1
|
Chen J, Yang Y, Feng H, Sun D, Hu C, Chen Y, Liu C, Cao Y, Ma LQ. Novel phosphatase PvPAP1 from the As-hyperaccumulator Pteris vittata promotes organic P utilization and plant growth: Extracellular exudation and phytate hydrolysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134867. [PMID: 38861900 DOI: 10.1016/j.jhazmat.2024.134867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Organic phosphorus (Po) is a large component of soil P, but it is often unavailable for plant uptake. Purple acid phosphatases (PAP) can hydrolyze a wide range of Po, playing an important role in Po utilization by plants. In this study, we investigated a novel secretary PvPAP1 from the As-hyperaccumulator Pteris vittata, which can effectively utilize exogenous Po, including adenosine triphosphate (ATP) and phytate. Unlike other PAP, PvPAP1 was abundantly-expressed in P. vittata roots, which was upregulated 3.5-folds under P-deprivation than P-sufficient conditions. When expressed in tobacco, its activity in the roots of PvPAP1-Ex lines was ∼8 folds greater than that in wild-type (WT) plants. Besides, PvPAP1 exhibited its secretory ability as evidenced by the sapphire-blue color on the root surface after treating with 5-bromo-4-chloro-3-indolyl phosphate. In a long-term experiment using sand media, PvPAP1-expressing tobacco plants showed 25-30 % greater root biomass than WT plants when using ATP as the sole P source. This is because PvPAP1-expression enhanced its phosphatase activity by 6.5-9.2 folds in transgenic tobacco, thereby increasing the P contents by 39-41 % in its roots under ATP treatment and 9.4-30 % under phytate treatment. The results highlight PvPAP1 as a novel secreted phosphatase crucial for external Po utilization in P. vittata, suggesting that PvPAP1 has the potential to serve as a valuable gene resource for enhancing Po utilization by crop plants.
Collapse
Affiliation(s)
- Junxiu Chen
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yulu Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Huayuan Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China
| | - Dan Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyan Hu
- Institute of Soil and Water Resources and Environmental science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanshan Chen
- School of the Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chenjing Liu
- Institute of Soil and Water Resources and Environmental science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yue Cao
- State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510275, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Bergwik J, Bhongir RKV, Padra M, Adler A, Olm F, Lång P, Lindstedt S, Andersson G, Egesten A, Tanner L. Macrophage expressed tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis progression. Immunology 2024; 171:583-594. [PMID: 38178705 DOI: 10.1111/imm.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disorder involving scarring of pulmonary tissue and a subsequent decrease in respiratory capacity, ultimately resulting in death. Tartrate resistant acid phosphatase 5 (ACP5) plays a role in IPF but the exact mechanisms are yet to be elucidated. In this study, we have utilized various perturbations of the bleomycin mouse model of IPF including genetic knockout, RANKL inhibition, and macrophage adoptive transfer to further understand ACP5's role in pulmonary fibrosis. Genetic ablation of Acp5 decreased immune cell recruitment to the lungs and reduced the levels of hydroxyproline (reflecting extracellular matrix-production) as well as histological damage. Additionally, gene expression profiling of murine lung tissue revealed downregulation of genes including Ccl13, Mmp13, and Il-1α that encodes proteins specifically related to immune cell recruitment and macrophage/fibroblast interactions. Furthermore, antibody-based neutralization of RANKL, an important inducer of Acp5 expression, reduced immune cell recruitment but did not decrease fibrotic lung development. Adoptive transfer of Acp5-/- bone marrow-derived monocyte (BMDM) macrophages 7 or 14 days after bleomycin administration resulted in reductions of cytokine production and decreased levels of lung damage, compared to adoptive transfer of WT control macrophages. Taken together, the data presented in this study suggest that macrophage derived ACP5 plays an important role in development of pulmonary fibrosis and could present a tractable target for therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi Kiran Varma Bhongir
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Médea Padra
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Anna Adler
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Cardiothoracic Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Lindstedt
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Cardiothoracic Surgery, Department of Clinical Sciences, Lund University, Skåne University Hospital, Lund, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
3
|
He X, Chen A, Liao Z, Zhong J, Cheng A, Xue X, Li F, Chen M, Yao R, Zhao W, Niu J. Dietary Supplementation of Astragalus membranaceus Extract Affects Growth Performance, Antioxidant Capacity, Immune Response, and Energy Metabolism of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2024; 2024:3893671. [PMID: 38464590 PMCID: PMC10923623 DOI: 10.1155/2024/3893671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
The present study investigated the effects of Astragalus membranaceus extract (AME) on growth performance, immune response, and energy metabolism of juvenile largemouth bass (Micropterus salmoides). Seven diets containing 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, and 0.6% AME (Con, AME0.1, AME0.2, AME0.3, AME0.4, AME0.5, and AME0.6 groups) were formulated and fed to M. salmoides for 8 weeks. Final body weight (FBW), feed intake (FI), weight gain (WG), and specific growth rate (SGR) were all significantly higher in AME0.4 group than in Con group (P < 0.05). Feed conversion rate (FCR) was significantly improved in AME0.5 group compared with Con group (P < 0.05). Whole-body crude protein contents were significantly increased in AME0.2 group (P < 0.05). Whole-body crude lipid contents were significantly lower in AME0.2 and AME0.3 groups, while muscle lipid was upregulated by dietary AME (P < 0.05). Hepatic malondialdehyde (MDA) contents were significantly lowered in AME0.3 and AME0.4 groups, and catalase (CAT) activities were significantly increased in AME0.1 and AME0.2 groups (P < 0.05). Plasma aspartate aminotransferase (AST) level was significantly lowered in AME0.5, and AME0.6 groups, and alanine aminotransferase (ALT) level was lowered in AME0.5 groups (P < 0.05). Plasma triglyceride was declined in AME0.6 group, and glucose was decreased by 0.3%-0.5% AME (P < 0.05). Significantly higher hepatocyte diameter, lamina propria width, and submucosal layer thickness were recorded in AME0.6 groups, while the longest villi height was obtained in AME0.2 and AME0.3 groups (P < 0.05). The mRNA expression levels of insulin-like growth factor 1 (igf1) revealed the growth-promoting effect of AME. The anti-inflammatory and antiapoptotic effects of AME were demonstrated by transcription levels of interleukin 8 (il-8), tumor necrosis factor-alpha (tnf-a), caspase, B-cell lymphoma-xl (Bcl-xl), bcl-2 associated x (Bax), and bcl-2-associated death protein (Bad). The transcription levels of lipid metabolism and gluconeogenesis related genes, including acetyl-CoA carboxylase alpha (acc1), fatty acid synthase (fasn), fatty acid binding protein 1 (fabp1), phosphoenolpyruvate carboxykinase 2 (pepck2), and glucose-6-phosphatase catalytic subunit 1a (g6pc), were reduced by AME treatment, while the levels of glycolysis-related genes, including glucokinase (gck) and pyruvate kinase (pk), were the highest in AME0.2 and AME0.3 groups (P < 0.05). According to polynomial regression analysis of SGR, WG, FCR, whole-body crude lipid, MDA, and ALT, the optimal AME supplementation level was estimated to be 0.320%-0.429% of the diet. These results provided insights into the roles of AME in regulating immunity and metabolism, which highly indicated its potential as immunostimulants and metabolic regulators in diverse aquatic animals.
Collapse
Affiliation(s)
- Xuanshu He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anqi Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Liao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Anda Cheng
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Xinghua Xue
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Fuyuan Li
- Beijing Centre Biology Co. Ltd., Beijing, China
| | - Mengdie Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rong Yao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jin Niu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Hasan M, Oster M, Reyer H, Wimmers K, Fischer DC. Efficacy of dietary vitamin D 3 and 25(OH)D 3 on reproductive capacities, growth performance, immunity and bone development in pigs. Br J Nutr 2023; 130:1298-1307. [PMID: 36847163 PMCID: PMC10511684 DOI: 10.1017/s0007114523000442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Vitamin D3 (Vit D3) and 25(OH)D3 are used as dietary sources of active vitamin D (1,25(OH)2D3) in pig husbandry. Although acting primarily on intestine, kidney and bone, their use in pig nutrition has shown a wide range of effects also in peripheral tissues. However, there is an ambiguity in the existing literature about whether the effects of Vit D3 and 25(OH)D3 differ in attributing the molecular and phenotypic outcomes in pigs. We searched Web of Science and PubMed databases concerning the efficacy of Vit D3 in comparison with 25(OH)D3 on pig physiology, i.e. reproductive capacities, growth performance, immunity and bone development. Dietary intake of Vit D3 or 25(OH)D3 did not influence the reproductive capacity of sows. Unlike Vit D3, the maternal intake of 25(OH)D3 significantly improved the growth performance of piglets, which might be attributed to maternally induced micronutrient efficiency. Consequently, even in the absence of maternal vitamin D supplementation, 25(OH)D3-fed offspring also demonstrated better growth than the offspring received Vit D3. Moreover, a similar superior impact of 25(OH)D3 was seen with respect to serum markers of innate and humoral immunity. Last but not least, supplements containing 25(OH)D3 were found to be more effective than Vit D3 to improve bone mineralisation and formation, especially in pigs receiving basal diets low in Ca and phosphorus. The insights are of particular value in determining the principal dietary source of vitamin D to achieve its optimum utilisation efficiency, nutritional benefits and therapeutic potency and to further improve animal welfare across different management types.
Collapse
Affiliation(s)
- Maruf Hasan
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196Dummerstorf, Germany
- Department of Pediatrics, Rostock University Hospital, Ernst-Heydemann-Str. 8, 18057Rostock, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, Justus-von-Liebig-Weg 6b, University of Rostock, 18059Rostock, Germany
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, Rostock University Hospital, Ernst-Heydemann-Str. 8, 18057Rostock, Germany
| |
Collapse
|
5
|
Jia X, Tan L, Chen S, Tang R, Chen W. Monogenic lupus: Tracing the therapeutic implications from single gene mutations. Clin Immunol 2023; 254:109699. [PMID: 37481012 DOI: 10.1016/j.clim.2023.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Monogenic lupus, a distinctive variant of systemic lupus erythematosus (SLE), is characterized by early onset, family-centric clustering, and heightened disease severity. So far, over thirty genetic variations have been identified as single-gene etiology of SLE and lupus-like phenotypes. The critical role of these gene mutations in disrupting various immune pathways is increasingly recognized. In particular, single gene mutation-driven dysfunction within the innate immunity, notably deficiencies in the complement system, impedes the degradation of free nucleic acid and immune complexes, thereby promoting activation of innate immune cells. The accumulation of these components in various tissues and organs creates a pro-inflammatory microenvironment, characterized by a surge in pro-inflammatory cytokines, chemokines, reactive oxygen species, and type I interferons. Concurrently, single gene mutation-associated defects in the adaptive immune system give rise to the emergence of autoreactive T cells, hyperactivated B cells and plasma cells. The ensuing spectrum of cytokines and autoimmune antibodies drives systemic disease manifestations, primarily including kidney, skin and central nervous system-related phenotypes. This review provides a thorough overview of the single gene mutations and potential consequent immune dysregulations in monogenic lupus, elucidating the pathogenic mechanisms of monogenic lupus. Furthermore, it discusses the recent advances made in the therapeutic interventions for monogenic lupus.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruihan Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
6
|
Damanaki A, Beisel-Memmert S, Nokhbehsaim M, Abedi A, Rath-Deschner B, Nogueira AVB, Deschner J. Influence of Occlusal Hypofunction on Alveolar Bone Healing in Rats. Int J Mol Sci 2023; 24:9744. [PMID: 37298695 PMCID: PMC10253992 DOI: 10.3390/ijms24119744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The aim of this in vivo study was to investigate the effect of occlusal hypofunction on alveolar bone healing in the absence or presence of an enamel matrix derivative (EMD). A standardized fenestration defect over the root of the mandibular first molar in 15 Wistar rats was created. Occlusal hypofunction was induced by extraction of the antagonist. Regenerative therapy was performed by applying EMD to the fenestration defect. The following three groups were established: (a) normal occlusion without EMD treatment, (b) occlusal hypofunction without EMD treatment, and (c) occlusal hypofunction with EMD treatment. After four weeks, all animals were sacrificed, and histological (hematoxylin and eosin, tartrate-resistant acid phosphatase) as well as immunohistochemical analyses (periostin, osteopontin, osteocalcin) were performed. The occlusal hypofunction group showed delayed bone regeneration compared to the group with normal occlusion. The application of EMD could partially, but not completely, compensate for the inhibitory effects of occlusal hypofunction on bone healing, as evidenced by hematoxylin and eosin and immunohistochemistry for the aforementioned molecules. Our results suggest that normal occlusal loading, but not occlusal hypofunction, is beneficial to alveolar bone healing. Adequate occlusal loading appears to be as advantageous for alveolar bone healing as the regenerative potential of EMD.
Collapse
Affiliation(s)
- Anna Damanaki
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, 55131 Mainz, Germany
| | - Svenja Beisel-Memmert
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111 Bonn, Germany
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111 Bonn, Germany
| | - Ali Abedi
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, 55131 Mainz, Germany
| | - Birgit Rath-Deschner
- Department of Orthodontics, Center of Dento-Maxillo-Facial Medicine, University of Bonn, 53111 Bonn, Germany
| | - Andressa V. B. Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, 55131 Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center, University of Mainz, 55131 Mainz, Germany
| |
Collapse
|
7
|
Lei Y, Fu S, Yang Y, Chen J, Li B, Guo Z, Ye J. Identification and Functional Analysis of Tartrate-Resistant Acid Phosphatase Type 5b (TRAP5b) in Oreochromis niloticus. Int J Mol Sci 2023; 24:7179. [PMID: 37108342 PMCID: PMC10138680 DOI: 10.3390/ijms24087179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Tartrate-resistant acid phosphatase type 5 (TRAP5) is an enzyme that is highly expressed in activated macrophages and osteoclasts and plays important biological functions in mammalian immune defense systems. In the study, we investigated the functions of tartrate-resistant acid phosphatase type 5b from Oreochromis niloticus (OnTRAP5b). The OnTRAP5b gene has an open reading frame of 975 bp, which encodes a mature peptide consisting of 302 amino acids with a molecular weight of 33.448 kDa. The OnTRAP5b protein contains a metallophosphatase domain with metal binding and active sites. Phylogenetic analysis revealed that OnTRAP5b is clustered with TRAP5b of teleost fish and shares a high amino acid sequence similarity with other TRAP5b in teleost fish (61.73-98.15%). Tissues expression analysis showed that OnTRAP5b was most abundant in the liver and was also widely expressed in other tissues. Upon challenge with Streptococcus agalactiae and Aeromonas hydrophila in vivo and in vitro, the expression of OnTRAP5b was significantly up-regulated. Additionally, the purified recombinant OnTRAP5b ((r)OnTRAP5) protein exhibited optimal phosphatase activity at pH 5.0 and an ideal temperature of 50 °C. The Vmax, Km, and kcat of purified (r)OnTRAP5b were found to be 0.484 μmol × min-1 × mg-1, 2.112 mM, and 0.27 s-1 with respect to pNPP as a substrate, respectively. Its phosphatase activity was differentially affected by metal ions (K+, Na+, Mg2+, Ca2+, Mn2+, Cu2+, Zn2+, and Fe3+) and inhibitors (sodium tartrate, sodium fluoride, and EDTA). Furthermore, (r)OnTRAP5b was found to promote the expression of inflammatory-related genes in head kidney macrophages and induce reactive oxygen expression and phagocytosis. Moreover, OnTRAP5b overexpression and knockdown had a significant effect on bacterial proliferation in vivo. When taken together, our findings suggest that OnTRAP5b plays a significant role in the immune response against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shengli Fu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou 510631, China
| | - Yanjian Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bingxi Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zheng Guo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Baik H, Cho J. Effect of sweet potato purple acid phosphatase on Pseudomonas aeruginosa flagellin-mediated inflammatory response in A549 cells. Anim Biosci 2023; 36:315-321. [PMID: 35798038 PMCID: PMC9834725 DOI: 10.5713/ab.22.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/13/2022] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The study was conducted to investigate the dephosphorylation of Pseudomonas aeruginosa flagellin (PA FLA) by sweet potato purple acid phosphatase (PAP) and the effect of the enzyme on the flagellin-mediated inflammatory response in the A549 lung epithelial cell line. METHODS The activity of sweet potato PAP on PA FLA was assayed at different pH (4, 5.5, 7, and 7.5) and temperature (25°C, 37°C, and 55°C) conditions. The release of interleukin-8 (IL-8) and the activation of nuclear factor kappa- light-chain-enhancer of activated B cells (NF-κB) in A549 cells exposed to PA FLA treated with or without sweet potato PAP was measured using IL-8 and NF-κB ELISA kits, respectively. The activation of toll-like receptor 5 (TLR5) in TLR5-overexpressing HEK-293 cells exposed to PA FLA treated with or without sweet potato PAP was determined by the secreted alkaline phosphatase-based assay. RESULTS The dephosphorylation of PA FLA by sweet potato PAP was favorable at pH 4 and 5.5 and highest at 55°C. PA-FLA treated with the enzyme decreased IL-8 release from A549 cells to about 3.5-fold compared to intact PA FLA at 1,000 ng/mL of substrate. Moreover, PA-FLA dephosphorylated by the enzyme repressed the activation of NF-κB in the cells compared to intact PA FLA. The activation of TLR5 by PA-FLA was highest in TLR-overexpressing HEK293 cells at a substrate concentration of 5,000 ng/mL, whereas PA FLA treated with the enzyme strongly repressed the activation of TLR5. CONCLUSION Sweet potato PAP has the potential to be a new alternative agent against the increased antibiotic resistance of P. aeruginosa and may be a new conceptual feed additive to control unwanted inflammatory responses caused by bacterial infections in animal husbandry.
Collapse
Affiliation(s)
- Heyeon Baik
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea
| | - Jaiesoon Cho
- Department of Animal Science and Technology, Konkuk University, Seoul 05029,
Korea,Corresponding Author: Jaiesoon Cho, Tel: +82-2-450-3375, Fax:+82-2-455-1044, E-mail:
| |
Collapse
|
9
|
Wilson LA, Pedroso MM, Peralta RA, Gahan LR, Schenk G. Biomimetics for purple acid phosphatases: A historical perspective. J Inorg Biochem 2023; 238:112061. [PMID: 36371912 DOI: 10.1016/j.jinorgbio.2022.112061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Biomimetics hold potential for varied applications in biotechnology and medicine but have also attracted particular interest as benchmarks for the functional study of their more complex biological counterparts, e.g. metalloenzymes. While many of the synthetic systems adequately mimic some structural and functional aspects of their biological counterparts the catalytic efficiencies displayed are mostly far inferior due to the smaller size and the associated lower complexity. Nonetheless they play an important role in bioinorganic chemistry. Numerous examples of biologically inspired and informed artificial catalysts have been reported, designed to mimic a plethora of chemical transformations, and relevant examples are highlighted in reviews and scientific reports. Herein, we discuss biomimetics of the metallohydrolase purple acid phosphatase (PAP), examples of which have been used to showcase synergistic research advances for both the biological and synthetic systems. In particular, we focus on the seminal contribution of our colleague Prof. Ademir Neves, and his group, pioneers in the design and optimization of suitable ligands that mimic the active site of PAP.
Collapse
Affiliation(s)
- Liam A Wilson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Marcelo M Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rosely A Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Lawrence R Gahan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia; Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
10
|
Lei Y, Cao Z, Hou Y, Du X, Zhang H, Du H, Zhou Y, Sun Y. Molecular characterization and functional analysis of tartrate-resistant acid phosphatase (ACP5) gene in red drum (Sciaenops ocellatus). FISH & SHELLFISH IMMUNOLOGY 2023; 132:108495. [PMID: 36566835 DOI: 10.1016/j.fsi.2022.108495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Tartrate-resistant acid phosphatase (ACP5) plays an important biological function in immune defense and is highly expressed in activated macrophages, osteoclasts and dendritic cells. In teleost, the functionality of ACP5 remains to be revealed. In this study, we cloned and identified SoACP5 from red drum (Sciaenops ocellatus) and analyzed its function in vivo and in vitro. The open reading frame of SoACP5 is 1002 bp in length, encoding 333 amino acids. SoACP5 shares high sequence identities (96.70%-49.25%) with ACP5 of other species. The SoACP5 mRNA was widely distributed in collected tissues of healthy red drum, and with the maximum in gills. The expression of SoACP5 increased significantly in vivo following challenge with Edwardsiella tarda. Moreover, the recombinant SoACP5 protein (rSoACP5) was purified with his-tag band resin columns, and confirmed to have phosphatase activity which was optimal at pH 5 and 55 °C. Various metal ions (K+, Zn2+, Mn2+, Mg2+, Ca2+, Cu2+, Fe2+ and Fe3+) have different effects on phosphatase activity. rSoACP5 induced the cellular proliferation of peripheral blood leukocytes. The over-expression and knockdown of SoACP5 in vivo had a significant effect on bacterial proliferation. Furthermore, both of the antibacterial activity and phosphatase activity were decreased when the reducedSoACP5 was oxidized by H2O2. In summary, the present study indicated that SoACP5 is likely involved in host defense against bacterial infection in S. ocellatus.
Collapse
Affiliation(s)
- Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, PR China
| | - Yongwei Hou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, PR China
| | - Xiangyu Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, PR China
| | - Han Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, PR China
| | - Hehe Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, PR China.
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, PR China; Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, 570228, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, 570228, PR China.
| |
Collapse
|
11
|
Schini M, Vilaca T, Gossiel F, Salam S, Eastell R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr Rev 2022; 44:417-473. [PMID: 36510335 PMCID: PMC10166271 DOI: 10.1210/endrev/bnac031] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Bone turnover markers (BTMs) are used widely, in both research and clinical practice. In the last 20 years, much experience has been gained in measurement and interpretation of these markers, which include commonly used bone formation markers bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide; and commonly used resorption markers serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen and tartrate resistant acid phosphatase type 5b. BTMs are usually measured by enzyme-linked immunosorbent assay or automated immunoassay. Sources contributing to BTM variability include uncontrollable components (e.g., age, gender, ethnicity) and controllable components, particularly relating to collection conditions (e.g., fasting/feeding state, and timing relative to circadian rhythms, menstrual cycling, and exercise). Pregnancy, season, drugs, and recent fracture(s) can also affect BTMs. BTMs correlate with other methods of assessing bone turnover, such as bone biopsies and radiotracer kinetics; and can usefully contribute to diagnosis and management of several diseases such as osteoporosis, osteomalacia, Paget's disease, fibrous dysplasia, hypophosphatasia, primary hyperparathyroidism, and chronic kidney disease-mineral bone disorder.
Collapse
Affiliation(s)
- Marian Schini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tatiane Vilaca
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Syazrah Salam
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Richard Eastell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Polat R, Özdemir Ö. Spondyloenchondrodysplasia Due to Mutation in ACP5 Gene Presenting
with Nephrotic Syndrome: A Case Report. AKTUEL RHEUMATOL 2022. [DOI: 10.1055/a-1806-0918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractSpondyloenchondrodysplasia (SPENCD) with immune dysregulation (SPENCDI) is a rare
autosomal recessive inherited immuno-osseous dysplasia characterized by
spondylo-metaphyseal enchondromas, along with immune dysregulation ranging from
immunodeficiency to autoimmune disorder. Here, we present two cousins with
ACP5 gene mutation who had severe short stature with mild
hypogammaglobulinemia, nephrotic syndrome, autoimmune thyroiditis and cerebral
calcification (Case 1); and in the other (Case 2), there was no clinical
findings other than severe short stature, CD4+−T cell
lymphopenia and non-autoimmune compensated hypothyroidism. We wanted to
emphasize that monogenic causes should be considered in the etiology of
early-onset nephrotic syndrome due to the detection of a mutation in the
ACP5 gene (her actual diagnosis was changed to SPENCDI.) 5 years
after the diagnosis of nephrotic syndrome in the first case, and that the renal
involvement may occur without SLE in patients with ACP5 mutation. Severe
short stature was a common finding in both cases. We underlined that the clinic
can be different even in the same mutation, due to the absence of cerebral
calcification and renal involvement in the second case, which is a cousin with
Case 1. As a result, endocrinologists, immunologists, rheumatologists,
nephrologists and orthopedists should be aware of this syndrome, because SPENCDI
causes a pleiotropic (due to more than one phenotypic effect of a gene) clinical
picture. Severe short stature may be the only presenting sign of patients with
SPENCDI. In addition, in the presence of early-onset nephrotic syndrome and
autoimmune thyroiditis, the patient should be evaluated for this type of
monogenic disorders as well.
Collapse
Affiliation(s)
- Recep Polat
- Department of Pediatric Endocrinology, Sakarya Training and Research
Hospital, Sakarya, Turkey
- Division of Allergy and Immunology, Department of Pediatrics, Sakarya
Training and Research Hospital, Sakarya, Turkey
| | - Öner Özdemir
- Division of Allergy and Immunology, Department of Pediatrics, Sakarya
Training and Research Hospital, Sakarya, Turkey
| |
Collapse
|
13
|
Dsouza C, Moussa MS, Mikolajewicz N, Komarova SV. Extracellular ATP and its derivatives provide spatiotemporal guidance for bone adaptation to wide spectrum of physical forces. Bone Rep 2022; 17:101608. [PMID: 35992507 PMCID: PMC9385560 DOI: 10.1016/j.bonr.2022.101608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces. Cellular bioenergetic molecule ATP is released when cell is mechanically stimulated. ATP release is proportional to the amount of cellular damage. ATP diffusion and transformation to ADP indicates the proximity to the damage. Purinergic receptors form a network choreographing cell response to physical forces. Complete transformation of ATP to adenosine initiates the recovery phase.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
| | - Mahmoud S. Moussa
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Nicholas Mikolajewicz
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Svetlana V. Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Corresponding author.
| |
Collapse
|
14
|
Chen J, Li G, Sun C, Peng F, Yu L, Chen Y, Tan Y, Cao X, Tang Y, Xie X, Peng C. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother Res 2022; 36:1545-1575. [PMID: 35253930 DOI: 10.1002/ptr.7397] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/20/2022]
Abstract
Quercitrin is a naturally available type of flavonoid that commonly functions as the dietary ingredient and supplement. So far, a wide spectrum of bioactivities of quercitrin have been revealed, including antioxidative stress, antiinflammation, anti-microorganisms, immunomodulation, analgesia, wound healing, and vasodilation. Based on these various pharmacological activities, increasing studies have focused on the potency of quercitrin in diverse diseases in recent years, such as bone metabolic diseases, gastrointestinal diseases, cardiovascular and cerebrovascular diseases, and others. In this paper, by collecting and summarizing publications from the recent years, the natural sources, pharmacological activities and roles in various diseases, pharmacokinetics, structure-activity relationship, as well as the toxicity of quercitrin were systematically reviewed. In addition, the underlying molecular mechanisms of quercitrin in treating related diseases, the dose-effect relationships, and the novel preparations were discussed on the purpose of broadening the application prospect of quercitrin as functional food and providing reference for its clinical application. Notably, clinical studies of quercitrin are insufficient at present, further high-quality studies are needed to firmly establish the clinical efficacy of quercitrin.
Collapse
Affiliation(s)
- Junren Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Sun
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lei Yu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Cao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunli Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Guangxi University of Traditional Chinese Medicine, Guangxi, China
| | - Xiaofang Xie
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
The PAP Gene Family in Tomato: Comprehensive Comparative Analysis, Phylogenetic Relationships and Expression Profiles. PLANTS 2022; 11:plants11040563. [PMID: 35214896 PMCID: PMC8879926 DOI: 10.3390/plants11040563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Purple acid phosphatase (PAP) plays a vital role in plant phosphate acquisition and utilization, as well as cell wall synthesis and redox reactions. In this study, comprehensive comparative analyses of PAP genes were carried out using the integration of phylogeny, chromosomal localization, intron/exon structural characteristics, and expression profiling. It was shown that the number of introns of the PAP genes, which were distributed unevenly on 12 chromosomes, ranged from 1 to 12. These findings pointed to the existence of complex structures. Phylogenetic analyses revealed that PAPs from tomato, rice, and Arabidopsis could be divided into three groups (Groups I, II, and III). It was assumed that the diversity of these PAP genes occurred before the monocot–dicot split. RNA-seq analysis revealed that most of the genes were expressed in all of the tissues analyzed, with the exception of SlPAP02, SlPAP11, and SlPAP14, which were not detected. It was also found that expression levels of most of the SlPAP gene family of members were changed under phosphorus stress conditions, suggesting potential functional diversification. The findings of this work will help us to achieve a better insight into the function of SlPAP genes in the future, as well as enhance our understanding of their evolutionary relationships in plants.
Collapse
|
16
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Bakhtiar H, Ashoori A, Rajabi S, Pezeshki-Modaress M, Ayati A, Mousavi MR, Ellini MR, Kamali A, Azarpazhooh A, Kishen A. Human amniotic membrane extracellular matrix scaffold for dental pulp regeneration in vitro and in vivo. Int Endod J 2021; 55:374-390. [PMID: 34923640 DOI: 10.1111/iej.13675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022]
Abstract
AIM In order to obtain a 3-dimentional scaffold with predictable clinical results for pulp regeneration, this study aims to fabricate and characterize a porous decellularized human amniotic membrane (HAM) extracellular matrix (ECM) scaffold, and evaluate its potential to promote pulp regeneration in vitro and in vivo. METHODOLOGY The HAM was decellularized, and its histology and DNA content were analysed to confirm decellularization. The scaffolds were synthesized with 15, 22.5 and 30 mg/ml concentrations. The porosity, pore size, phosphate-buffered saline (PBS) absorption and degradation rate of the scaffolds were assessed. In vitro experiments were performed on human dental pulp stem cells (hDPSCs) to assess their viability, proliferation, adhesion and migration on the scaffolds. The optimal group was selected for in vivo immunogenicity assessment and was also used as the cell-free or cell-loaded scaffold in root segment models to evaluate pulp regeneration. All nonparametric data were analysed with the Kruskal-Wallis test followed by Dunn's post hoc test, whilst quantitative data were analysed with one-way anova. RESULTS Decellularization of HAM was confirmed (p < .05). The porosity of all scaffolds was more than 95%, and the pore size decreased with an increase in ECM concentration (p < .01). PBS absorption was not significantly different amongst the groups, whilst 30 mg/ml ECM scaffold had the highest degradation rate (p < .01). The hDPSCs adhered to the scaffold, whilst their proliferation rate increased over time in all groups (p < .001). Cell migration was higher in 30 mg/ml ECM scaffold (p < .05). In vivo investigation with 30 mg/ml ECM scaffold revealed mild to moderate inflammatory response. In root segments, both cell-free and cell-loaded 30 mg/ml scaffolds were replaced with newly formed, pulp-like tissue with no significant difference between groups. Immunohistochemical assessments revealed high revascularization and collagen content with no significant difference amongst the groups. CONCLUSION The 30 mg/ml HAM ECM scaffold had optimal physical properties and better supported hDPSC migration. The HAM ECM scaffold did not interfere with formation of pulp-like tissue and revascularization within the root canal when employed as both cell-free and cell-loaded scaffold. These results highlight the potential of HAM ECM membrane for further investigations in regenerative endodontics.
Collapse
Affiliation(s)
- Hengameh Bakhtiar
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azin Ashoori
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Alireza Ayati
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Mousavi
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Ellini
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | - Amir Azarpazhooh
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Couasnay G, Madel MB, Lim J, Lee B, Elefteriou F. Sites of Cre-recombinase activity in mouse lines targeting skeletal cells. J Bone Miner Res 2021; 36:1661-1679. [PMID: 34278610 DOI: 10.1002/jbmr.4415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022]
Abstract
The Cre/Lox system is a powerful tool in the biologist's toolbox, allowing loss-of-function and gain-of-function studies, as well as lineage tracing, through gene recombination in a tissue-specific and inducible manner. Evidence indicates, however, that Cre transgenic lines have a far more nuanced and broader pattern of Cre activity than initially thought, exhibiting "off-target" activity in tissues/cells other than the ones they were originally designed to target. With the goal of facilitating the comparison and selection of optimal Cre lines to be used for the study of gene function, we have summarized in a single manuscript the major sites and timing of Cre activity of the main Cre lines available to target bone mesenchymal stem cells, chondrocytes, osteoblasts, osteocytes, tenocytes, and osteoclasts, along with their reported sites of "off-target" Cre activity. We also discuss characteristics, advantages, and limitations of these Cre lines for users to avoid common risks related to overinterpretation or misinterpretation based on the assumption of strict cell-type specificity or unaccounted effect of the Cre transgene or Cre inducers. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Greig Couasnay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | - Joohyun Lim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Florent Elefteriou
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Osteoclastic activity in chronic otitis media with cholesteatoma-related bone destruction. The Journal of Laryngology & Otology 2021; 135:879-882. [PMID: 34348812 DOI: 10.1017/s0022215121002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cholesteatoma-related bone destruction is the cause of many complications due to chronic otitis media. This study aimed to evaluate osteoclastic activity in cholesteatoma-related bone destruction using tartrate-resistant acid phosphatase 5b, an enzyme specific to osteoclastic activity. METHOD Seventy-two patients diagnosed with chronic otitis media were included in this study and were divided into two groups: with and without bone destruction. The blood serum and tissue tartrate-resistant acid phosphatase 5b levels from both groups were compared. RESULTS There were no significant differences in the level of serum enzymes between both groups. However, in tissue samples, tartrate-resistant acid phosphatase 5b levels were significantly lower in the bone destruction group than the group without bone destruction. CONCLUSION This study determined that the level of tartrate-resistant acid phosphatase 5b, a specific enzyme for osteoclastic activity in cholesteatoma-related bone destruction, is locally decreased. This data suggests that osteoclastic activity may decrease in cholesteatoma-related bone destruction. However, further experimental and clinical studies are required to clarify this highly complex mechanism.
Collapse
|
20
|
Feder D, Mohd-Pahmi SH, Hussein WM, Guddat LW, McGeary RP, Schenk G. Rational Design of Potent Inhibitors of a Metallohydrolase Using a Fragment-Based Approach. ChemMedChem 2021; 16:3342-3359. [PMID: 34331400 DOI: 10.1002/cmdc.202100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/08/2022]
Abstract
Metallohydrolases form a large group of enzymes that have fundamental importance in a broad range of biological functions. Among them, the purple acid phosphatases (PAPs) have gained attention due to their crucial role in the acquisition and use of phosphate by plants and also as a promising target for novel treatments of bone-related disorders and cancer. To date, no crystal structure of a mammalian PAP with drug-like molecules bound near the active site is available. Herein, we used a fragment-based design approach using structures of a mammalian PAP in complex with the MaybridgeTM fragment CC063346, the amino acid L-glutamine and the buffer molecule HEPES, as well as various solvent molecules to guide the design of highly potent and efficient mammalian PAP inhibitors. These inhibitors have improved aqueous solubility when compared to the clinically most promising PAP inhibitors available to date. Furthermore, drug-like fragments bound in newly discovered binding sites mapped out additional scaffolds for further inhibitor discovery, as well as scaffolds for the design of inhibitors with novel modes of action.
Collapse
Affiliation(s)
- Daniel Feder
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Siti H Mohd-Pahmi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
21
|
RANK promotes colorectal cancer migration and invasion by activating the Ca 2+-calcineurin/NFATC1-ACP5 axis. Cell Death Dis 2021; 12:336. [PMID: 33795653 PMCID: PMC8016848 DOI: 10.1038/s41419-021-03642-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The tumor necrosis factor (TNF) receptor superfamily member 11a (TNFRSF11a, also known as RANK) was demonstrated to play an important role in tumor metastasis. However, the specific function of RANK in colorectal cancer (CRC) metastasis and the underlying mechanism are unknown. In this study, we found that RANK expression was markedly upregulated in CRC tissues compared with that in matched noncancerous tissues. Increased RANK expression correlated positively with metastasis, higher TNM stage, and worse prognosis in patients with CRC. Overexpression of RANK promoted CRC cell metastasis in vitro and in vivo, while knockdown of RANK decreased cell migration and invasion. Mechanistically, RANK overexpression significantly upregulated the expression of tartrate-resistant acid phosphatase 5 (TRAP/ACP5) in CRC cells. Silencing of ACP5 in RANK-overexpressing CRC cells attenuated RANK-induced migration and invasion, whereas overexpression of ACP5 increased the migration and invasion of RANK-silencing cells. The ACP5 expression was transcriptionally regulated by calcineurin/nuclear factor of activated T cells c1 (NFATC1) axis. The inhibition of calcineurin/NFATC1 significantly decreased ACP5 expression, and attenuated RANK-induced cell migration and invasion. Furthermore, RANK induced phospholipase C-gamma (PLCγ)-mediated inositol-1,4,5-trisphosphate receptor (IP3R) axis and stromal interaction molecule 1 (STIM1) to evoke calcium (Ca2+) oscillation. The RANK-mediated intracellular Ca2+ mobilization stimulated calcineurin to dephosphorylate NFATC1 and induce NFATC1 nuclear translocation. Both blockage of PLCγ-IP3R axis and STIM1 rescued RANK-induced NFATC1 nuclear translocation, ACP5 expression, and cell metastasis. Our study revealed the functional expression of RANK in human CRC cells and demonstrated that RANK induced the Ca2+-calcineurin/NFATC1-ACP5 axis in the regulation of CRC metastasis, that might be amenable to therapeutic targeting.
Collapse
|
22
|
Nakamura M, Aoyama N, Yamaguchi S, Sasano Y. Expression of tartrate-resistant acid phosphatase and cathepsin K during osteoclast differentiation in developing mouse mandibles. Biomed Res 2021; 42:13-21. [PMID: 33563875 DOI: 10.2220/biomedres.42.13] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study was designed to test the hypothesis that osteoclasts appear after or at the same time as the initiation of bone mineralization in developing intramembranous bones. We examined mineral deposition via Von Kossa staining to determine when bone mineralization begins, tartrate-resistant acid phosphatase (TRAP) activity and cathepsin K immunoreactivity to identify the presence of osteoclasts, and their mRNA expression levels to assess osteoclastic differentiation in the embryonic mouse mandible. Cathepsin K-immunopositive cells were detected around the same time as the onset of bone mineralization, whereas TRAP-positive cells appeared prior to bone mineralization. Cathepsin K protein was expressed only in multinucleated osteoclasts, whereas TRAP activity was identified in both mono- and multinucleated cells. During bone development, TRAP-positive cells altered their morphology, which was related to the number of their nuclei. The elevated mRNA levels of TRAP and cathepsin K were consistent with the increased percentage of multinucleated osteoclasts and the progression of bone development. Our study revealed that TRAP-positive cells appear prior to bone mineralization, and TRAP- and cathepsin K-positive multinucleated osteoclasts appear at the same time as the initiation of bone mineralization in embryonic mouse mandibles, suggesting that osteoclasts contribute to bone matrix maturation during intramembranous ossification.
Collapse
Affiliation(s)
- Megumi Nakamura
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry
| | - Naoki Aoyama
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry
| | - Satoshi Yamaguchi
- Division of Agingand Geriatric Dentistry, Tohoku University Graduate School of Dentistry
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry
| |
Collapse
|
23
|
Shaheen MY, Basudan AM, Niazy AA, van den Beucken JJJP, Jansen JA, Alghamdi HS. Histological and Histomorphometric Analyses of Bone Regeneration in Osteoporotic Rats Using a Xenograft Material. MATERIALS 2021; 14:ma14010222. [PMID: 33466368 PMCID: PMC7795077 DOI: 10.3390/ma14010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022]
Abstract
We evaluated the effect of osteoporotic induction after eight weeks of initial healing of bone defects grafted with a xenograft material in a rat model. Bone defects were created in the femoral condyles of 16 female Wistar rats (one defect per rat). The defects were filled with bovine bone (Inter-Oss) granules. After eight weeks of bone healing, rats were randomly ovariectomized (OVX) or sham-operated (SHAM). At 14 weeks of bone healing, all animals were euthanized. Bone specimens were harvested and processed for histological and histomorphometric analyses to assess new bone formation (N-BF%), remaining bone graft (RBG%) and trabecular bone space (Tb.Sp%) within the defect area. After 14 weeks of bone healing, histological evaluation revealed a significant alteration in trabecular bone in OVX rats compared to SHAM rats. There was lower N-BF% in OVX rats (22.5% ± 3.0%) compared to SHAM rats (37.7% ± 7.9%; p < 0.05). Additionally, the RBG% was significantly lower in OVX (23.7% ± 5.8%) compared to SHAM (34.8% ± 9.6%; p < 0.05) rats. Finally, the Tb.Sp% was higher in OVX (53.8% ± 7.7%) compared to SHAM (27.5% ± 14.3%; p < 0.05) rats. In conclusion, within the limitations of this study, inducing an osteoporotic condition in a rat model negatively influenced bone regeneration in the created bone defect and grafted with a xenograft material.
Collapse
Affiliation(s)
- Marwa Y. Shaheen
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.Y.S.); (A.M.B.)
| | - Amani M. Basudan
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.Y.S.); (A.M.B.)
| | - Abdurahman A. Niazy
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Jeroen J. J. P. van den Beucken
- Department of Dentistry-Biomaterials, Radboudumc, P.O. Box 9101, 6500HB Nijmegen, The Netherlands; (J.J.J.P.v.d.B.); (J.A.J.)
| | - John A. Jansen
- Department of Dentistry-Biomaterials, Radboudumc, P.O. Box 9101, 6500HB Nijmegen, The Netherlands; (J.J.J.P.v.d.B.); (J.A.J.)
| | - Hamdan S. Alghamdi
- Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.Y.S.); (A.M.B.)
- Correspondence:
| |
Collapse
|
24
|
Zimmermann H. History of ectonucleotidases and their role in purinergic signaling. Biochem Pharmacol 2020; 187:114322. [PMID: 33161020 DOI: 10.1016/j.bcp.2020.114322] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022]
Abstract
Ectonucleotidases are key for purinergic signaling. They control the duration of activity of purinergic receptor agonists. At the same time, they produce hydrolysis products as additional ligands of purinergic receptors. Due to the considerable diversity of enzymes, purinergic receptor ligands and purinergic receptors, deciphering the impact of extracellular purinergic receptor control has become a challenge. The first group of enzymes described were the alkaline phosphatases - at the time not as nucleotide-metabolizing but as nonspecific phosphatases. Enzymes now referred to as nucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase were the first and only nucleotide-specific ectonucleotidases identified. And they were the first group of enzymes related to purinergic signaling. Additional research brought to light a surprising number of ectoenzymes with broad substrate specificity, which can also hydrolyze nucleotides. This short overview traces the development of the field and briefly highlights important results and benefits for therapies of human diseases achieved within nearly a century of investigations.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Goethe University, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Yuan S, Zhang Y, Hua P, Zhou H, Xu J, Gu Q. Discovery of ingenane and jatrophane diterpenoids from Euphorbia esula as inhibitors of RANKL-induced osteoclastogenesis. Fitoterapia 2020; 146:104718. [PMID: 32882338 DOI: 10.1016/j.fitote.2020.104718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Two new ingenane diterpenoids (1-2), four new jatrophane diterpenoids (3-6), and seven known analogues (7-13), were isolated from the 95% ethanol extract of Euphorbia esula. Their structures were determined by extensive spectroscopic methods and ECD data analysis. These compounds were assayed for their anti-osteoporotic activity in a bone marrow-derived macrophage (BMM) cell line, and compounds 2, 4, 7, 8, 9, and 11 significantly inhibited the formation of osteoclasts with IC50 values of 3.4, 4.3, 2.1, 0.5, 1.5, and 4.5 μM, respectively. These compounds also dose-dependently reduced the activity of nuclear factor activated T-cell cytoplasmic 1 (NFATc1). This study reveals the anti-osteoporotic effects of ingenane diterpenoids for the first time.
Collapse
Affiliation(s)
- Shengheng Yuan
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yuting Zhang
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Pei Hua
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Huihao Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiong Gu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
26
|
Zheng Z, Ao X, Xie P, Wu J, Dong Y, Yu D, Wang J, Zhu Z, Xu HHK, Chen W. Effects of novel non-thermal atmospheric plasma treatment of titanium on physical and biological improvements and in vivo osseointegration in rats. Sci Rep 2020; 10:10637. [PMID: 32606349 PMCID: PMC7327023 DOI: 10.1038/s41598-020-67678-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium (Ti) has achieved extensive applications due to its excellent biocompatibility and mechanical properties. Plasma can enhance surface hydrophilia of Ti with decreased carbon contamination. The traditional conditions using a single gas plasma was for longer treatment time and more prone to being contaminated. We designed and developed novel and universal apparatus and methods with a special clamping device of non-thermal atmospheric plasma (NTAP) treatment using mixed gas for Ti surface activation. We systematically and quantitatively investigated the effective effects of NTAP-Ti. The surface water contact angle decreased by 100%, the carbon content decreased by 80% and oxygen content increased by 50% in the novel NTAP-Ti surfaces. NTAP treatment accelerated the attachment, spread, proliferation, osteogenic differentiation and mineralization of MC3T3-E1 mouse preosteoblasts in vitro. The percentage of bone-to-implant contact increased by 25–40%, and the osteoclasts and bone resorption were suppressed by 50% in NTAP-Ti in vivo. In conclusion, NTAP-Ti substantially enhanced the physical and biological effects and integration with bone. The novel and universal apparatus and methods with a special clamping device using gas mixtures are promising for implant activation by swiftly and effectively changing the Ti surface to a hydrophilic one to enhance dental and orthopedic applications.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaogang Ao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Yuqing Dong
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Deping Yu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
27
|
Cardoso JCR, Félix RC, Ferreira V, Peng M, Zhang X, Power DM. The calcitonin-like system is an ancient regulatory system of biomineralization. Sci Rep 2020; 10:7581. [PMID: 32371888 PMCID: PMC7200681 DOI: 10.1038/s41598-020-64118-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 12/27/2022] Open
Abstract
Biomineralization is the process by which living organisms acquired the capacity to accumulate minerals in tissues. Shells are the biomineralized exoskeleton of marine molluscs produced by the mantle but factors that regulate mantle shell building are still enigmatic. This study sought to identify candidate regulatory factors of molluscan shell mineralization and targeted family B G-protein coupled receptors (GPCRs) and ligands that include calcium regulatory factors in vertebrates, such as calcitonin (CALC). In molluscs, CALC receptor (CALCR) number was variable and arose through lineage and species-specific duplications. The Mediterranean mussel (Mytilus galloprovincialis) mantle transcriptome expresses six CALCR-like and two CALC-precursors encoding four putative mature peptides. Mussel CALCR-like are activated in vitro by vertebrate CALC but only receptor CALCRIIc is activated by the mussel CALCIIa peptide (EC50 = 2.6 ×10-5 M). Ex-vivo incubations of mantle edge tissue and mantle cells with CALCIIa revealed they accumulated significantly more calcium than untreated tissue and cells. Mussel CALCIIa also significantly decreased mantle acid phosphatase activity, which is associated with shell remodelling. Our data indicate the CALC-like system as candidate regulatory factors of shell mineralization. The identification of the CALC system from molluscs to vertebrates suggests it is an ancient and conserved calcium regulatory system of mineralization.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Vinícius Ferreira
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - MaoXiao Peng
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Xushuai Zhang
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
28
|
Feder D, McGeary RP, Mitić N, Lonhienne T, Furtado A, Schulz BL, Henry RJ, Schmidt S, Guddat LW, Schenk G. Structural elements that modulate the substrate specificity of plant purple acid phosphatases: Avenues for improved phosphorus acquisition in crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110445. [PMID: 32234228 DOI: 10.1016/j.plantsci.2020.110445] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/12/2020] [Indexed: 05/11/2023]
Abstract
Phosphate acquisition by plants is an essential process that is directly implicated in the optimization of crop yields. Purple acid phosphatases (PAPs) are ubiquitous metalloenzymes, which catalyze the hydrolysis of a wide range of phosphate esters and anhydrides. While some plant PAPs display a preference for ATP as the substrate, others are efficient in hydrolyzing phytate or 2-phosphoenolpyruvate (PEP). PAP from red kidney bean (rkbPAP) is an efficient ATP- and ADPase, but has no activity towards phytate. Crystal structures of this enzyme in complex with ATP analogues (to 2.20 and 2.60 Å resolution, respectively) complement the recent structure of rkbPAP with a bound ADP analogue (ChemBioChem 20 (2019) 1536). Together these complexes provide the first structural insight of a PAP in complex with molecules that mimic biologically relevant substrates. Homology modeling was used to generate three-dimensional structures for the active sites of PAPs from tobacco (NtPAP) and thale cress (AtPAP26) that are efficient in hydrolyzing phytate and PEP as preferred substrates, respectively. The combining of crystallographic data, substrate docking simulations and a phylogenetic analysis of 49 plant PAP sequences (including the first PAP sequences reported from Eucalyptus) resulted in the identification of several active site residues that are important in defining the substrate specificities of plant PAPs; of particular relevance is the identification of a motif ("REKA") that is characteristic for plant PAPs that possess phytase activity. These results may inform bioengineering studies aimed at identifying and incorporating suitable plant PAP genes into crops to improve phosphorus acquisition and use efficiency. Organic phosphorus sources increasingly supplement or replace inorganic fertilizer, and efficient phosphorus use of crops will lower the environmental footprint of agriculture while enhancing food production.
Collapse
Affiliation(s)
- Daniel Feder
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Natasa Mitić
- Department of Chemistry, Maynooth University, Maynooth Co. Kildare, Ireland
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Susanne Schmidt
- School of Agriculture and Food Science, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; Australian Centre for Ecogenomics, The University of Queensland, St. Lucia, QLD 4072, Australia; Sustainable Minerals Institute, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
29
|
Reithmeier A, Norgård M, Ek-Rylander B, Näreoja T, Andersson G. Cathepsin K regulates localization and secretion of Tartrate-Resistant Acid Phosphatase (TRAP) in TRAP-overexpressing MDA-MB-231 breast cancer cells. BMC Mol Cell Biol 2020; 21:15. [PMID: 32188406 PMCID: PMC7081696 DOI: 10.1186/s12860-020-00253-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background Tartrate–resistant acid phosphatase (TRAP/ ACP5) belongs to the binuclear metallophosphatase family and is present in two isoforms. The primary translation product is an uncleaved TRAP 5a isoform with low phosphatase activity. TRAP 5a can be post-translationally processed to a cleaved TRAP 5b isoform with high phosphatase activity by e.g. cysteine proteinases, such as Cathepsin K (CtsK). The relevance of the phosphatase activity of TRAP 5b has been demonstrated for proliferation, migration and invasion of cancer cells. TRAP-overexpressing MDA-MB-231 breast cancer cells displayed higher levels of TRAP 5a and efficient processing of TRAP 5a to TRAP 5b protein, but no changes in levels of CtsK when compared to mock-transfected cells. In TRAP-overexpressing cells colocalization of TRAP 5a and proCtsK was augmented, providing a plausible mechanism for generation of TRAP 5b. CtsK expression has been associated with cancer progression and has been pharmacologically targeted in several clinical studies. Results In the current study, CtsK inhibition with MK-0822/Odanacatib did not abrogate the formation of TRAP 5b, but reversibly increased the intracellular levels of a N-terminal fragment of TRAP 5b and reduced secretion of TRAP 5a reversibly. However, MK-0822 treatment neither altered intracellular TRAP activity nor TRAP-dependent cell migration, suggesting involvement of additional proteases in proteolytic processing of TRAP 5a. Notwithstanding, CtsK was shown to be colocalized with TRAP and to be involved in the regulation of secretion of TRAP 5a in a breast cancer cell line, while it still was not essential for processing of TRAP 5a to TRAP 5b isoform. Conclusion In cancer cells multiple proteases are involved in cleaving TRAP 5a to high-activity phosphatase TRAP 5b. However, CtsK-inhibiting treatment was able to reduce secretion TRAP 5a from TRAP-overexpressing cancer cells.
Collapse
Affiliation(s)
- Anja Reithmeier
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden. .,Present Address: Chemical Biology Consortium Sweden, Science for Life Laboratory Stockholm, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Tomtebodavägen 23A, 171 65, Solna, Sweden.
| | - Maria Norgård
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden
| | - Barbro Ek-Rylander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden
| | - Tuomas Näreoja
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden.
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52, Stockholm, Sweden
| |
Collapse
|
30
|
Maranha FG, dos Santos Silva GA, Bortoluzzi AJ, Nordlander E, Peralta RA, Neves A. A new heteropentanuclear complex containing the [Fe2IIIZn3II(μ-OH)3] structural motif as a model for purple acid phosphatases. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.regen.2019.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Sharma G, Jayasinghe-Arachchige VM, Hu Q, Schenk G, Prabhakar R. Effect of Chemically Distinct Substrates on the Mechanism and Reactivity of a Highly Promiscuous Metallohydrolase. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | | | - Qiaoyu Hu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
33
|
Bao M, Zhang K, Wei Y, Hua W, Gao Y, Li X, Ye L. Therapeutic potentials and modulatory mechanisms of fatty acids in bone. Cell Prolif 2020; 53:e12735. [PMID: 31797479 PMCID: PMC7046483 DOI: 10.1111/cpr.12735] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.
Collapse
Affiliation(s)
- Minyue Bao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Kaiwen Zhang
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yangyini Wei
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Weihan Hua
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yanzi Gao
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin Li
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ling Ye
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesDepartment of Cariology and EndodonticsWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
34
|
Synthesis, evaluation and structural investigations of potent purple acid phosphatase inhibitors as drug leads for osteoporosis. Eur J Med Chem 2019; 182:111611. [DOI: 10.1016/j.ejmech.2019.111611] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022]
|
35
|
Dos-Santos ALA, Dick CF, Lopes LR, Rocco-Machado N, Muzi-Filho H, Freitas-Mesquita AL, Paes-Vieira L, Vieyra A, Meyer-Fernandes JR. Tartrate-resistant phosphatase type 5 in Trypanosoma cruzi is important for resistance to oxidative stress promoted by hydrogen peroxide. Exp Parasitol 2019; 205:107748. [PMID: 31442453 DOI: 10.1016/j.exppara.2019.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 11/28/2022]
Abstract
Trypanosoma cruzi (the causative agent of Chagas disease) presents a complex life cycle that involves adaptations in vertebrate and invertebrate hosts. As a protozoan parasite of hematophagous insects and mammalian hosts, T. cruzi is exposed to reactive oxygen species (ROS). To investigate the functionality of T. cruzi tartrate-resistant acid phosphatase type 5 (TcACP5), we cloned, superexpressed and purified the enzyme. Purified TcACP5 exhibited a Vmax and apparent Km for pNPP hydrolysis of 7.7 ± 0.2 nmol pNP × μg-1 × h-1 and 169.3 ± 22.6 μM, respectively. The pH dependence was characterized by sharp maximal activity at pH 5.0, and inhibition assays demonstrated its sensitivity to acid phosphatase inhibitors. Similar activities were obtained with saturating concentrations of P-Ser and P-Thr as substrates. The enzyme metabolizes hydrogen peroxide (H2O2) in vitro, and parasites superexpressing this enzyme were more resistant to oxidative stress promoted by H2O2. Taken together, these results suggest that TcACP5 plays a central role in phosphoryl transfer and redox reactions.
Collapse
Affiliation(s)
- André L A Dos-Santos
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia F Dick
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro R Lopes
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Paulo de Góes Microbiology Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathália Rocco-Machado
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anita L Freitas-Mesquita
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lisvane Paes-Vieira
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, Grande Rio University, Duque de Caxias, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo De Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
36
|
Loozen LD, Kruyt MC, Kragten AHM, Schoenfeldt T, Croes M, Oner CF, Dhert WJA, Alblas J. BMP-2 gene delivery in cell-loaded and cell-free constructs for bone regeneration. PLoS One 2019; 14:e0220028. [PMID: 31365542 PMCID: PMC6668905 DOI: 10.1371/journal.pone.0220028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/08/2019] [Indexed: 11/18/2022] Open
Abstract
To induce osteogenicity in bone graft substitutes, plasmid-based expression of BMP-2 (pBMP-2) has been successfully applied in gene activated matrices based on alginate polymer constructs. Here, we investigated whether cell seeding is necessary for non-viral BMP-2 gene expression in vivo. Furthermore, to gain insight in the role of BMP-producing cells, we compared inclusion of bone progenitor cells with non-osteogenic target cells in gene delivery constructs. Plasmid DNA encoding GFP (pGFP) was used to trace transfection of host tissue cells and seeded cells in a rat model. Transgene expression was followed in both cell-free alginate-ceramic constructs as well as constructs seeded with syngeneic fibroblasts or multipotent mesenchymal stromal cells (MSCs). Titration of pGFP revealed that the highest pGFP dose resulted in frequent presence of positive host cells in the constructs. Both cell-loaded groups were associated with transgene expression, most effectively in the MSC-loaded constructs. Subsequently, we investigated effectiveness of cell-free and cell-loaded alginate-ceramic constructs with pBMP-2 to induce bone formation. Local BMP-2 production was found in all groups containing BMP-2 plasmid DNA, and was most pronounced in the groups with MSCs transfected with high concentration pBMP-2. Bone formation was only apparent in the recombinant protein BMP-2 group. In conclusion, we show that non-viral gene delivery of BMP-2 is a potentially effective way to induce transgene expression in vivo, both in cell-seeded as well as cell-free conditions. However, alginate-based gene delivery of BMP-2 to host cells or seeded cells did not result in protein levels adequate for bone formation in this setting, calling for more reliable scaffold compatible transfection methods.
Collapse
Affiliation(s)
- Loek D. Loozen
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moyo C. Kruyt
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ted Schoenfeldt
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel Croes
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cumhur F. Oner
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wouter J. A. Dhert
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Dept. Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
A di-iron protein recruited as an Fe[II] and oxygen sensor for bacterial chemotaxis functions by stabilizing an iron-peroxy species. Proc Natl Acad Sci U S A 2019; 116:14955-14960. [PMID: 31270241 DOI: 10.1073/pnas.1904234116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many bacteria contain cytoplasmic chemoreceptors that lack sensor domains. Here, we demonstrate that such cytoplasmic receptors found in 8 different bacterial and archaeal phyla genetically couple to metalloproteins related to β-lactamases and nitric oxide reductases. We show that this oxygen-binding di-iron protein (ODP) acts as a sensor for chemotactic responses to both iron and oxygen in the human pathogen Treponema denticola (Td). The ODP di-iron site binds oxygen at high affinity to reversibly form an unusually stable μ-peroxo adduct. Crystal structures of ODP from Td and the thermophile Thermotoga maritima (Tm) in the Fe[III]2-O2 2-, Zn[II], and apo states display differences in subunit association, conformation, and metal coordination that indicate potential mechanisms for sensing. In reconstituted systems, iron-peroxo ODP destabilizes the phosphorylated form of the receptor-coupled histidine kinase CheA, thereby providing a biochemical link between oxygen sensing and chemotaxis in diverse prokaryotes, including anaerobes of ancient origin.
Collapse
|
38
|
Thavornyutikarn B, Wright PFA, Feltis B, Kosorn W, Turney TW. Bisphosphonate activation of crystallized bioglass scaffolds for enhanced bone formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109937. [PMID: 31499956 DOI: 10.1016/j.msec.2019.109937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 11/26/2022]
Abstract
The interplay between bone formation by osteoblasts and bone resorption by osteoclasts has a critical effect on bone remodelling processes, and resultant bone quality. Bone scaffolds combined with anti-resorptive bisphosphonate drugs are a promising approach to achieving bone regeneration. Here, we have examined the synergistic effects of the bisphosphonate alendronate (ALD) coated onto calcium phosphate (CaP) modified, sintered bioactive glass 45S5 (BG) scaffolds, on osteoblast stimulation and osteoclast inhibition. After BG pre-treatment with ALD (10-8 M) for 5 days, human MG-63 osteoblasts displayed increased cellular proliferation and significantly enhanced alkaline phosphatase activity (ALP), in comparison with a non-ALD control BG. In contrast, human THP-1-derived osteoclasts cultured with 10-8 M ALD pretreated BG scaffolds showed a significant decrease in tartrate-resistant acid phosphatase (TRAcP) activity, and morphological changes indicative of functional inhibition, including reduced cell size and disruption of the osteoclast sealing zone (F-actin rings). These findings indicate that ALD-coated BG scaffolds promote osteoblast activity and inhibit osteoclast function to enhance bone formation.
Collapse
Affiliation(s)
- Boonlom Thavornyutikarn
- National Metal and Materials Technology Center, Thailand Science Park, Pathumthani 12120, Thailand
| | - Paul F A Wright
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Bryce Feltis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Wasana Kosorn
- National Metal and Materials Technology Center, Thailand Science Park, Pathumthani 12120, Thailand
| | - Terence W Turney
- Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
39
|
Guanidine- and purine-functionalized ligands of FeIIIZnII complexes: effects on the hydrolysis of DNA. J Biol Inorg Chem 2019; 24:675-691. [DOI: 10.1007/s00775-019-01680-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023]
|
40
|
Igari K, Kelly MJ, Yamanouchi D. Cigarette Smoke Extract Activates Tartrate-Resistant Acid Phosphatase-Positive Macrophage. J Vasc Res 2019; 56:139-151. [PMID: 31064000 PMCID: PMC6764454 DOI: 10.1159/000498893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/13/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND It has been reported that smoking is one of the strongest positive risk factors for abdominal aortic aneurysms (AAAs). Although many studies have been directed to decipher the effect of smoking on AAA, its effect on macrophage activation has not yet been explored. OBJECTIVES We have reported the importance of osteoclastogenesis (OCG) in aneurysm formation. Therefore, we examined the effect of cigarette smoking on OCG and arterial aneurysmal formation by using cigarette smoke extract (CSE) in this study. METHODS Macrophage cell lines were stimulated with CSE, and their activation and differentiation were examined in vitro. Since macrophages activated through the OCG pathway are identified by tartrate-resistant acid phosphatase (TRAP) expression, these cells are referred to as TRAP-positive macrophages (TPMs) in this study. We also applied CSE-contained PBS in the calcium chloride-induced mouse carotid aneurysm model in vivo. RESULTS Macrophages stimulated with CSE expressed significantly higher levels of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), TRAP, cathepsin K, matrix metalloproteinase-9 and membrane-type metalloproteinase (MT1-MMP). CSE-treated mouse aneurysms showed increased aneurysm size with increased TPM infiltration and protease expression compared to non-CSE-treated mouse aneurysms. CONCLUSIONS These results suggest that CSE intensifies OCG in macrophages and promotes arterial aneurysmal progression.
Collapse
Affiliation(s)
- Kimihiro Igari
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Matthew J Kelly
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dai Yamanouchi
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA,
| |
Collapse
|
41
|
Feder D, Gahan LR, McGeary RP, Guddat LW, Schenk G. The Binding Mode of an ADP Analogue to a Metallohydrolase Mimics the Likely Transition State. Chembiochem 2019; 20:1536-1540. [DOI: 10.1002/cbic.201900077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel Feder
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| | - Ross P. McGeary
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences The University of Queensland St. Lucia QLD 4072 Australia
| |
Collapse
|
42
|
Erxleben A. Mechanistic Studies of Homo- and Heterodinuclear Zinc Phosphoesterase Mimics: What Has Been Learned? Front Chem 2019; 7:82. [PMID: 30847339 PMCID: PMC6393734 DOI: 10.3389/fchem.2019.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 11/13/2022] Open
Abstract
Phosphoesterases hydrolyze the phosphorus oxygen bond of phosphomono-, di- or triesters and are involved in various important biological processes. Carboxylate and/or hydroxido-bridged dizinc(II) sites are a widespread structural motif in this enzyme class. Much effort has been invested to unravel the mechanistic features that provide the enormous rate accelerations observed for enzymatic phosphate ester hydrolysis and much has been learned by using simple low-molecular-weight model systems for the biological dizinc(II) sites. This review summarizes the knowledge and mechanistic understanding of phosphoesterases that has been gained from biomimetic dizinc(II) complexes, showing the power as well as the limitations of model studies.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
43
|
Sharma G, Hu Q, Jayasinghe-Arachchige VM, Paul TJ, Schenk G, Prabhakar R. Investigating coordination flexibility of glycerophosphodiesterase (GpdQ) through interactions with mono-, di-, and triphosphoester (NPP, BNPP, GPE, and paraoxon) substrates. Phys Chem Chem Phys 2019; 21:5499-5509. [DOI: 10.1039/c8cp07031h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions of the catalytically active binuclear form of glycerophosphodiesterase (GpdQ) with chemically diverse substrates, i.e. phosphomono-, phosphodi-, and phosphotriester have been investigated using molecular dynamics (MD) simulations.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Qiaoyu Hu
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | | | - Thomas J. Paul
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences
- The University of Queensland
- St. Lucia
- Australia
| | | |
Collapse
|
44
|
Hussein WM, Feder D, Schenk G, Guddat LW, McGeary RP. Synthesis and evaluation of novel purple acid phosphatase inhibitors. MEDCHEMCOMM 2018; 10:61-71. [PMID: 30774855 DOI: 10.1039/c8md00491a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022]
Abstract
Transgenic studies in animals have demonstrated a direct association between the level of expression of purple acid phosphatase (PAP; also known as tartrate-resistant acid phosphatase) and the progression of osteoporosis. Consequently, PAP has emerged as a promising target for the development of novel therapeutic agents to treat this debilitating disorder. PAPs are binuclear hydrolases that catalyse the hydrolysis of phosphorylated substrates under acidic to neutral conditions. A series of phenyltriazole carboxylic acids, prepared by the reactions of azide derivatives with propiolic acid through copper(i)-catalysed azide-alkyne cycloaddition click reactions, has been assessed for their inhibitory effect on the catalytic activity of pig and red kidney bean PAPs. The binding mode of most of these compounds is purely uncompetitive with K iuc values as low as ∼23 μM for the mammalian enzyme. Molecular modelling has been used to examine the binding modes of these triazole compounds in the presence of a substrate in the active site of the enzyme in order to rationalise their activities and to design more potent and specific derivatives.
Collapse
Affiliation(s)
- Waleed M Hussein
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955.,Helwan University , Pharmaceutical Organic Chemistry Department , Faculty of Pharmacy , Ein Helwan , Helwan , Egypt
| | - Daniel Feder
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| | - Gerhard Schenk
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955.,The University of Queensland , Australian Centre for Ecogenomics , Brisbane , QLD 4072 , Australia
| | - Luke W Guddat
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| | - Ross P McGeary
- The University of Queensland , School of Chemistry and Molecular Biosciences , Brisbane , QLD 4072 , Australia . ; Tel: +61 7 33653955
| |
Collapse
|
45
|
Alperin JM, Ortiz-Fernández L, Sawalha AH. Monogenic Lupus: A Developing Paradigm of Disease. Front Immunol 2018; 9:2496. [PMID: 30459768 PMCID: PMC6232876 DOI: 10.3389/fimmu.2018.02496] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Monogenic lupus is a form of systemic lupus erythematosus (SLE) that occurs in patients with a single gene defect. This rare variant of lupus generally presents with early onset severe disease, especially affecting the kidneys and central nervous system. To date, a significant number of genes have been implicated in monogenic lupus, providing valuable insights into a very complex disease process. Throughout this review, we will summarize the genes reported to be associated with monogenic lupus or lupus-like diseases, and the pathogenic mechanisms affected by the mutations involved upon inducing autoimmunity.
Collapse
Affiliation(s)
- Jessie M Alperin
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Lourdes Ortiz-Fernández
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States.,Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
46
|
Hussein WM, Feder D, Schenk G, Guddat LW, McGeary RP. Purple acid phosphatase inhibitors as leads for osteoporosis chemotherapeutics. Eur J Med Chem 2018; 157:462-479. [DOI: 10.1016/j.ejmech.2018.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/14/2018] [Accepted: 08/01/2018] [Indexed: 11/24/2022]
|
47
|
Dutta N, Haldar S, Vijaykumar G, Paul S, Chattopadhyay AP, Carrella L, Bera M. Phosphatase-like Activity of Tetranuclear Iron(III) and Zinc(II) Complexes. Inorg Chem 2018; 57:10802-10820. [PMID: 30130107 DOI: 10.1021/acs.inorgchem.8b01441] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nityananda Dutta
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| | - Shobhraj Haldar
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| | - Gonela Vijaykumar
- Department of Chemical Sciences, Indian Institute of Science Education & Research Kolkata, Mohanpur, West Bengal-741246, India
| | - Suvendu Paul
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| | | | - Luca Carrella
- Institut fur Anorganische Chemie und Analytische Chemie, Johannes-Gutenberg Universitat Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, West Bengal-741235, India
| |
Collapse
|
48
|
The effect of microbial phytase supplementation of sorghum-canola meal diets with no added inorganic phosphorus on growth performance, apparent total-tract phosphorus, calcium, nitrogen and energy utilization, bone measurements, and serum variables of growing and finishing swine. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Paul TJ, Schenk G, Prabhakar R. Formation of Catalytically Active Binuclear Center of Glycerophosphodiesterase: A Molecular Dynamics Study. J Phys Chem B 2018; 122:5797-5808. [DOI: 10.1021/acs.jpcb.8b02046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas J. Paul
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
50
|
Pathak C, Gangwar MK, Ghosh P. Homodinuclear [Fe(III)−Fe(III)] and [Zn(II)−Zn(II)] complexes of a binucleating [N4O3] symmetrical ligand with purple acid phosphatase (PAP) and zinc phosphoesterase like activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|