1
|
Smith CL, Didion E, Aung H, Tamilselvan B, Bej T, Oyebanji OA, Shive CL, Wilson BM, Cameron M, Cameron C, Gravenstein S, Canaday DH. Longitudinal Analysis of Nursing Home Residents' T-Cell Responses After SARS-CoV-2 mRNA Vaccinations Shows Influence of Biological Sex and Infection History. J Infect Dis 2024; 230:635-644. [PMID: 38743816 PMCID: PMC11420774 DOI: 10.1093/infdis/jiae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Vaccines and vaccine boosting have blunted excess morbidity and mortality from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in older nursing home residents (NHR). However, the impact of repeated vaccination on the T-cell response based on biological sex and prior infection of NHR remain understudied. METHODS We examined T-cell responses to SARS-CoV-2 mRNA vaccines in a cohort of NHR and healthcare workers (HCW) over 2 years. We used interferon-γ ELIspot and flow cytometry to assess T-cell response before, 2 weeks, and 6 months after the initial series and each of 2 booster vaccines. We analyzed these data longitudinally with mixed-effect modeling and also examined subsets of our cohorts for additional changes in T-cell effector function. RESULTS Prior SARS-CoV-2 infection and female sex contributed to higher T-cell response in NHR but not HCW. When looking across time points, NHR but not HCW with prior infection had significantly higher T-cell responses than infection-naive subjects. These patterns of response were maintained across multiple booster vaccinations. CONCLUSIONS These results suggest that the age, multimorbidity, and/or frailty of the NHR cohort may accentuate sex and infection status differences in T-cell response to mRNA vaccination.
Collapse
Affiliation(s)
- Carson L Smith
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Elise Didion
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Htin Aung
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Taissa Bej
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Oladayo A Oyebanji
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Carey L Shive
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| | - Brigid M Wilson
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Mark Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cheryl Cameron
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stefan Gravenstein
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Center on Innovation in Long-Term Services and Supports, Providence Veterans Administration Medical Center, Providence, Rhode Island, USA
| | - David H Canaday
- Division of Infectious Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Geriatric Research, Education, and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Gelderloos AT, Verheul MK, Middelhof I, de Zeeuw-Brouwer ML, van Binnendijk RS, Buisman AM, van Kasteren PB. Repeated COVID-19 mRNA vaccination results in IgG4 class switching and decreased NK cell activation by S1-specific antibodies in older adults. Immun Ageing 2024; 21:63. [PMID: 39272189 PMCID: PMC11401348 DOI: 10.1186/s12979-024-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Previous research has shown that repeated COVID-19 mRNA vaccination leads to a marked increase of SARS-CoV-2 spike-specific serum antibodies of the IgG4 subclass, indicating far-reaching immunoglobulin class switching after booster immunization. Considering that repeated vaccination has been recommended especially for older adults, the aim of this study was to investigate IgG subclass responses in the ageing population and assess their relation with Fc-mediated antibody effector functionality. RESULTS Spike S1-specific IgG subclass concentrations (expressed in arbitrary units per mL), antibody-dependent NK cell activation, complement deposition and monocyte phagocytosis were quantified in serum from older adults (n = 38-50, 65-83 years) at one month post-second, -third and -fifth vaccination. Subclass distribution in serum was compared to that in younger adults (n = 64, 18-47 years) at one month post-second and -third vaccination. Compared to younger individuals, older adults showed increased levels of IgG2 and IgG4 at one month post-third vaccination (possibly related to factors other than age) and a further increase following a fifth dose. The capacity of specific serum antibodies to mediate NK cell activation and complement deposition relative to S1-specific total IgG concentrations decreased upon repeated vaccination. This decrease associated with an increased IgG4/IgG1 ratio. CONCLUSIONS In conclusion, these findings show that, like younger individuals, older adults produce antibodies with reduced functional capacity upon repeated COVID-19 mRNA vaccination. Additional research is needed to better understand the mechanisms underlying these responses and their potential implications for vaccine effectiveness. Such knowledge is vital for the future design of optimal vaccination strategies in the ageing population.
Collapse
Affiliation(s)
- Anne T Gelderloos
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marije K Verheul
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Irene Middelhof
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mary-Lène de Zeeuw-Brouwer
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Robert S van Binnendijk
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anne-Marie Buisman
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Puck B van Kasteren
- Center for Immunology of Infectious Diseases and Vaccines (IIV), Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| |
Collapse
|
3
|
Niyomnaitham S, Chokephaibulkit K, Pheerapanyawaranun C, Toh ZQ, Licciardi PV, Satayasanskul A, Jansarikit L, Assantachai P. Immunogenicity of BNT162b2 as a first booster after a ChAdOx1 primary series in a Thai geriatric population living with frailty. J Nutr Health Aging 2024; 28:100315. [PMID: 39025017 DOI: 10.1016/j.jnha.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES Impact of frailty towards immunogenicity and reactogenicity of BNT162b2 boosters administered via intramuscular or intradermal routes in a Thai geriatric population DESIGN: Prospective, randomized, open-labeled. SETTING Siriraj Hospital, Thailand. PARTICIPANTS Geriatric adults aged ≥65 years. INTERVENTION 10 μg intradermal or 30 μg intramuscular BNT162b2 (Pfizer-BioNTech). MEASUREMENTS Anti-SARS-CoV-2 receptor binding domain IgG, neutralizing antibodies (NAb), and interferon-gamma producing cells against Wuhan and Omicron BA.4/5. Analyses were stratified based on participants' Clinical Frailty Scale. RESULTS A total of 139 participants were included in the analysis. Two-four weeks post-booster administration, NAb titers against Wuhan but not Omicron BA.4/5 were significantly lower among frail participants than non-frail participants who received intramuscular administration. Spike-specific T cell responses were similar for frail and non-frail participants, regardless of administration route. Frail participants who received intradermal BNT162b2 had fewer local adverse events (AEs), but higher systemic AEs than non-frail participants. CONCLUSION Similar immune responses across vaccine routes warrants further evaluation of intradermal BNT162b2 in frail geriatric populations. Frail participants may be more sensitive to reporting systemic AEs. REGISTRATION OF CLINICAL TRIALS The parent study was registered under the Thai Clinical Trials Registry (TCTR20220112002).
Collapse
Affiliation(s)
- Suvimol Niyomnaitham
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Institute of Clinical Research (SICRES), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Kulkanya Chokephaibulkit
- Siriraj Institute of Clinical Research (SICRES), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Chatkamol Pheerapanyawaranun
- Siriraj Institute of Clinical Research (SICRES), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Zheng Quan Toh
- Infection and Immunology, Murdoch Children's Research Institute, Parkville, Australia; Department of Pediatrics, The University of Melbourne, Parkville, Australia.
| | - Paul V Licciardi
- Infection and Immunology, Murdoch Children's Research Institute, Parkville, Australia; Department of Pediatrics, The University of Melbourne, Parkville, Australia.
| | | | - Laddawan Jansarikit
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Prasert Assantachai
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Muangnoicharoen S, Wiangcharoen R, Lawpoolsri S, Nanthapisal S, Jongkaewwattana A, Duangdee C, Kamolratanakul S, Luvira V, Thanthamnu N, Chantratita N, Thitithanyanont A, Anh Wartel T, Excler JL, Ryser MF, Leong C, Mak TK, Pitisuttithum P. Heterologous Ad26.COV2.S booster after primary BBIBP-CorV vaccination against SARS-CoV-2 infection: 1-year follow-up of a phase 1/2 open-label trial. Vaccine 2024; 42:3999-4010. [PMID: 38744598 DOI: 10.1016/j.vaccine.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Inactivated whole-virus vaccination elicits immune responses to both SARS-CoV-2 nucleocapsid (N) and spike (S) proteins, like natural infections. A heterologous Ad26.COV2.S booster given at two different intervals after primary BBIBP-CorV vaccination was safe and immunogenic at days 28 and 84, with higher immune responses observed after the longer pre-boost interval. We describe booster-specific and hybrid immune responses over 1 year. METHODS This open-label phase 1/2 study was conducted in healthy Thai adults aged ≥ 18 years who had completed primary BBIBP-CorV primary vaccination between 90-240 (Arm A1; n = 361) or 45-75 days (Arm A2; n = 104) before enrolment. All received an Ad26.COV2.S booster. We measured anti-S and anti-N IgG antibodies by Elecsys®, neutralizing antibodies by SARS-CoV-2 pseudovirus neutralization assay, and T-cell responses by quantitative interferon (IFN)-γ release assay. Immune responses were evaluated in the baseline-seronegative population (pre-booster anti-N < 1.4 U/mL; n = 241) that included the booster-effect subgroup (anti-N < 1.4 U/mL at each visit) and the hybrid-immunity subgroup (anti-N ≥ 1.4 U/mL and/or SARS-CoV-2 infection, irrespective of receiving non-study COVID-19 boosters). RESULTS In Arm A1 of the booster-effect subgroup, anti-S GMCs were 131-fold higher than baseline at day 336; neutralizing responses against ancestral SARS-CoV-2 were 5-fold higher than baseline at day 168; 4-fold against Omicron BA.2 at day 84. IFN-γ remained approximately 4-fold higher than baseline at days 168 and 336 in 18-59-year-olds. Booster-specific responses trended lower in Arm A2. In the hybrid-immunity subgroup at day 336, anti-S GMCs in A1 were 517-fold higher than baseline; neutralizing responses against ancestral SARS-CoV-2 and Omicron BA.2 were 28- and 31-fold higher, respectively, and IFN-γ was approximately 14-fold higher in 18-59-year-olds at day 336. Durable immune responses trended lower in ≥ 60-year-olds. CONCLUSION A heterologous Ad26.COV2.S booster after primary BBIBP-CorV vaccination induced booster-specific immune responses detectable up to 1 year that were higher in participants with hybrid immunity. CLINICAL TRIALS REGISTRATION NCT05109559.
Collapse
Affiliation(s)
- Sant Muangnoicharoen
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Saranath Lawpoolsri
- Center of Excellence for Biomedical and Public Health Informatics (BIOPHICS), Bangkok, Thailand; Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sira Nanthapisal
- Faculty of Medicine, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Anan Jongkaewwattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chatnapa Duangdee
- Faculty of Tropical Medicine, Hospital for Tropical Diseases, Bangkok, Thailand
| | | | - Viravarn Luvira
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narumon Thanthamnu
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - T Anh Wartel
- International Vaccine Institute, Seoul, Republic of Korea
| | | | | | - Chloe Leong
- Janssen Asia Pacific Medical Affairs Operations, Sydney, Australia
| | - Tippi K Mak
- Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore; Vaccine and Infectious Disease Organization, University of Saskatchewan, Canada
| | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Korosec CS, Dick DW, Moyles IR, Watmough J. SARS-CoV-2 booster vaccine dose significantly extends humoral immune response half-life beyond the primary series. Sci Rep 2024; 14:8426. [PMID: 38637521 PMCID: PMC11026522 DOI: 10.1038/s41598-024-58811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
SARS-CoV-2 lipid nanoparticle mRNA vaccines continue to be administered as the predominant prophylactic measure to reduce COVID-19 disease pathogenesis. Quantifying the kinetics of the secondary immune response from subsequent doses beyond the primary series and understanding how dose-dependent immune waning kinetics vary as a function of age, sex, and various comorbidities remains an important question. We study anti-spike IgG waning kinetics in 152 individuals who received an mRNA-based primary series (first two doses) and a subset of 137 individuals who then received an mRNA-based booster dose. We find the booster dose elicits a 71-84% increase in the median Anti-S half life over that of the primary series. We find the Anti-S half life for both primary series and booster doses decreases with age. However, we stress that although chronological age continues to be a good proxy for vaccine-induced humoral waning, immunosenescence is likely not the mechanism, rather, more likely the mechanism is related to the presence of noncommunicable diseases, which also accumulate with age, that affect immune regulation. We are able to independently reproduce recent observations that those with pre-existing asthma exhibit a stronger primary series humoral response to vaccination than compared to those that do not, and further, we find this result is sustained for the booster dose. Finally, via a single-variate Kruskal-Wallis test we find no difference between male and female humoral decay kinetics, however, a multivariate approach utilizing Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature selection reveals a statistically significant (p < 1 × 10 - 3 ), albeit small, bias in favour of longer-lasting humoral immunity amongst males.
Collapse
Affiliation(s)
- Chapin S Korosec
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - David W Dick
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada.
| | - Iain R Moyles
- Modelling Infection and Immunity Lab, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
- Centre for Disease Modelling, Mathematics and Statistics, York University, 4700 Keele St, Toronto, M3J 1P3, ON, Canada
| | - James Watmough
- Department of Mathematics and Statistics, University of New Brunswick, 3 Bailey Dr, Fredericton, E3B 5A3, NB, Canada
| |
Collapse
|
6
|
Domènech-Montoliu S, Puig-Barberà J, Pac-Sa MR, Orrico-Sanchéz A, Gómez-Lanas L, Sala-Trull D, Domènech-Leon C, Del Rio-González A, Sánchez-Urbano M, Satorres-Martinez P, Aparisi-Esteve L, Badenes-Marques G, Blasco-Gari R, Casanova-Suarez J, Gil-Fortuño M, Hernández-Pérez N, Jovani-Sales D, López-Diago L, Notari-Rodríguez C, Pérez-Olaso O, Romeu-Garcia MA, Ruíz-Puig R, Arnedo-Pena A. Cellular Immunity of SARS-CoV-2 in the Borriana COVID-19 Cohort: A Nested Case-Control Study. EPIDEMIOLOGIA 2024; 5:167-186. [PMID: 38651389 PMCID: PMC11036210 DOI: 10.3390/epidemiologia5020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Our goal was to determine the cellular immune response (CIR) in a sample of the Borriana COVID-19 cohort (Spain) to identify associated factors and their relationship with infection, reinfection and sequelae. We conducted a nested case-control study using a randomly selected sample of 225 individuals aged 18 and older, including 36 individuals naïve to the SARS-CoV-2 infection and 189 infected patients. We employed flow-cytometry-based immunoassays for intracellular cytokine staining, using Wuhan and BA.2 antigens, and chemiluminescence microparticle immunoassay to detect SARS-CoV-2 antibodies. Logistic regression models were applied. A total of 215 (95.6%) participants exhibited T-cell response (TCR) to at least one antigen. Positive responses of CD4+ and CD8+ T cells were 89.8% and 85.3%, respectively. No difference in CIR was found between naïve and infected patients. Patients who experienced sequelae exhibited a higher CIR than those without. A positive correlation was observed between TCR and anti-spike IgG levels. Factors positively associated with the TCR included blood group A, number of SARS-CoV-2 vaccine doses received, and anti-N IgM; factors inversely related were the time elapsed since the last vaccine dose or infection, and blood group B. These findings contribute valuable insights into the nuanced immune landscape shaped by SARS-CoV-2 infection and vaccination.
Collapse
Affiliation(s)
| | - Joan Puig-Barberà
- Vaccines Research Unit, Foundation for the Promotion of Health and Biomedical Research in Valencia Region FISABIO-Public Health, 46020 Valencia, Spain; (J.P.-B.); (A.O.-S.)
| | - María Rosario Pac-Sa
- Public Health Center, 12003 Castelló de la Plana, Spain; (M.R.P.-S.); (M.A.R.-G.)
| | - Alejandro Orrico-Sanchéz
- Vaccines Research Unit, Foundation for the Promotion of Health and Biomedical Research in Valencia Region FISABIO-Public Health, 46020 Valencia, Spain; (J.P.-B.); (A.O.-S.)
- Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Secretary of Chair of Vaccines Catholic University of Valencia, 46001 Valencia, Spain
| | - Lorna Gómez-Lanas
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Diego Sala-Trull
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Carmen Domènech-Leon
- Department of Medicine, University CEU Cardenal Herrera, 12006 Castelló de la Plana, Spain;
| | | | - Manuel Sánchez-Urbano
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Paloma Satorres-Martinez
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | | | - Gema Badenes-Marques
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Roser Blasco-Gari
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | | | - María Gil-Fortuño
- Microbiology Service University Hospital de la Plana, 12540 Vila-real, Spain; (M.G.-F.); (N.H.-P.); (O.P.-O.)
| | - Noelia Hernández-Pérez
- Microbiology Service University Hospital de la Plana, 12540 Vila-real, Spain; (M.G.-F.); (N.H.-P.); (O.P.-O.)
| | - David Jovani-Sales
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Laura López-Diago
- Clinical Analysis Service University Hospital de la Plana, 12540 Vila-real, Spain;
| | - Cristina Notari-Rodríguez
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Oscar Pérez-Olaso
- Microbiology Service University Hospital de la Plana, 12540 Vila-real, Spain; (M.G.-F.); (N.H.-P.); (O.P.-O.)
| | | | - Raquel Ruíz-Puig
- Emergency Service University Hospital de la Plana, 12540 Vila-real, Spain; (L.G.-L.); (D.S.-T.); (M.S.-U.); (P.S.-M.); (G.B.-M.); (R.B.-G.); (D.J.-S.); (C.N.-R.); (R.R.-P.)
| | - Alberto Arnedo-Pena
- Public Health Center, 12003 Castelló de la Plana, Spain; (M.R.P.-S.); (M.A.R.-G.)
- Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Health Science, Public University Navarra, 31006 Pamplona, Spain
| |
Collapse
|
7
|
Fedele G, Schiavoni I, Trentini F, Leone P, Olivetta E, Fallucca A, Fiore S, Di Martino A, Abrignani S, Baldo V, Baldovin T, Bandera A, Clerici P, De Paschale M, Diaco F, Domnich A, Fortunato F, Giberti I, Gori A, Grifantini R, Lazzarotto T, Lodi V, Mastroianni CM, Prato R, Restivo V, Vitale F, Brusaferro S, Merler S, Palamara AT, Stefanelli P. A 12-month follow-up of the immune response to SARS-CoV-2 primary vaccination: evidence from a real-world study. Front Immunol 2023; 14:1272119. [PMID: 38077369 PMCID: PMC10698351 DOI: 10.3389/fimmu.2023.1272119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
A real-world population-based longitudinal study, aimed at determining the magnitude and duration of immunity induced by different types of vaccines against COVID-19, started in 2021 by enrolling a cohort of 2,497 individuals at time of their first vaccination. The study cohort included both healthy adults aged ≤65 years and elderly subjects aged >65 years with two or more co-morbidities. Here, patterns of anti-SARS-CoV-2 humoral and cell-mediated specific immune response, assessed on 1,182 remaining subjects, at 6 (T6) and 12 months (T12) after the first vaccine dose, are described. At T12 median anti-Spike IgG antibody levels were increased compared to T6. The determinants of increased anti-Spike IgG were the receipt of a third vaccine dose between T6 and T12 and being positive for anti-Nucleocapside IgG at T12, a marker of recent infection, while age had no significant effect. The capacity of T12 sera to neutralize in vitro the ancestral B strain and the Omicron BA.5 variant was assessed in a subgroup of vaccinated subjects. A correlation between anti-S IgG levels and sera neutralizing capacity was identified and higher neutralizing capacity was evident in healthy adults compared to frail elderly subjects and in those who were positive for anti-Nucleocapside IgG at T12. Remarkably, one third of T12 sera from anti-Nucleocapside IgG negative older individuals were unable to neutralize the BA.5 variant strain. Finally, the evaluation of T-cell mediated immunity showed that most analysed subjects, independently from age and comorbidity, displayed Spike-specific responses with a high degree of polyfunctionality, especially in the CD8 compartment. In conclusion, vaccinated subjects had high levels of circulating antibodies against SARS-CoV-2 Spike protein 12 months after the primary vaccination, which increased as compared to T6. The enhancing effect could be attributable to the administration of a third vaccine dose but also to the occurrence of breakthrough infection. Older individuals, especially those who were anti-Nucleocapside IgG negative, displayed an impaired capacity to neutralize the BA.5 variant strain. Spike specific T-cell responses, able to sustain immunity and maintain the ability to fight the infection, were present in most of older and younger subjects assayed at T12.
Collapse
Affiliation(s)
- Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Ilaria Schiavoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Filippo Trentini
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
- Dondena Centre for Research on Social Dynamics and Public Policy, Bocconi University, Milan, Italy
| | - Pasqualina Leone
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Olivetta
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Fallucca
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Stefano Fiore
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Di Martino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - Vincenzo Baldo
- Laboratory of Hygiene and Applied Microbiology, Hygiene and Public Health Unit, Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Tatjana Baldovin
- Laboratory of Hygiene and Applied Microbiology, Hygiene and Public Health Unit, Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan, Italy
| | - Pierangelo Clerici
- Microbiology Unit, Azienda Socio Sanitaria Territoriale (ASST) Ovest Milanese, Milan, Italy
| | - Massimo De Paschale
- Microbiology Unit, Azienda Socio Sanitaria Territoriale (ASST) Ovest Milanese, Milan, Italy
| | - Fabiana Diaco
- Department of Molecular Medicine, AOU Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Alexander Domnich
- IRCCS Ospedale Policlinico San Martino Genova, and Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Francesca Fortunato
- Hygiene Unit, Policlinico Riuniti Foggia Hospital, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Irene Giberti
- IRCCS Ospedale Policlinico San Martino Genova, and Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Andrea Gori
- Microbiology Unit, Azienda Socio Sanitaria Territoriale (ASST) Ovest Milanese, Milan, Italy
- II Division of Infectious Diseases, "Luigi Sacco" Hospital, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Section of Microbiology, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vittorio Lodi
- Occupational Health Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Disease, AOU Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Rosa Prato
- IRCCS Ospedale Policlinico San Martino Genova, and Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Vincenzo Restivo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Francesco Vitale
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | | | - Stefano Merler
- Center for Health Emergencies, Bruno Kessler Foundation, Trento, Italy
| | | | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | |
Collapse
|
8
|
Blix K, Laake I, Juvet L, Robertson AH, Caspersen IH, Mjaaland S, Skodvin SN, Magnus P, Feiring B, Trogstad L. Unexpected vaginal bleeding and COVID-19 vaccination in nonmenstruating women. SCIENCE ADVANCES 2023; 9:eadg1391. [PMID: 37738335 PMCID: PMC10516485 DOI: 10.1126/sciadv.adg1391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/16/2023] [Indexed: 09/24/2023]
Abstract
The association between coronavirus disease 2019 (COVID-19) vaccination and vaginal bleeding among nonmenstruating women is not well studied. The Norwegian Institute of Public Health followed several cohorts throughout the pandemic and early performed a systematic data collection of self-reported unexpected vaginal bleeding in nonmenstruating women. Among 7725 postmenopausal women, 7148 perimenopausal women, and 7052 premenopausal women, 3.3, 14.1, and 13.1% experienced unexpected vaginal bleeding during a period of 8 to 9 months, respectively. In postmenopausal women, the risk of unexpected vaginal bleeding (i.e., postmenopausal bleeding) in the 4 weeks after COVID-19 vaccination was increased two- to threefold, compared to a prevaccination period. The corresponding risk of unexpected vaginal bleeding after vaccination was increased three- to fivefold in both nonmenstruating peri- and premenopausal women. In the premenopausal women, Spikevax was associated with at 32% increased risk as compared to Comirnaty. Our results must be confirmed in future studies.
Collapse
Affiliation(s)
- Kristine Blix
- Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida Laake
- Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | - Lene Juvet
- Department of Infection Control and Vaccines, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Hayman Robertson
- Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Siri Mjaaland
- Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | - Siri N. Skodvin
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Berit Feiring
- Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| | - Lill Trogstad
- Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
9
|
Tani Y, Takita M, Wakui M, Saito H, Nishiuchi T, Zhao T, Yamamoto C, Kawamura T, Sugiyama A, Nakayama A, Kaneko Y, Kodama T, Shinaha R, Tsubokura M. Five doses of the mRNA vaccination potentially suppress ancestral-strain stimulated SARS-CoV2-specific cellular immunity: a cohort study from the Fukushima vaccination community survey, Japan. Front Immunol 2023; 14:1240425. [PMID: 37662950 PMCID: PMC10469480 DOI: 10.3389/fimmu.2023.1240425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
The bivalent mRNA vaccine is recommended to address coronavirus disease variants, with additional doses suggested for high-risk groups. However, the effectiveness, optimal frequency, and number of doses remain uncertain. In this study, we examined the long-term cellular and humoral immune responses following the fifth administration of the mRNA severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in patients undergoing hemodialysis. To our knowledge, this is the first study to monitor long-term data on humoral and cellular immunity dynamics in high-risk populations after five doses of mRNA vaccination, including the bivalent mRNA vaccine. Whereas most patients maintained humoral immunity throughout the observation period, we observed reduced cellular immune reactivity as measured by the ancestral-strain-stimulated ELISpot assay in a subset of patients. Half of the individuals (50%; 14/28) maintained cellular immunity three months after the fifth dose, despite acquiring humoral immunity. The absence of a relationship between positive controls and T-Spot reactivity suggests that these immune alterations were specific to SARS-CoV-2. In multivariable analysis, participants aged ≥70 years showed a marginally significant lower likelihood of having reactive results. Notably, among the 14 individuals who received heterologous vaccines, 13 successfully acquired cellular immunity, supporting the effectiveness of this administration strategy. These findings provide valuable insights for future vaccination strategies in vulnerable populations. However, further research is needed to evaluate the involvement of immune tolerance and exhaustion through repeated vaccination to optimize immunization strategies.
Collapse
Affiliation(s)
- Yuta Tani
- Medical Governance Research Institute, Tokyo, Japan
| | - Morihito Takita
- Medical Governance Research Institute, Tokyo, Japan
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroaki Saito
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima, Japan
| | | | - Tianchen Zhao
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
| | - Chika Yamamoto
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
| | - Takeshi Kawamura
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akira Sugiyama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Aya Nakayama
- Proteomics Laboratory, Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yudai Kaneko
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
- Medical and Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryuzaburo Shinaha
- Department of Internal Medicine, Soma Central Hospital, Fukushima, Japan
| | - Masaharu Tsubokura
- Medical Governance Research Institute, Tokyo, Japan
- Department of Radiation Health Management, Fukushima Medical University, Fukushima, Japan
- Department of Internal Medicine, Soma Central Hospital, Fukushima, Japan
| |
Collapse
|
10
|
Fedele G, Palmieri A, Onder G. The immune response to SARS-CoV-2 vaccination in older people. THE LANCET. HEALTHY LONGEVITY 2023; 4:e177-e178. [PMID: 37148886 DOI: 10.1016/s2666-7568(23)00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023] Open
Affiliation(s)
- Giorgio Fedele
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Annapina Palmieri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Graziano Onder
- Fondazione Policlinico Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|