden.
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
8
|
Umair M, Walsh TR, Mohsin M. A systematic review and meta-analysis of carbapenem resistance and its possible treatment options with focus on clinical Enterobacteriaceae: Thirty years of development in Pakistan. Heliyon 2024; 10:e28052. [PMID: 38596009 PMCID: PMC11001782 DOI: 10.1016/j.heliyon.2024.e28052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Background Carbapenem resistance is epidemic worldwide, these last resort antimicrobials are listed in the WHO 'watch group' with higher resistance potential. During the years 2017-18 Pakistan Antimicrobial Resistance Surveillance System reported an increase in carbapenem resistance. However, a comprehensive information on prevalence and molecular epidemiology of carbapenem resistance in Pakistan is not available. This systematic review and meta-analysis is aimed to report the current carbapenem resistance situation in Pakistan and its treatment options. Methods In this systematic review and meta-analysis, we investigated the pooled prevalence (PPr) of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae by organizing available data, from Web of Science and PubMed by April 2, 2020, in various groups and subgroups including species, years, provinces, extended spectrum β-lactamase production, clinical presentation, carbapenemase and metallo-β-lactamase production, and New Delhi metallo-β-lactamase (NDM) prevalence. Literature review was updated for the studies publisehd by December 07, 2023. Moreover, we descriptively reviewed the molecular epidemiology of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae in Pakistan. Lastly, we statistically explored different treatment options available for carbapenem resistant infections. We used R package 'metafor' for performing meta-analysis and influence diagnostics and determining treatment options. Results From two academic databases Web of Science and PubMed we identified 343 studies. Eighty-eight studies were selected for the systematic review and meta-analysis. Seventy-four studies were selected for phenotypic analysis, 36 for genotypic analysis, and 31 for available treatment options. PPr-ID of 12% [0.12 (0.07, 0.16)] was observed for phenotypic carbapenem resistance in Enterobacteriaceae with more prevalence recorded in Klebsiella pneumoniae 24% [0.24 (0.05, 0.44)] followed by 9% [0.09 (-0.03, 0.20)] in Escherichia coli. During the last two decades we observed a striking increase in carbapenem resistance PPr i.e., from 0% [0.00 (-0.02, 0.03)] to 36% [0.36 (0.17, 0.56)]. blaNDM with PPr 15% [0.15 (0.06, 0.23)] in naive isolates was found to be the fundamental genetic determinant for carbapenem resistance in Enterobacteriaceae in Pakistan. Polymyxin B, colistin, tigecycline, and fosfomycin were identified as the suggested treatment options available for multidrug resistant infections not responding to carbapenems. Various studies reported carbapenem resistance from human, animal, and environment sources. Conclusion In conclusion, we found that NDM-1 producing carbapenem resistant Enterobacteriaceae are increasing in Pakistan. Meta-analysis showed that metallo-β-lactamases producing E. coli ST405 and K. pneumoniae sequence type11 are the major resistant clones. Number of reported studies in various subgroups and inconsistency in following CLSI guidelines are the potential limitations of this meta-analysis. A National antimicrobial resistance (AMR) surveillance strategy based on One Health is urgently needed to check any future AMR crisis in Pakistan.
Collapse
Affiliation(s)
- Muhammad Umair
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Timothy R. Walsh
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| |
Collapse
|
9
|
Morang’a AK, Muloi DM, Kamau SM, Onono JO, Gathura PB, Moodley A. Mapping the flow of veterinary antibiotics in Kenya. Front Vet Sci 2024; 11:1304318. [PMID: 38645649 PMCID: PMC11027570 DOI: 10.3389/fvets.2024.1304318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction To effectively regulate and reduce antibiotic use, in the livestock sector, a thorough understanding of the flow of veterinary antibiotics will help to identify key nodes in the chain for targeted interventions. The aim of this study was to understand the flow of antibiotics from import to end-user, and identify relevant governance mechanisms. Methods A mixed methods approach was used to collect data in three Kenyan counties (Nairobi, Kiambu, and Kajiado). Focus group discussions (n = 23), individual interviews (n = 148), and key informant interviews (n = 10) were conducted. Results The key actors identified include primary wholesalers, secondary wholesalers, retailers, animal health service providers (AHSPs), and farmers. Kenya imports 100% of its veterinary antibiotics: primary wholesalers legally import antibiotics as finished pharmaceutical products (90%) or active pharmaceutical ingredients (10%) after approval by the Veterinary Medicines Directorate. Secondary wholesalers play a major role in the distribution of antibiotics (60% of antibiotics) from importers to farmers, AHSPs, and retailers. Some of the illegal sources of antibiotics include unlicenced/unauthorized middlemen and online platforms that sell directly to retailers, AHSPs, and farmers. Discussion Despite the presence of various laws and regulations governing the antibiotic value chain, implementation has been a challenge due to financial and human resource constraints. This contributes to over-the-counter sale of antibiotics without prescription, unlicensed businesses selling antibiotics, illegal importation, and presence of poor-quality drugs. There is a need to review the applicability of existing policies and address policy gaps (e.g., product containing antibiotic combinations, and use of human critically important antibiotics) to ensure the prudent sale and use of antibiotics, pharmacovigilance, antimicrobial use surveillance, and developing a business model that aligns with antibiotic stewardship. Additional interventions include awareness raising and capacity building of the different stakeholders along the antibiotic distribution chain to reduce antibiotic mis- and overuse.
Collapse
Affiliation(s)
- Alexina K. Morang’a
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Dishon M. Muloi
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Simon M. Kamau
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Joshua O. Onono
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Peter B. Gathura
- Department of Public Health, Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Arshnee Moodley
- Animal and Human Health Program, International Livestock Research Institute, Nairobi, Kenya
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
10
|
Liu JH, Liu YY, Shen YB, Yang J, Walsh TR, Wang Y, Shen J. Plasmid-mediated colistin-resistance genes: mcr. Trends Microbiol 2024; 32:365-378. [PMID: 38008597 DOI: 10.1016/j.tim.2023.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.
Collapse
Affiliation(s)
- Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Ying-Bo Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | | | - Yang Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
11
|
Rzymski P, Gwenzi W, Poniedziałek B, Mangul S, Fal A. Climate warming, environmental degradation and pollution as drivers of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123649. [PMID: 38402936 DOI: 10.1016/j.envpol.2024.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure and improving wastewater treatment, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, and improving waste recycling. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrzej Fal
- Department of Allergy, Lung Diseases and Internal Medicine Central Clinical Hospital, Ministry of Interior, Warsaw, Poland; Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, Warsaw, Poland
| |
Collapse
|
12
|
Portal EAR, Sands K, Farley C, Boostrom I, Jones E, Barrell M, Carvalho MJ, Milton R, Iregbu K, Modibbo F, Uwaezuoke S, Akpulu C, Audu L, Edwin C, Yusuf AH, Adeleye A, Mukkadas AS, Maduekwe D, Gambo S, Sani J, Walsh TR, Spiller OB. Characterisation of colistin resistance in Gram-negative microbiota of pregnant women and neonates in Nigeria. Nat Commun 2024; 15:2302. [PMID: 38485761 PMCID: PMC10940312 DOI: 10.1038/s41467-024-45673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/30/2024] [Indexed: 03/18/2024] Open
Abstract
A mobile colistin resistance gene mcr was first reported in 2016 in China and has since been found with increasing prevalence across South-East Asia. Here we survey the presence of mcr genes in 4907 rectal swabs from mothers and neonates from three hospital sites across Nigeria; a country with limited availability or history of colistin use clinically. Forty mother and seven neonatal swabs carried mcr genes in a range of bacterial species: 46 Enterobacter spp. and single isolates of; Shigella, E. coli and Klebsiella quasipneumoniae. Ninety percent of the genes were mcr-10 (n = 45) we also found mcr-1 (n = 3) and mcr-9 (n = 1). While the prevalence during this collection (2015-2016) was low, the widespread diversity of mcr-gene type and range of bacterial species in this sentinel population sampling is concerning. It suggests that agricultural colistin use was likely encouraging sustainment of mcr-positive isolates in the community and implementation of medical colistin use will rapidly select and expand resistant isolates.
Collapse
Affiliation(s)
- E A R Portal
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK.
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK.
| | - K Sands
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK.
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK.
| | - C Farley
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - I Boostrom
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - E Jones
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - M Barrell
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - M J Carvalho
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - R Milton
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - K Iregbu
- National Hospital Abuja, Abuja, Nigeria
| | - F Modibbo
- Murtala Muhammad Specialist Hospital, Kano, Nigeria
| | - S Uwaezuoke
- Federal Medical Centre -Jabi, Abuja, Nigeria
| | - C Akpulu
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- National Hospital Abuja, Abuja, Nigeria
- Interdisciplinary Biosciences DTP, University of Oxford, Oxford, UK
| | - L Audu
- National Hospital Abuja, Abuja, Nigeria
| | - C Edwin
- Department of Medical Microbiology Aminu Kano Teaching Hospital, Kano, Nigeria
| | - A H Yusuf
- Department of Medical Microbiology Aminu Kano Teaching Hospital, Kano, Nigeria
| | - A Adeleye
- Department of Medical Microbiology Aminu Kano Teaching Hospital, Kano, Nigeria
| | - A S Mukkadas
- Department of Medical Microbiology Aminu Kano Teaching Hospital, Kano, Nigeria
| | - D Maduekwe
- Wuse General Hospital Abuja, Abuja, Nigeria
| | - S Gambo
- Department of Paediatrics, Murtala Muhammed Specialist Hospital, Kano, Nigeria
| | - J Sani
- Department of Paediatrics Abdullahi Wase Teaching Hospital, Kano, Nigeria
| | - T R Walsh
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - O B Spiller
- Department of Medical Microbiology, Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
13
|
Yaseen K, Ali S, Rahman SU, Sajid MS. Comparative Molecular Virulence Typing and Antibiotic Resistance of Campylobacter Species at the Human-Animal-Environment Interface. Foodborne Pathog Dis 2024. [PMID: 38394319 DOI: 10.1089/fpd.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
This study holds significant importance due to its focus on Campylobacter, the leading bacterial cause of gastroenteritis worldwide, responsible for ∼96 million cases each year. By investigating the prevalence of both Campylobacter jejuni and Campylobacter coli in humans, animals, and the environment, this research sheds light on the broader impact of these pathogens, which can harm both human and animal populations. Traditional microbiological methods were implemented followed by optimized multiplex polymerase chain reaction targeting 16S rDNA and virulence gene markers by using specific primers. The findings revealed that a total of 219 Campylobacter isolates were recovered from 528 collected specimens from human, animal, and environmental sources. Campylobacter species showed a prevalence of 41.5%, with C. jejuni accounting for 53% and C. coli for 47%. Antimicrobial resistance rates were high, with tetracycline at 89%, ceftriaxone at 75%, cefotaxime at 70%, erythromycin at 69%, nalidixic acid at 54%, ciprofloxacin at 39%, and gentamicin at 23%. Commonly prevalent virulence-associated genes observed in the Campylobacter were cadF at 93%, flaA at 91%, cdtB at 88%, cheY at 86%, sodB at 78%, and iamA at 32%. The study confirmed multidrug-resistant Campylobacter prevalence at the human-animal-environment interface, harboring virulence-associated genes with potential harm to humans. Data analysis showed a nonsignificant (p ≥ 0.05) correlation between virulence genes and antibiotic susceptibility. To effectively manage Campylobacter infections, a multifaceted strategy incorporating preventative interventions at different levels is required. This strategy should take into account practicability, effectiveness, and sustainability while strengthening surveillance systems and addressing the economics of disease prevention.
Collapse
Affiliation(s)
- Kashaf Yaseen
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Sajjad-Ur Rahman
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
14
|
Adhikari S, Phuyal S, Saied AA, Metwally AA, Acharya KP. Irrational use of colistin sulfate in poultry and domestic animals in Nepal-an emerging public health crisis. SCIENCE IN ONE HEALTH 2024; 3:100063. [PMID: 39077389 PMCID: PMC11262270 DOI: 10.1016/j.soh.2024.100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/24/2024] [Indexed: 07/31/2024]
Affiliation(s)
- Sonu Adhikari
- Department of Animal Breeding and Biotechnology, Agriculture and Forestry University (AFU), Rampur, Chitwan, 44209, Nepal
| | - Sarita Phuyal
- Central Referral Veterinary Hospital, Tripurehswar, Kathmandu, 45104, Nepal
| | | | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | | |
Collapse
|
15
|
Stabile M, Esposito A, Iula VD, Guaragna A, De Gregorio E. PYED-1 Overcomes Colistin Resistance in Acinetobacter baumannii. Pathogens 2023; 12:1323. [PMID: 38003788 PMCID: PMC10674209 DOI: 10.3390/pathogens12111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotic resistance has become more and more widespread over the recent decades, becoming a major global health problem and causing colistin to be increasingly used as an antibiotic of last resort. Acinetobacter baumannii, an opportunistic pathogen that has rapidly evolved into a superbug exhibiting multidrug-resistant phenotypes, is responsible for a large number of hospital infection outbreaks. With the intensive use of colistin, A. baumannii resistance to colistin has been found to increase significantly. In previous work, we identified a deflazacort derivative, PYED-1 (pregnadiene-11-hydroxy-16,17-epoxy-3,20-dione-1), which exhibits either direct-acting or synergistic activity against Gram-positive and Gram-negative species and Candida spp., including A. baumannii. The aim of this study was to evaluate the antibacterial activity of PYED-1 in combination with colistin against both A. baumannii planktonic and sessile cells. Furthermore, the cytotoxicity of PYED-1 with and without colistin was assessed. Our results show that PYED-1 and colistin can act synergistically to produce a strong antimicrobial effect against multidrug-resistant populations of A. baumannii. Interestingly, our data reveal that PYED-1 is able to restore the efficacy of colistin against all colistin-resistant A. baumannii isolates. This drug combination could achieve a much stronger antimicrobial effect than colistin while using a much smaller dosage of the drugs, additionally eliminating the toxicity and resistance issues associated with the use of colistin.
Collapse
Affiliation(s)
- Maria Stabile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.S.); (A.G.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Anna Esposito
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy;
| | - Vita Dora Iula
- Department of Laboratory Medicine, U.O.C Patologia Clinica, Ospedale del Mare—ASL Napoli1 Centro, 80145 Naples, Italy;
| | - Annalisa Guaragna
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy; (M.S.); (A.G.)
| | - Eliana De Gregorio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
16
|
Vilaró A, Novell E, Enrique-Tarancon V, Baliellas J, Migura-García L, Fraile L. The Susceptibility Trends of Respiratory and Enteric Porcine Pathogens to Last-Resource Antimicrobials. Antibiotics (Basel) 2023; 12:1575. [PMID: 37998776 PMCID: PMC10668718 DOI: 10.3390/antibiotics12111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Monitoring the antimicrobial susceptibility of last-resource antimicrobials for veterinary pathogens is urgently needed from a one-health perspective. The objective of this study was to analyze the antimicrobial susceptibility trends of Spanish porcine bacteria to quinolones, cephalosporins, and polymyxins. Isolates of Actinobacillus pleuropneumoniae, Pasteurella multocida, and Escherichia coli were isolated from sick pigs from 2019 to 2022. An antimicrobial susceptibility test was determined based on the minimal inhibitory concentration (MIC) following an internationally accepted methodology. The MIC categorization was based on distributing the range of MIC values in four categories, with category one being the most susceptible (lowest MIC value) and category four the least susceptible (highest MIC value). Moreover, clinical susceptibility (susceptible/non-susceptible) was also determined according to the CLSI and EUCAST clinical breakpoints. A logistic and multinomial logistic regression model was used to analyze the susceptibility data for dichotomized and categorized MIC data, respectively, for any pair of antimicrobial/microorganism. In general terms, the antimicrobial susceptibility of pig bacteria to these antimicrobials remained stable or increased in the last four years in Spain. In the case of A. pleuropneumoniae and quinolones, a significant temporal trend was observed where isolates from 2020 had significantly increased odds of being more susceptible than isolates from 2019. In the case of E. coli and polymyxins, a significant temporal trend was observed where isolates from 2020 and 2021 had significantly increased odds of being more susceptible than isolates from 2019 and 2020, respectively. Finally, significant odds of being less susceptible were only observed for cephalosporins and E. coli for 2020 versus 2019, stagnating for the rest of study period. These results provide sound data on critically important antimicrobials in swine medicine.
Collapse
Affiliation(s)
- Anna Vilaró
- Grup de Sanejament Porcí, 25192 Lleida, Spain; (A.V.); (E.N.); (V.E.-T.); (J.B.)
| | - Elena Novell
- Grup de Sanejament Porcí, 25192 Lleida, Spain; (A.V.); (E.N.); (V.E.-T.); (J.B.)
| | | | - Jordi Baliellas
- Grup de Sanejament Porcí, 25192 Lleida, Spain; (A.V.); (E.N.); (V.E.-T.); (J.B.)
| | - Lourdes Migura-García
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain;
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), 08193 Bellaterra, Spain
| | - Lorenzo Fraile
- Departament de Ciència Animal, ETSEA, University of Lleida-Agrotecnio, 25198 Lleida, Spain
| |
Collapse
|
17
|
Shahi MK, Gompo TR, Sharma S, Pokhrel B, Manandhar S, Jeamsripong S. Situational Analysis and Knowledge, Attitudes, and Practices of Antimicrobial Use and Resistance among Broiler Poultry Farmers in Nepal. Animals (Basel) 2023; 13:3135. [PMID: 37835741 PMCID: PMC10571899 DOI: 10.3390/ani13193135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The purpose of this study was twofold: first, to conduct a situational analysis, and second, to assess the knowledge, attitudes, and practices (KAP) of broiler poultry farmers (BPF) regarding antimicrobial use (AMU) and antimicrobial resistance (AMR). Data were collected from 500 BPF across 40 districts, representing 88.1% of Nepal's broiler poultry population. Among these farmers, 81.0% were male, 59.6% had up to 4 years of experience in poultry farming, and 50.8% had completed at least a high school education. The most used antimicrobials on the farms were doxycycline (23.5%), neomycin (17.1%), and colistin sulfate (9.6%) out of 27 reported antimicrobials. While the BPF exhibited limited knowledge (62.6%) and practice (55.5%) related to AMU and AMR, their overall attitude toward these issues was positive (91.6%). This study also identified significant factors influencing farmers' attitudes toward AMU and AMR. Farmers aged 31-40 showed a stronger inclination compared to other age groups (OR = 4.2, p = 0.02), and those using antimicrobials for preventive purposes had a more favorable attitude compared to those using them for other purposes (OR = 5.9, p = 0.02). In light of these findings, this study recommends the implementation of effective regulatory measures for drug usage, along with awareness programs addressing AMU and AMR to address the issue of AMR in poultry production.
Collapse
Affiliation(s)
- Manoj Kumar Shahi
- Nepal Veterinary Council, Tripureshwor, Kathmandu 4600, Nepal; (M.K.S.); (S.M.)
| | - Tulsi Ram Gompo
- Central Veterinary Laboratory, Tripureshwar, Kathmandu 44600, Nepal
| | - Sumit Sharma
- Nepal Veterinary Council, Tripureshwor, Kathmandu 4600, Nepal; (M.K.S.); (S.M.)
| | - Bishal Pokhrel
- Nepal Veterinary Council, Tripureshwor, Kathmandu 4600, Nepal; (M.K.S.); (S.M.)
| | - Srijana Manandhar
- Nepal Veterinary Council, Tripureshwor, Kathmandu 4600, Nepal; (M.K.S.); (S.M.)
| | - Saharuetai Jeamsripong
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Henri-Dunant Rd., Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Binsker U, Oelgeschläger K, Neumann B, Werner G, Käsbohrer A, Hammerl JA. Genomic Evidence of mcr-1.26 IncX4 Plasmid Transmission between Poultry and Humans. Microbiol Spectr 2023; 11:e0101523. [PMID: 37358464 PMCID: PMC10434184 DOI: 10.1128/spectrum.01015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 06/27/2023] Open
Abstract
Colistin is still commonly used and misused in animal husbandry driving the evolution and dissemination of transmissible plasmid-mediated colistin resistance (mcr). mcr-1.26 is a rare variant and, so far, has only been detected in Escherichia coli obtained from a hospitalized patient in Germany in 2018. Recently, it was also notified in fecal samples from a pigeon in Lebanon. We report on the presence of 16 colistin-resistant, mcr-1.26-carrying extended-spectrum beta-lactamase (ESBL)-producing and commensal E. coli isolated from poultry samples in Germany, of which retail meat was the most common source. Short- and long-read genome sequencing and bioinformatic analyses revealed the location of mcr-1.26 exclusively on IncX4 plasmids. mcr-1.26 was identified on two different IncX4 plasmid types of 33 and 38 kb and was associated with an IS6-like element. Based on the genetic diversity of E. coli isolates, transmission of the mcr-1.26 resistance determinant is mediated by horizontal transfer of IncX4 plasmids, as confirmed by conjugation experiments. Notably, the 33-kb plasmid is highly similar to the plasmid reported for the human sample. Furthermore, we identified the acquisition of an additional beta-lactam resistance linked to a Tn2 transposon on the mcr-1.26 IncX4 plasmids of three isolates, indicating progressive plasmid evolution. Overall, all described mcr-1.26-carrying plasmids contain a highly conserved core genome necessary for colistin resistance development, transmission, replication, and maintenance. Variations in the plasmid sequences are mainly caused by the acquisition of insertion sequences and alteration in intergenic sequences or genes of unknown function. IMPORTANCE Evolutionary events causing the emergence of new resistances/variants are usually rare and challenging to predict. Conversely, common transmission events of widespread resistance determinants are quantifiable and predictable. One such example is the transmissible plasmid-mediated colistin resistance. The main determinant, mcr-1, has been notified in 2016 but has successfully established itself in multiple plasmid backbones in diverse bacterial species across all One Health sectors. So far, 34 variants of mcr-1 are described, of which some can be used for epidemiological tracing-back analysis to identify the origin and transmission dynamics of these genes. Here, we report the presence of the rare mcr-1.26 gene in E. coli isolated from poultry since 2014. Based on the temporal occurrence and high similarity of the plasmids between poultry and human isolates, our study provides first indications for poultry husbandry as the primary source of mcr-1.26 and its transmission between different niches.
Collapse
Affiliation(s)
- Ulrike Binsker
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kathrin Oelgeschläger
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Bernd Neumann
- Institute for Hospital Hygiene, Medical Microbiology and Clinical Infectiology, Paracelsus Medical University, Nuremberg General Hospital, Germany
| | - Guido Werner
- Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Annemarie Käsbohrer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
- Department for Farm Animals and Veterinary Public Health, Institute of Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jens A. Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
19
|
Calero-Cáceres W, Balcázar JL. Evolution and dissemination of mobile colistin resistance genes: limitations and challenges in Latin American countries. THE LANCET. MICROBE 2023; 4:e567-e568. [PMID: 37276877 DOI: 10.1016/s2666-5247(23)00152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Affiliation(s)
- William Calero-Cáceres
- UTA-RAM-One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Los Chasquis y Rio Payamino Ambato 180206, Ecuador.
| | - José Luis Balcázar
- Catalan Institute for Water Research, 17003 Girona, Spain; University of Girona, 17004 Girona, Spain
| |
Collapse
|
20
|
Furlan JPR, Sellera FP, Stehling EG. Trends of the environmental spread of mcr genes in Latin America. THE LANCET. MICROBE 2023; 4:e571. [PMID: 37393926 DOI: 10.1016/s2666-5247(23)00189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Affiliation(s)
- João Pedro Rueda Furlan
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil.
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Eliana Guedes Stehling
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
21
|
Rajakani SG, Xavier BB, Sey A, Mariem EB, Lammens C, Goossens H, Glupczynski Y, Malhotra-Kumar S. Insight into Antibiotic Synergy Combinations for Eliminating Colistin Heteroresistant Klebsiella pneumoniae. Genes (Basel) 2023; 14:1426. [PMID: 37510330 PMCID: PMC10378790 DOI: 10.3390/genes14071426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Colistin heteroresistance has been identified in several bacterial species, including Escherichia coli and Klebsiella pneumoniae, and may underlie antibiotic therapy failures since it most often goes undetected by conventional antimicrobial susceptibility tests. This study utilizes population analysis profiling (PAP) and time-kill assay for the detection of heteroresistance in K. pneumoniae and for evaluating the association between in vitro regrowth and heteroresistance. The mechanisms of colistin resistance and the ability of combination therapies to suppress resistance selection were also analysed. In total, 3 (18%) of the 16 colistin-susceptible strains (MIC ≤ 2 mg/L) were confirmed to be heteroresistant to colistin by PAP assay. In contrast to the colistin-susceptible control strains, all three heteroresistant strains showed regrowth when exposed to colistin after 24 h following a rapid bactericidal action. Colistin resistance in all the resistant subpopulations was due to the disruption of the mgrB gene by various insertion elements such as ISKpn14 of the IS1 family and IS903B of the IS5 family. Colistin combined with carbapenems (imipenem, meropenem), aminoglycosides (amikacin, gentamicin) or tigecycline was found to elicit in vitro synergistic effects against these colistin heteroresistant strains. Our experimental results showcase the potential of combination therapies for treatment of K. pneumoniae infections associated with colistin heteroresistance.
Collapse
Affiliation(s)
- Sahaya Glingston Rajakani
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Adwoa Sey
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - El Bounja Mariem
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
22
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
23
|
Soni M, Kapoor G, Perumal N, Chaurasia D. Emergence of Multidrug-Resistant Non-Fermenting Gram-Negative Bacilli in a Tertiary Care Teaching Hospital of Central India: Is Colistin Resistance Still a Distant Threat? Cureus 2023; 15:e39243. [PMID: 37342731 PMCID: PMC10277209 DOI: 10.7759/cureus.39243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/23/2023] Open
Abstract
Purpose Multidrug-resistant (MDR) organisms are being increasingly reported from India. This study aimed to determine the antibiotic susceptibility pattern of non-fermenting Gram-negative bacilli (NF-GNB) isolated from all the clinical samples to estimate the prevalence of MDR MDR NF-GNB and to screen for colistin-resistance genes among all colistin-resistant strains. Materials and methods This prospective study conducted from January 2021 to July 2022 at a tertiary care teaching hospital in central India identified MDR NF-GNB from clinical samples using standard procedures and antimicrobial susceptibility testing conducted as per Clinical Laboratory Standards Institute (CLSI) guidelines. Colistin-resistant strains identified by broth microdilution were further subjected to detection of plasmid-mediated colistin-resistant genes (mcr-1, mcr-2, mcr-3) by polymerase chain reaction (PCR). Results A total 2,106 NF-GNB were isolated from 21,019 culture positive clinical samples, of which 743 (35%) were MDR. Majority of MDR NF-GNB isolated were from pus (45.50%) followed by blood (20.50%). Out of 743 non-duplicate MDR non-fermenters,the most common were Pseudomonas aeruginosa (51.7%), Acinetobacter baumannii (23.4%),and others (24.9%).Around5.2% Pseudomonas aeruginosa and 2.3% Acinetobacter baumannii were resistant to colistin, and 88.2% were resistant to ceftazidime. Burkholderia cepacia complexwas 100% susceptible to minocycline and least susceptible to ceftazidime (28.6%). Out of 11, 10 (90.9%) Stenotrophomonas maltophilia were susceptible to colistin and least susceptible to ceftazidime and minocycline (27.3%). All 33 colistin-resistant strains (minimal inhibitory concentration ≥ 4 µg/mL) were found to be negative for mcr-1, mcr-2, and mcr-3 genes. Conclusion Our study showed a significantly wide variety of NF-GNB, ranging from Pseudomonas aeruginosa (51.7%), Acinetobacter baumannii (23.4%),to Acinetobacter haemolyticus (4.6%), Pseudomonas putida (0.9%), Elizabethkingia meningoseptica (0.7%), Pseudomonas luteola (0.5%), and Ralstonia pickettii (0.4%), which have not been commonly reported in literature. Of all the non-fermenters isolated in the present study, 35.28% were MDR, raising the concern for rationalizing antibiotic use and improving infection control measures to avert or slow the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Mitisha Soni
- Department of Microbiology, Gandhi Medical College, Bhopal, IND
| | - Garima Kapoor
- Department of Microbiology, Gandhi Medical College, Bhopal, IND
| | - Nagaraj Perumal
- State Virology Laboratory, Department of Microbiology, Gandhi Medical College, Bhopal, IND
| | | |
Collapse
|