1
|
Makino A, Hasegawa T, Yamamoto T, Takagi H, Takahashi Y, Miyakoshi N, Amizuka N. Abaloparatide promotes bone repair of vertebral defects in ovariectomized rats by increasing bone formation. Bone 2024; 182:117056. [PMID: 38402920 DOI: 10.1016/j.bone.2024.117056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Osteoporotic vertebral fracture (OVF) is the most common type of osteoporotic fracture and is associated with immobility and mortality. Bone anabolic agents, such as abaloparatide (ABL), are usually administered to patients with OVF to prevent subsequent fractures. Although several studies have shown that bone anabolic agents promote healing of long bone fractures, there is little evidence of their healing effect on vertebral bone fractures. In the present study, we investigated the effect of ABL on vertebral bone defects using ovariectomized (OVX) rats with vertebral body drill-hole defects, an animal model of OVF. Eight-week-old female Sprague-Dawley rats were subjected to OVX, followed by the 32-36 days of bone depletion period, once-daily subcutaneous ABL was administered to OVX rats at a dose of 30 μg/kg for a maximum of 6 weeks from the day of the vertebral defect surgery. We found that ABL significantly increased bone mineral content and improved trabecular structural parameters at the vertebral defect site. Moreover, ABL significantly increased bone strength of the defected vertebrae. Bone histochemical analysis revealed formation of thick trabecular bone networks at the defect site after ABL administration, consistent with an improvement in trabecular structural parameters by ABL. ABL increased ALPase- and PHOSPHO1-positive osteoblastic cells and ALPase/PCNA double-positive cells, indicating enhanced preosteoblast proliferation as well as bone formation at the defect site. On the other hand, ABL did not affect the number of cathepsin K-positive osteoclasts per bone surface, suggesting that ABL did not promote excessive bone resorption. Our findings suggest that ABL is useful not only for preventing secondary vertebral fractures but also for promoting bone healing in OVF.
Collapse
Affiliation(s)
- Akito Makino
- Pharmacology Research Department, Teijin Pharma Limited, Tokyo, Japan.
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hideko Takagi
- Pharmacology Research Department, Teijin Pharma Limited, Tokyo, Japan
| | | | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Kojima Y, Watanabe T, Mizuki F, Izumo N, Nishimura Y. Low-Intensity Pulsed Ultrasound Maintains Bone Mass After Withdrawal of Human Parathyroid Hormone in Ovariectomized Mice. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:385-395. [PMID: 37994205 DOI: 10.1002/jum.16371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
The intermittent injection of teriparatide, a recombinant fragment of human parathyroid hormone (PTH 1-34), activates anabolic activity on bone turnover. However, the PTH administration period is limited to 2 years. Thus, sequential therapy after discontinuation of PTH is required. Low-intensity pulsed ultrasound (LIPUS) has been widely used for bone fracture healing. In this study, we examined the effects of LIPUS on bone mass after PTH withdrawal in ovariectomized (OVX) model mice. The LIPUS-non-irradiated femoral trabecular bone mineral density (BMD) in the treated after PTH withdrawal was significantly decreased. Meanwhile, the femoral BMD in the OVX + PTH-LIPUS group was remarkably higher than that of the OVX group. Additionally, mRNA expression of Runx2, Osterix, Col1a1, and ALP increased significantly following LIPUS irradiation after PTH withdrawal. These results suggest that LIPUS protected against femoral trabecular BMD loss and up-regulated the osteogenic factors following PTH withdrawal in OVX mice.
Collapse
Affiliation(s)
- Yoshitsugu Kojima
- Clinical Pharmacology Research Laboratory, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
- Planning and Product Development Division, Nippon Sigmax Co., Ltd., Shinjuku-ku, Tokyo, Japan
| | - Takayuki Watanabe
- Clinical Pharmacology Research Laboratory, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
- Planning and Product Development Division, Nippon Sigmax Co., Ltd., Shinjuku-ku, Tokyo, Japan
| | - Fumitaka Mizuki
- Planning and Product Development Division, Nippon Sigmax Co., Ltd., Shinjuku-ku, Tokyo, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Yoshihiro Nishimura
- Planning and Product Development Division, Nippon Sigmax Co., Ltd., Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
3
|
Sharma K, Awasthi P, Prakash R, Khanka S, Bajpai R, Sahasrabuddhe AA, Goel A, Singh D. Maintenance of increased bone mass after PTH withdrawal by sequential medicarpin treatment via augmentation of cAMP-PKA pathway. J Cell Biochem 2022; 123:1762-1779. [PMID: 35959633 DOI: 10.1002/jcb.30313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Osteoporosis is a metabolic bone disorder associated with impaired bone microarchitecture leading to fragility fractures. Long-term usage of parathyroid hormone (PTH) enhances bone resorption and leads to osteosarcoma in rats which limits its exposure to maximum 2 years in human. Notably, the anabolic effects of PTH do not endure in the absence of sustained administration. Studies in our lab identified osteogenic and antiresorptive activity in medicarpin, a phytoestrogen belonging to the pterocarpan class. Considering dual-acting property of medicarpin and limitations of PTH therapy, we envisaged that medicarpin sequential treatment after PTH withdrawal could serve as promising therapeutic approach for osteoporosis treatment. As PTH exerts its bone anabolic effect by increasing osteoblast survival, our study aims to determine whether medicarpin amplifies this effect of PTH. Our results show that PTH withdrawal led to reduced bone mineral density and bone parameters, while sequential treatment of medicarpin after PTH withdrawal significantly enhanced these parameters. Remarkably, these effects were more pronounced than 8-week PTH treatment. Sequential therapy also significantly increased P1NP levels and decreased CTX levels and TRAP positive cells compared to PTH 8W group where CTX levels were quite high due to bone resorptive action of PTH. Protein expression studies revealed that medicarpin along with PTH betters the antiapoptotic potential compared to PTH alone, through augmentation of cyclic adenosine monophosphate-PKA-CREB pathway. These results proclaim that medicarpin sequential treatment prevented the reduction in bone accrual and strength accompanying PTH withdrawal and also aided in antiapoptotic role of PTH. The study points toward the potential use of medicarpin as a replacement therapeutic option postdiscontinuation of PTH.
Collapse
Affiliation(s)
- Kriti Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Pallavi Awasthi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Ravi Prakash
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sonu Khanka
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ranju Bajpai
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amogh A Sahasrabuddhe
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Atul Goel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.,Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Divya Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Estell EG, Rosen CJ. Emerging insights into the comparative effectiveness of anabolic therapies for osteoporosis. Nat Rev Endocrinol 2021; 17:31-46. [PMID: 33149262 DOI: 10.1038/s41574-020-00426-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
Abstract
Over the past three decades, the mainstay of treatment for osteoporosis has been antiresorptive agents (such as bisphosphonates), which have been effective with continued administration in lowering fracture risk. However, the clinical landscape has changed as adherence to these medications has declined due to perceived adverse effects. As a result, decreases in hip fracture rates that followed the introduction of bisphosphonates have now levelled off, which is coincident with a decline in the use of the antiresorptive agents. In the past two decades, two types of anabolic agents (including three new drugs), which represent a novel approach to improving bone quality by increasing bone formation, have been approved. These therapies are expected to lead to a new clinical paradigm in which anabolic agents will be used either alone or in combination with antiresorptive agents to build new bone and reduce fracture risk. This Review examines the mechanisms of action for these anabolic agents by detailing their receptor-activating properties for key cell types in the bone and marrow niches. Using these advances in bone biology as context, the comparative effectiveness of these anabolic agents is discussed in relation to other therapeutic options for osteoporosis to better guide their clinical application in the future.
Collapse
Affiliation(s)
- Eben G Estell
- Maine Medical Center Research Institute, Scarborough, ME, USA
| | | |
Collapse
|
5
|
Seeman E, Martin TJ. Antiresorptive and anabolic agents in the prevention and reversal of bone fragility. Nat Rev Rheumatol 2020; 15:225-236. [PMID: 30755735 DOI: 10.1038/s41584-019-0172-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone volume, microstructure and its material composition are maintained by bone remodelling, a cellular activity carried out by bone multicellular units (BMUs). BMUs are focally transient teams of osteoclasts and osteoblasts that respectively resorb a volume of old bone and then deposit an equal volume of new bone at the same location. Around the time of menopause, bone remodelling becomes unbalanced and rapid, and an increased number of BMUs deposit less bone than they resorb, resulting in bone loss, a reduction in bone volume and microstructural deterioration. Cortices become porous and thin, and trabeculae become thin, perforated and disconnected, causing bone fragility. Antiresorptive agents reduce fracture risk by reducing the rate of bone remodelling so that fewer BMUs are available to remodel bone. Bone fragility is not abolished by these drugs because existing microstructural deterioration is not reversed, unsuppressed remodelling continues producing microstructural deterioration and unremodelled bone that becomes more mineralized can become brittle. Anabolic agents reduce fracture risk by stimulating new bone formation, which partly restores bone volume and microstructure. To guide fracture prevention, this Review provides an overview of the structural basis of bone fragility, the mechanisms of remodelling and how anabolic and antiresorptive agents target remodelling defects.
Collapse
Affiliation(s)
- Ego Seeman
- Departments of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Victoria, Australia. .,Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
| | - T J Martin
- Department of Medicine and St Vincent's Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Ramchand SK, Seeman E. Reduced Bone Modeling and Unbalanced Bone Remodeling: Targets for Antiresorptive and Anabolic Therapy. Handb Exp Pharmacol 2020; 262:423-450. [PMID: 32232792 DOI: 10.1007/164_2020_354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone loss during advancing age is the net result of reduced modeling-based bone formation upon the outer (periosteal) envelope and unbalanced remodeling by basic multicellular units (BMUs) upon the three (intracortical, endocortical, and trabecular) components of the inner (endosteal) bone envelope. Each BMU deposits less bone than resorbed, reducing total bone volume and deteriorating the microstructure of the diminished residual bone volume.Antiresorptive agents like bisphosphonates reduce, but do not abolish, the rate of bone remodeling - fewer BMUs remodel, "turn over," the volume of bone. Residual unbalanced remodeling continues to slowly reduce total bone volume and deteriorate bone microstructure. By contrast, denosumab virtually abolishes remodeling so the decrease in bone volume and the deterioration in microstructure cease. The less remodeled matrix remains, leaving more time to complete the slow process of secondary mineralization which reduces the heterogeneity of matrix mineralization and allows it to become glycosylated, changes that may make the smaller and microstructurally deteriorated bone volume more brittle. Neither class of antiresorptive restores bone volume or its microstructure, despite increases in bone mineral density misleadingly suggesting otherwise. Nevertheless, these agents reduce vertebral and hip fractures by 50-60% but only reduce nonvertebral fractures by 20-30%.Restoring bone volume, microstructure, and material composition, "curing" bone fragility, may be partly achieved using anabolic therapy. Teriparatide, and probably abaloparatide, produce mainly remodeling-based bone formation by acting on BMUs existing in their resorption, reversal, or formation phase at the time of treatment and by promoting bone formation in newly initiated BMUs. Romosozumab produces modeling-based bone formation almost exclusively and decreases the surface extent of bone resorption. All three anabolic agents reduce vertebral fracture risk relative to untreated controls; parathyroid hormone 1-34 and romosozumab reduce vertebral fracture risk more greatly than risedronate or alendronate, respectively. Evidence for nonvertebral or hip fracture risk reduction relative to untreated or antiresorptive-treated controls is lacking or inconsistent. Only one study suggests sequential romosozumab followed by alendronate reduces vertebral, nonvertebral, and hip fracture risk compared to continuous alendronate alone. Whether combined antiresorptive and anabolic therapy result in superior fracture risk reduction than monotherapy is untested.
Collapse
Affiliation(s)
- Sabashini K Ramchand
- Department of Medicine, Endocrine Unit, Massachusetts General Hospital, Harvard University, Boston, MA, USA.
- Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ego Seeman
- Department of Medicine, Endocrine Unit, Austin Hospital, The University of Melbourne, Melbourne, VIC, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC, Australia
| |
Collapse
|
7
|
Shimizu T, Tanaka T, Kobayashi T, Kudo I, Nakatsugawa M, Takakura A, Takao-Kawabata R, Ishizuya T. Sequential treatment with zoledronic acid followed by teriparatide or vice versa increases bone mineral density and bone strength in ovariectomized rats. Bone Rep 2017; 7:70-82. [PMID: 28948197 PMCID: PMC5602747 DOI: 10.1016/j.bonr.2017.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/27/2017] [Accepted: 06/15/2017] [Indexed: 01/16/2023] Open
Abstract
Bisphosphonates (BPs) and teriparatide (TPTD) are both effective treatments for osteoporosis, but BP treatment prior to daily TPTD treatment has been shown to impair the effect of TPTD in some clinical studies. In contrast, the loss of bone mineral density (BMD) that occurs after withdrawal of TPTD can be prevented by BP treatment. Although various studies have investigated the combination and/or sequential use of BP and TPTD, there have been no clinical studies investigating sequential treatment with zoledronic acid (ZOL) and TPTD (or vice versa). In this study, we evaluated the effects of sequential treatment with TPTD followed by ZOL, and ZOL followed by TPTD, using ovariectomized (OVX) rats. Two months after OVX, osteopenic rats were treated with ZOL, TPTD, or vehicle for a period of 4 months (first treatment period), and then the treatments were switched and administered for another 4 months (second treatment period). The group treated with ZOL followed by TPTD showed an immediate increase in BMD of the proximal tibia and greater BMD and bone strength of the lumbar vertebral body, femoral diaphysis, and proximal femur than the group treated with ZOL followed by vehicle. Serum osteocalcin, a marker of bone formation, increased rapidly after switching to TPTD from ZOL. The group treated with TPTD followed by ZOL did not lose BMD in the proximal tibia after TPTD was stopped, while the group treated with TPTD followed by vehicle did lose BMD. The BMD and bone strength of the lumbar vertebral body, femoral diaphysis, and proximal femur were greater in the group treated with TPTD followed by ZOL than in the group treated with TPTD followed by vehicle. The increase in serum osteocalcin and urinary CTX after withdrawal of TPTD was prevented by the switch from TPTD to ZOL. In conclusion, our results demonstrate that switching from ZOL to TPTD resulted in a non-attenuated anabolic response in the lumbar spine and femur of OVX rats. In addition, switching from TPTD to ZOL caused BMD to be maintained or further increased. If these results can be reproduced in a clinical setting, the sequential use of ZOL followed by TPTD or vice versa in the treatment of osteoporosis patients would contribute to increases in BMD that, hopefully, would translate into a corresponding decrease in the incidence of vertebral and non-vertebral fractures.
Collapse
Affiliation(s)
- T Shimizu
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - T Tanaka
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - T Kobayashi
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - I Kudo
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - M Nakatsugawa
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - A Takakura
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - R Takao-Kawabata
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - T Ishizuya
- Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| |
Collapse
|
8
|
Takeda S, Sakai S, Tanaka K, Tomizawa H, Serizawa K, Yogo K, Urayama K, Hashimoto J, Endo K, Matsumoto Y. Intermittent Ibandronate Maintains Bone Mass, Bone Structure, and Biomechanical Strength of Trabecular and Cortical Bone After Discontinuation of Parathyroid Hormone Treatment in Ovariectomized Rats. Calcif Tissue Int 2017; 101:65-74. [PMID: 28246925 PMCID: PMC5486915 DOI: 10.1007/s00223-017-0255-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/10/2017] [Indexed: 01/17/2023]
Abstract
Although parathyroid hormone (PTH) expresses an anabolic effect on bone mass, the increased bone mass disappears once PTH treatment is withdrawn. Therefore, sequential treatment with anti-bone-resorptive agents is required to maintain bone mass after PTH treatment. We examined the effect of sequential treatment with ibandronate (IBN), a nitrogen-containing bisphosphonate, following PTH in ovariectomized (OVX) rats. Wistar-Imamichi rats (27 weeks old) were ovariectomized and treated with PTH (10 µg/kg, s.c.; 5 times/week; PTH group) for 8 weeks from 8 weeks after OVX. Thereafter, PTH was withdrawn and rats were administered IBN (10 µg/kg, s.c.; every 4 weeks; PTH-IBN group) or vehicle (PTH-Veh group) for another 8 weeks. PTH increased bone mineral density (BMD) measured by dual-energy X-ray absorptiometry and biomechanical strength in the lumbar spine and femur as compared to the disease control rats. BMD and biomechanical strength in the PTH-Veh group were lower than in the PTH group, whereas in the PTH-IBN group they were maintained at the level of the PTH group. Microstructure of the trabecular and cortical bone in the PTH-IBN group was not significantly different from that in the PTH group. In histomorphometric analysis of the lumbar vertebra, eroded surface and osteoclast surface in the PTH-Veh group were no different from those in the PTH group, whereas they were lower in the PTH-IBN group. Osteoid surface, osteoblast surface, and mineralize surface decreased in both PTH-IBN and PTH-Veh groups compared to the PTH group, and these parameters in the PTH-IBN group were lower than in the PTH-Veh group. These results indicated that intermittent IBN after PTH treatment suppressed bone turnover and maintained BMD, biomechanical strength, and microstructure in the lumbar spine and femur of OVX rats.
Collapse
Affiliation(s)
- Satoshi Takeda
- Fuji Gotemba Research Laboratories, Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Sadaoki Sakai
- Fuji Gotemba Research Laboratories, Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Keisuke Tanaka
- Fuji Gotemba Research Laboratories, Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Haruna Tomizawa
- Fuji Gotemba Research Laboratories, Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kenichi Serizawa
- Fuji Gotemba Research Laboratories, Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Kenji Yogo
- Fuji Gotemba Research Laboratories, Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Koji Urayama
- Product Marketing and Management Department, Taisho Toyama Pharmaceutical Co., Ltd, 3-25-1 Takada, Toshima-ku, Tokyo, 170-8635, Japan
| | - Junko Hashimoto
- Primary Lifecycle Management Department, Chugai Pharmaceutical Co., Ltd, 2-1-1 Nihombashi Muromachi, Chuo-ku, Tokyo, 103-8324, Japan
| | - Koichi Endo
- Medical Science Department, Chugai Pharmaceutical Co., Ltd, 2-1-1 Nihombashi Muromachi, Chuo-ku, Tokyo, 103-8324, Japan
| | - Yoshihiro Matsumoto
- Fuji Gotemba Research Laboratories, Product Research Department, Chugai Pharmaceutical Co., Ltd, 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan.
| |
Collapse
|
9
|
Tägil M, McDonald MM, Morse A, Peacock L, Mikulec K, Amanat N, Godfrey C, Little DG. Intermittent PTH(1-34) does not increase union rates in open rat femoral fractures and exhibits attenuated anabolic effects compared to closed fractures. Bone 2010; 46:852-9. [PMID: 19922821 DOI: 10.1016/j.bone.2009.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/30/2022]
Abstract
Intermittent Parathyroid Hormone (PTH)((1-34)) has an established place in osteoporosis treatment, but also shows promising results in models of bone repair. Previous studies have been dominated by closed fracture models, where union is certain. One of the major clinical needs for anabolic therapies is the treatment of open and high energy fractures at risk of non-union. In the present study we therefore compared PTH((1-34)) treatment in models of both open and closed fractures. 108 male Wistar rats were randomly assigned to undergo standardized closed fractures or open osteotomies with periosteal stripping. 27 rats in each group were treated s.c. with PTH((1-34)) at a dose of 50 mug/kg 5 days a week, the other 27 receiving saline. Specimens were harvested at 6 weeks for mechanical testing (n=17) or histological analysis (n=10). In closed fractures, union by any definition was 100% in both PTH((1-34)) and saline groups at 6 weeks. In open fractures, the union rate was significantly lower (p<0.05), regardless of treatment. In open fractures the mechanically defined union rate was 10/16 (63%) in saline and 11/17 (65%) in PTH((1-34)) treated fractures. By histology, the union rate was 3/9 (33%) with saline and 5/10 (50%) with PTH((1-34)). Radiological union was seen in 13/25 (52%) for saline and 15/26 (58%) with PTH((1-34)). Open fractures were associated with decreases in bone mineral content (BMC) and volumetric bone mineral density (vBMD) on quantitative computerized tomography (QCT) analysis compared to closed fractures. PTH((1-34)) treatment in both models led to significant increases in callus BMC and volume as well as trabecular bone volume/total volume (BV/TV), as assessed histologically (p<0.01). In closed fractures, PTH((1-34)) had a robust effect on callus size and strength, with a 60% increase in peak torque (p<0.05). In the open fractures that united and could be tested, PTH((1-34)) treatment also increased peak torque by 49% compared to saline (p<0.05). In conclusion, intermittent PTH((1-34)) produced significant increases in callus size and strength in closed fractures, but failed to increase the rate of union in an open fracture model. In the open fractures that did unite, a muted response to PTH was seen compared to closed fractures. Further research is required to determine if PTH((1-34)) is an appropriate anabolic treatment for open fractures.
Collapse
Affiliation(s)
- Magnus Tägil
- Orthopaedic Research and Biotechnology, The Children's Hospital, Westmead, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Li D, Bi L, Meng G, Wang J, Lv R, Liu M, Liu J, Hu Y. Mineral status and mechanical properties of cancellous bone exposed to hydrogen peroxide for various time periods. Cell Tissue Bank 2009; 12:51-8. [DOI: 10.1007/s10561-009-9161-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 09/22/2009] [Indexed: 10/20/2022]
|
11
|
Lack of bone neoplasms and persistence of bone efficacy in cynomolgus macaques after long-term treatment with teriparatide [rhPTH(1-34)]. J Bone Miner Res 2008; 23:2033-9. [PMID: 18684088 DOI: 10.1359/jbmr.080807] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In rats, teriparatide [rhPTH(1-34)] causes marked increases in bone mass and osteosarcoma. In primates, teriparatide causes lesser increases in bone mass, and osteosarcomas have not been reported. Previous studies in primates were not designed to detect bone tumors and did not include a prolonged post-treatment observation period to determine whether tumors would arise after cessation of treatment. Ovariectomized (OVX), skeletally mature, cynomolgus monkeys (n = 30 per group) were given teriparatide for 18 mo at either 0 or 5 microg/kg/d subcutaneously. After 18 mo of treatment, subgroups of six monkeys from both groups were killed and evaluated, whereas all remaining monkeys entered a 3-yr observation period in which they did not receive teriparatide. Surveillance for bone tumors was accomplished with plain film radiographs, visual examination of the skeleton at necropsy, and histologic evaluation of multiple skeletal sites. Quantitative assessments of bone mass, architecture, and strength were also performed. After the 18-mo treatment period, vertebral BMD, BMC, and strength (ultimate load) were increased by 29%, 36%, and 52%, respectively, compared with OVX controls. Proximal femur BMD, BMC, and strength were also increased by 15%, 28% and 33%, respectively. After 3 yr without treatment, no differences in bone mass or strength at the vertebra were observed relative to OVX controls; however, the femoral neck showed significant persistence in stiffness (20%), BMC (14%), and trabecular BV/TV (53%), indicating a retention of teriparatide efficacy at the hip. Radiographs and histology did not identify any bone proliferative lesions or microscopic lesions of osteosarcoma at the end of the treatment or observation period. These data indicate that teriparatide did not induce bone proliferative lesions over a 4.5-yr interval of observation, including 18 mo of treatment and 3 yr of follow-up observation. Bone analyses confirmed that teriparatide caused increases in bone mass and strength, consistent with previous studies. During the withdrawal phase, beneficial effects of teriparatide treatment on the vertebra were lost; however, some of the beneficial effects on the proximal femur persisted for 3 yr after cessation of treatment. Although the lack of bone tumors in this study provides some additional reassurance regarding the safety of teriparatide for the primate skeleton, the small group size and other limitations of this, or any other animal study, limit the ability to draw definitive conclusions regarding the risk of bone tumor developments in patients.
Collapse
|
12
|
Adami S, San Martin J, Muñoz-Torres M, Econs MJ, Xie L, Dalsky GP, McClung M, Felsenberg D, Brown JP, Brandi ML, Sipos A. Effect of raloxifene after recombinant teriparatide [hPTH(1-34)] treatment in postmenopausal women with osteoporosis. Osteoporos Int 2008; 19:87-94. [PMID: 17938984 DOI: 10.1007/s00198-007-0485-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 05/02/2007] [Indexed: 10/22/2022]
Abstract
UNLABELLED Loss of bone mineral density occurs after discontinuation of teriparatide, if no subsequent treatment is given. Sequential raloxifene prevented rapid bone loss at lumbar spine and further increased bone mineral density (BMD) at femoral neck, whether raloxifene was started immediately or after a one-year delay following teriparatide treatment. INTRODUCTION We compared the sequential effects of raloxifene treatment with a placebo on teriparatide-induced increases in bone mineral density (BMD). A year of open-label raloxifene extended the study to assess the response with and without delay after discontinuation of teriparatide. METHODS Following a year of open-label teriparatide 20 mug/day treatment, postmenopausal women with osteoporosis were randomly assigned to raloxifene 60 mg/day (n = 157) or a placebo (n = 172) for year 2, followed by a year of open-label raloxifene. BMD was measured by dual energy x-ray absorptiometry. RESULTS The raloxifene and placebo groups showed a decrease in lumbar spine (LS) BMD in year 2 for raloxifene and placebo groups (-1.0 +/- 0.3%, P = 0.004; and -4.0 +/- 0.3%, P < 0.001, respectively); the decrease was less with raloxifene (P < 0.001). Open-label raloxifene treatment reversed the LS BMD decrease with a placebo, resulting in similar decreases 2 years after randomization (-2.6 +/- 0.4% (raloxifene-raloxifene) and -2.7 +/- 0.4% (placebo-placebo). At study end, LS and femoral neck (FN) BMD were higher than pre-teriparatide levels, with no significant differences between the raloxifene-raloxifene and placebo-raloxifene groups, respectively (LS: 6.1 +/- 0.5% vs. 5.1 +/- 0.5%; FN: 3.4 +/- 0.6% vs. 3.0 +/- 0.5%). CONCLUSION Sequential raloxifene prevented rapid bone loss at the LS and increased FN BMD whether raloxifene was started immediately or after a one-year delay following teriparatide treatment.
Collapse
Affiliation(s)
- S Adami
- Riabilitazione Reumatologica, University of Verona, Valeggio s/Mincio, Verona, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hashimoto T, Shigetomi M, Ohno T, Matsunaga T, Muramatsu K, Tanaka H, Sugiyama T, Taguchi T. Sequential treatment with intermittent low-dose human parathyroid hormone (1-34) and bisphosphonate enhances large-size skeletal reconstruction by vascularized bone transplantation. Calcif Tissue Int 2007; 81:232-9. [PMID: 17674071 DOI: 10.1007/s00223-007-9056-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
Vascularized bone transplantation enables reconstruction of large skeletal defects, but this process needs a long time. Since short-term intermittent parathyroid hormone (PTH) enhances rat fracture healing, we investigated the effects of 4-week intermittent low-dose (10 microg/kg/day) or high-dose (100 microg/kg/day) PTH followed by 4-week vehicle, low-dose or high-dose intermittent PTH, or zoledronic acid (ZOL, 2 micro/kg/week), a potent bisphosphonate, on large skeletal reconstruction by vascularized tibial grafting in rats. Compared to 8-week vehicle, 8-week low-dose PTH did not significantly increase the serum osteocalcin level as well as the urinary deoxypyridinoline level, while 4-week low-dose or high-dose PTH followed by 4-week ZOL decreased both of these levels. Eight-week PTH increased the bone mass of the graft and strength of the reconstructed skeleton in a dose-dependent manner; notably, the reconstructed skeleton showed an obviously higher response to PTH compared to the contralateral nonoperated femur. In contrast, 4-week PTH followed by 4-week vehicle reduced these effects and caused local bone loss at the host-graft junctions. Four-week PTH followed by 4-week ZOL did not induce such bone loss; however, 4-week high-dose PTH followed by 4-week ZOL caused a large callus in the distal cortical junction. Four-week PTH followed by 4-week ZOL increased the bone mass and strength similarly to 8-week PTH. These preliminary findings suggest, for the first time, that sequential treatment with short-term intermittent low-dose PTH and bisphosphonate as well as long-term intermittent low-dose PTH treatment enhance large skeletal reconstruction by vascularized bone transplantation, though early timing of sequential antiresorptive treatment could result in delay of bone repair.
Collapse
Affiliation(s)
- Takahiro Hashimoto
- Department of Orthopedic Surgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Manabe T, Mori S, Mashiba T, Kaji Y, Iwata K, Komatsubara S, Seki A, Sun YX, Yamamoto T. Human parathyroid hormone (1-34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone 2007; 40:1475-82. [PMID: 17369013 DOI: 10.1016/j.bone.2007.01.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/21/2006] [Accepted: 01/18/2007] [Indexed: 01/13/2023]
Abstract
Several studies in rats have demonstrated that parathyroid hormone accelerates fracture healing by increasing callus formation or stimulating callus remodeling. However the effect of PTH on fracture healing has not been tested using large animals with Haversian remodeling system. Using cynomolgus monkey that has intracortical remodeling similar to humans, we examined whether intermittent treatment with human parathyroid hormone [hPTH(1-34)] accelerates the fracture healing process, especially callus remodeling, and restores geometrical shapes and mechanical properties of osteotomized bone. Seventeen female cynomolgus monkeys aged 18-19 years were allocated into three groups: control (CNT, n=6), low-dose PTH (0.75 microg/kg; PTH-L, n=6), and high-dose PTH (7.5 microg/kg; PTH-H, n=5) groups. In all animals, twice a week subcutaneous injection was given for 3 weeks. Then fracture was produced surgically by transversely cutting the midshaft of the right femur and fixing with stainless plate. After fracture, intermittent PTH treatment was continued until sacrifice at 26 weeks after surgery. The femora were assessed by soft X-ray, three-point bending mechanical test, histomorphometry, and degree of mineralization in bone (DMB) measurement. Soft X-ray showed that complete bone union occurred in all groups, regardless of treatment. Ultimate stress and elastic modulus in fractured femur were significantly higher in PTH-H than in CNT. Total area and percent bone area of the femur were significantly lower in both PTH-L and PTH-H than in CNT. Callus porosity decreased dose-dependently following PTH treatment. Mean DMB of callus was significantly higher in PTH-H than in CNT or PTH-L. These results suggested that PTH decreased callus size and accelerated callus maturation in the fractured femora. PTH accelerates the natural fracture healing process by shrinking callus size and increasing degree of mineralization of the fracture callus, thereby restoring intrinsic material properties of osteotomized femur shaft in cynomolgus monkeys although there were no significant differences among the groups for structural parameters.
Collapse
Affiliation(s)
- Takeshi Manabe
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Iida-Klein A, Hughes C, Lu SS, Moreno A, Shen V, Dempster DW, Cosman F, Lindsay R. Effects of cyclic versus daily hPTH(1-34) regimens on bone strength in association with BMD, biochemical markers, and bone structure in mice. J Bone Miner Res 2006; 21:274-82. [PMID: 16418783 DOI: 10.1359/jbmr.051017] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/13/2005] [Accepted: 10/26/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED We developed a cyclic PTH regimen with repeated cycles of 1-week on and off daily PTH injection and explored its effects on bone strength, BMD, bone markers, and bone structure in mice. Cyclic protocols produced 60-85% of the effects achieved by daily protocols with 57% of the total PTH given, indicating more economic use of PTH. The study supports further exploration of cyclic PTH regimens for the treatment of osteoporosis. INTRODUCTION To minimize the cost and the catabolic action of hPTH(1-34), a cyclic PTH regimen with repeated 3-month cycles of on-and-off daily injection of hPTH(1-34) was developed in humans and shown to be as effective as a daily regimen in increasing vertebral BMD. However, changes in BMD may not adequately predict changes in bone strength. A murine model was developed to explore the efficacy of a cyclic PTH regimen on bone strength in association with other bone variables. MATERIALS AND METHODS Twenty-week-old, intact, female C57BL/J6 mice (n = 7/group) were treated with (1) daily injection with vehicle for 7 weeks (control); (2) daily injection with hPTH(1-34) (40 microg/kg/day) for 7 weeks (daily PTH); and (3) daily injection with hPTH(1-34) and vehicle alternating weekly for 7 weeks (cyclic PTH). BMD was measured weekly by DXA, and serum bone markers, bone structure, and strength were measured at 7 weeks. RESULTS Daily and cyclic PTH regimens increased BMD at all sites by 16-17% and 9-12%, respectively (all p < 0.01). The most dramatic effect of cyclic PTH occurred during the second week of treatment when PTH was off, with femoral and tibial BMD continuing to increase to the same extent as that produced by daily PTH. Both daily and cyclic PTH regimens significantly increased osteocalcin (daily, 330%; cyclic, 260%), mTRACP (daily, 145%; cyclic, 70%), femoral cortical width (daily, 23%; cyclic, 13%), periosteal circumference (daily, 5%; cyclic, 3.5%), and bone strength (max load: daily, 48%; cyclic, 28%; energy absorbed: daily, 103%; cyclic, 61%), respectively. Femoral bone strength was positively correlated with BMD, bone markers, and cortical structure. Neither regimen had an effect on vertebral bone strength. Although actual effects of cyclic PTH were 60-85% of those produced by daily PTH, the effects of cyclic PTH per unit amount administered were slightly greater than those of daily PTH for most measures. CONCLUSIONS PTH-enhanced femoral bone strength is positively correlated with its effects on femoral BMD, bone markers, and bone structure. Cyclic PTH regimens represent a potential economic use of PTH and warrant further study.
Collapse
Affiliation(s)
- Akiko Iida-Klein
- Regional Bone Center, Helen Hayes Hospital, West Haverstraw, New York 10993, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Prince R, Sipos A, Hossain A, Syversen U, Ish-Shalom S, Marcinowska E, Halse J, Lindsay R, Dalsky GP, Mitlak BH. Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res 2005; 20:1507-13. [PMID: 16059622 DOI: 10.1359/jbmr.050501] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/06/2005] [Accepted: 04/27/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED A follow-up in 1262 women was conducted after the discontinuation of teriparatide. The hazard ratio for combined teriparatide group (20 and 40 microg) for the 50-month period after baseline was 0.57 (p = 0.002), suggesting a sustained effect in reducing the risk of nonvertebral fragility fracture. INTRODUCTION Treatment with teriparatide [rhPTH(1-34)] 20 and 40 microg once-daily subcutaneous dosing significantly reduced the risk of nonvertebral fragility fractures over a median exposure of 19 months. MATERIALS AND METHODS All participants in the Fracture Prevention Trial were invited to participate in a follow-up study. Prior treatment assignments were revealed, and patients were able to receive osteoporosis treatments without restriction. RESULTS Approximately 60% of the 1262 patients received an osteoporosis treatment at some time during follow-up, with greater use in the former placebo group than in the combined former teriparatide group (p < 0.05). The hazard ratios for nonvertebral fragility fractures in each teriparatide group relative to placebo were statistically significant for the 50-month period including treatment and follow-up (p < 0.03). In the follow-up period, the hazard ratio was significantly different between the 40 mug and combined groups versus placebo but not for the 20 microg group versus placebo. However, the 20 and 40 microg groups were not different from each other. Kaplan-Meier analysis of time to fracture showed that the fracture incidence in the former placebo and teriparatide groups diverged during the 50-month period including teriparatide treatment and follow-up (p = 0.009). Total hip and femoral neck BMD decreased in teriparatide-treated patients who had no follow-up treatment; BMD remained stable or further increased in patients who received a bisphosphonate after teriparatide treatment. CONCLUSIONS While the study design is observational, the results support a sustained effect of teriparatide in reducing the risk of nonvertebral fragility fractures up to 30 months after discontinuation of treatment.
Collapse
Affiliation(s)
- Richard Prince
- Department of Endocrinology and Diabetes and University of Western Australia, Sir Charles Gairdner Hospital, Nedlands, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Komatsubara S, Mori S, Mashiba T, Nonaka K, Seki A, Akiyama T, Miyamoto K, Cao Y, Manabe T, Norimatsu H. Human parathyroid hormone (1-34) accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone 2005; 36:678-87. [PMID: 15781006 DOI: 10.1016/j.bone.2005.02.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Revised: 01/29/2005] [Accepted: 02/03/2005] [Indexed: 01/14/2023]
Abstract
This study aimed to test whether intermittent treatment of human parathyroid hormone [hPTH(1-34)] disturbs or accelerates the fracture healing process using rat surgical osteotomy model. One hundred five, 5-week-old SD rats were allocated to vehicle control (CNT) and four PTH groups; 10 and 30 microg/kg of hPTH(1-34) treatment before surgery (P10, P30), and treatment before and after surgery (C10, C30). All animals were given subcutaneous injections three times a week for 3 weeks. Then, fractures were produced by transversely cutting the midshaft of bilateral femora and fixing with intramedullary wire. Human PTH(1-34) treatment was continued in C10 and C30 groups until sacrifice at 3, 6, and 12 weeks after surgery. The femora were assessed by peripheral quantitative computed tomography, three-point bending mechanical test, and histomorphometry. Total cross-sectional area was not significantly different among all groups at any time point. At 3 weeks after surgery, the lamellar bone/callus area was significantly increased in C10 and C30 groups compared to the other groups. At 6 weeks, remodeling of woven bone to lamellar bone in the callus was almost complete in all groups. At 12 weeks, percent new cortical shell area was significantly higher in C10 and C30 groups compared to the other groups, and the ultimate load in mechanical testing was significantly higher in C30 group than in CNT, P10, and P30 groups. Intermittent PTH treatment at 30 microg/kg before and after osteotomy accelerated the healing process as evidenced by earlier replacement of woven bone to lamellar bone, increased new cortical shell formation, and increased the ultimate load up to 12 weeks after osteotomy.
Collapse
Affiliation(s)
- Satoshi Komatsubara
- Department of Orthopedic Surgery, Faculty of Medicine, Kagawa University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kurland ES, Heller SL, Diamond B, McMahon DJ, Cosman F, Bilezikian JP. The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1-34)]. Osteoporos Int 2004; 15:992-7. [PMID: 15175844 DOI: 10.1007/s00198-004-1636-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Accepted: 03/19/2004] [Indexed: 11/30/2022]
Abstract
Teriparatide, the active fragment of human parathyroid hormone (hPTH 1-34), is an anabolic agent for the treatment of osteoporosis. Important questions remain regarding management strategy beyond the recommended 18- to 24-month course of teriparatide treatment. We followed 21 men for up to 2 years after discontinuing teriparatide. Twelve men (57%) chose treatment with bisphosphonate immediately after teriparatide withdrawal, while 9 (43%) opted for no pharmacologic agent. At the end of 1 year lumbar spine bone density increased an additional 5.1+/-1.0% in the bisphosphonate group, while it declined by 3.7+/-1.7% in those on no medication (P<0.002). In six men who delayed initiation of bisphosphonate until 1 year after teriparatide withdrawal, their subsequent gains in the second year, 2.6+/-1.7%, still placed them below the peak gains they achieved on teriparatide. In contrast, the 12 men who began bisphosphonates immediately and continued treatment for the entire 2-year post-PTH period had continued gains at the lumbar spine, 8.9+/-1.5% above their post-PTH values (P=0.002). For the 4-year period, including 2 years of teriparatide and 2 years of bisphosphonate, the total gains at the lumbar spine were 23.6+/-2.9%. Men, who received bisphosphonate in only the 2nd year post-teriparatide, had cumulative gains of 11.1+/-3.4%. Three men who did not receive any bisphosphonate at any time during the post-PTH period had cumulative gains of only 5.5+/-3.7%. These findings suggest that the use of bisphosphonates following teriparatide is an important component of any strategy utilizing this anabolic drug for osteoporosis in men. The immediate use of bisphosphonates after teriparatide withdrawal may help to optimize gains in bone density at the lumbar spine.
Collapse
Affiliation(s)
- Etah S Kurland
- Department of Medicine, Columbia University College of Physicians and Surgeons, 630 West 168th Street, PH 8 West 864, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Both men and women lose bone at a late age (aging bone loss). The aim of this study was to determine whether cerivastatin and parathyroid hormone (PTH) can prevent aging bone loss in men. Bone loss in aged male Sprague-Dawley (SD) rats was used as a model for age-related bone loss in men. Nine-month-old male SD rats were divided into six groups: (1) baseline controls (killed at the beginning of the study); (2) age-matched controls; (3) parathyroid hormone (PTH; 80 microg/kg body weight per day for 5 days/week) treated; (4) low-dose cerivastatin (0.2 mg/kg body weight per day) treated; and (5) medium-dose cerivastatin (0.4 mg/kg body weight per day) treated; and (6) high-dose cerivastatin (0.8 mg/kg body weight per day) treated. Groups 2-6 were treated for 23 weeks between the ages of 9 and 15 months and killed at the end of 23 weeks. The fourth lumbar vertebra was analyzed using peripheral quantitative computed tomography (pQCT). It is shown that age-matched controls had decreased cancellous bone mineral content (Cn. BMC) by 19% (p < 0.05) and cancellous bone mineral density Cn. BMD) by 22% (p < 0.01) when compared with baseline controls. All three doses of cerivastatin resulted in lower Cn. BMC and Cn. BMD when compared with age-matched controls, but this decrease was not statistically significant. In the PTH-treated group, Cn. BMC increased by 5% (p < 0.0001) and Cn. BMD increased by 37% (p < 0.0001) when compared with age-matched controls. In age-matched controls, cortical bone mineral content (Ct. BMC) and cortical bone mineral density (Ct. BMD) decreased slightly, but not significantly, when compared with baseline controls. Ct. BMD did not change significantly at any of the three doses in the cerivastatin-treated groups. In the PTH-treated group, Ct. BMC increased by 23% (p < 0.0001) when compared with age-matched controls. We confirmed that male SD rats lose bone with aging in the lumbar vertebra, and it is concluded that cerivastatin, at all doses administered, did not prevent this age-related bone loss. In contrast, PTH prevented age-related bone loss in the vertebra of male SD rats.
Collapse
Affiliation(s)
- J Banu
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | |
Collapse
|
20
|
Turner CH, Burr DB, Hock JM, Brommage R, Sato M. The effects of PTH (1-34) on bone structure and strength in ovariectomized monkeys. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 496:165-79. [PMID: 11783618 DOI: 10.1007/978-1-4615-0651-5_17] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- C H Turner
- Department of Orthopaedic Surgery, Indiana University, Indianapolis, USA
| | | | | | | | | |
Collapse
|
21
|
Dempster DW, Cosman F, Kurland ES, Zhou H, Nieves J, Woelfert L, Shane E, Plavetić K, Müller R, Bilezikian J, Lindsay R. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res 2001; 16:1846-53. [PMID: 11585349 DOI: 10.1359/jbmr.2001.16.10.1846] [Citation(s) in RCA: 414] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We examined paired iliac crest bone biopsy specimens from patients with osteoporosis before and after treatment with daily injections of 400 U of recombinant, human parathyroid hormone 1-34 [PTH(1-34)]. Two groups of patients were studied. The first group was comprised of 8 men with an average age 49 years. They were treated with PTH for 18 months. The second group was comprised of 8 postmenopausal women with an average age 54 years. They were treated with PTH for 36 months. The women had been and were maintained on hormone replacement therapy for the duration of PTH treatment. Patients were supplemented to obtain an average daily intake of 1500 mg of elemental calcium and 100 IU of vitamin D. The biopsy specimens were subjected to routine histomorphometric analysis and microcomputed tomography (CT). Cancellous bone area was maintained in both groups. Cortical width was maintained in men and significantly increased in women. There was no increase in cortical porosity. There was a significant increase in the width of bone packets on the inner aspect of the cortex in both men and women. This was accompanied by a significant decrease in eroded perimeter on this surface in both groups. Micro-CT confirmed the foregoing changes and, in addition, revealed an increase in connectivity density, a three dimensional (3D) measure of trabecular connectivity in the majority of patients. These findings indicate that daily PTH treatment exerts anabolic action on cortical bone in patients with osteoporosis and also can improve cancellous bone microarchitecture. The results provide a structural basis for the recent demonstration that PTH treatment reduces the incidence of osteoporosis-related fractures.
Collapse
Affiliation(s)
- D W Dempster
- Regional Bone Center, Helen Hayes Hospital. New York State Department of Health, West Haverstraw 10993, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhou H, Shen V, Dempster DW, Lindsay R. Continuous parathyroid hormone and estrogen administration increases vertebral cancellous bone volume and cortical width in the estrogen-deficient rat. J Bone Miner Res 2001; 16:1300-7. [PMID: 11450706 DOI: 10.1359/jbmr.2001.16.7.1300] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Generally, it is believed that intermittent administration of parathyroid hormone (PTH) has an anabolic effect on the skeleton, whereas continuous administration is catabolic. However, there is evidence that continuous exposure to PTH may have an anabolic effect, for example, in patients with mild primary hyperparathyroidism (PHPT). The possibility of delivering PTH continuously may have important implications for the treatment of osteoporosis. Furthermore, estrogen treatment may be useful in the medical management of PHPT. Therefore, we examined the skeletal effects of continuous administration of PTH, with or without estrogen, in the estrogen-deficient rat with established osteopenia. Forty 7-month-old SD rats were divided into four ovariectomy (OVX) groups and one sham-operated group. Eight weeks post-OVX, three groups received subcutaneous implants of Alzet mini pumps loaded with PTH(1-34) (30 microg/kg per day), 17beta-estradiol (10 microg/kg per day) pellet, or both PTH and 17beta-estradiol separately for 4 weeks. OVX and sham control groups were given the mini pumps loaded with vehicle. Two doses of calcein (10 mg/kg) were given subcutaneously to all rats 2 days and 8 days before death. Histomorphometry was performed on cancellous and cortical bone of the fourth lumbar vertebra. At 3 months, post-OVX rats displayed bone loss with high bone turnover. Estrogen reversed OVX-mediated high turnover without restoring cancellous bone volume (BV/TV). PTH infusion further increased bone turnover and partially restored BV/TV. However, PTH infusion increased cortical porosity. Estrogen inhibited PTH-mediated cancellous bone resorption and substantially increased BV/TV above sham control. The combined treatment was associated with a significant increase in peritrabecular fibrosis and woven bone formation. The combined treatment of PTH infusion and estrogen replacement enhanced cortical width but estrogen did not prevent the PTH-induced cortical tunneling. We conclude that continuous administration of PTH and estrogen increases cortical porosity but has substantial beneficial effects on vertebral cancellous bone volume and cortical width in OVX rats.
Collapse
Affiliation(s)
- H Zhou
- Helen Hayes Hospital, New York State Health Department, West Haverstraw 10993-1195, USA
| | | | | | | |
Collapse
|
23
|
Mashiba T, Burr DB, Turner CH, Sato M, Cain RL, Hock JM. Effects of human parathyroid hormone (1-34), LY333334, on bone mass, remodeling, and mechanical properties of cortical bone during the first remodeling cycle in rabbits. Bone 2001; 28:538-47. [PMID: 11344054 DOI: 10.1016/s8756-3282(01)00433-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that parathyroid hormone (PTH) increases cortical bone mass and mechanical strength of female rabbits after 140 days of treatment. However, cortical porosity was also shown to increase. If cortical porosity increases prior to the change in geometry, there may be a transient decrease in cortical bone strength that could make the bone more susceptible to fracture in the early phase of treatment. The purpose of this study is to examine the effects of PTH on the remodeling dynamics and mechanical properties of cortical bone in rabbits, which exhibit haversian remodeling, during the first remodeling cycle after the initiation of treatment. Fifty 9-month-old intact female New Zealand white rabbits were randomized into five groups. A baseline control group was killed at the start of the experiment. The two PTH-treated groups were given human PTH(1-34) at 10 microg/kg daily subcutaneously for 35 (P35) or 70 (P70) days. Two respective age-matched control groups (V35, V70) were injected with vehicle. Histomorphometry of the cortical bone in the tibial midshaft showed that, although intracortical activation frequency was significantly increased by PTH at 35 days, there was no significant increase of cortical porosity in the first remodeling cycle (70 days). Moreover, stimulation of cortical surface bone formation in the treated animals led to significantly greater cortical area and greater bone strength in both P35 and P70. We conclude that, although intracortical remodeling increases within the first remodeling period (70 days) in animals treated with 10 microg/kg PTH, the greater cortical area due to acceleration of bone formation on cortical surfaces increases cortical bone strength. There is no mechanical risk during the first remodeling cycle associated with intermittent PTH treatment in animals with normal bone mass.
Collapse
Affiliation(s)
- T Mashiba
- Department of Anatomy and Cell Biology, Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
24
|
Samnegård E, Akhter MP, Recker RR. Maintenance of vertebral body bone mass and strength created by human parathyroid hormone treatment in ovariectomized rats. Bone 2001; 28:414-22. [PMID: 11336923 DOI: 10.1016/s8756-3282(01)00408-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of this cross-sectional study was to evaluate the effects of human parathyroid hormone (1-84) (hPTH) followed by maintenance administration of 17beta-estradiol (E2), risedronate (Ris), or a reduced dose of hPTH (LowPTH) on vertebral body bone mineral density (BMD) and bone strength in ovariectomized (ovx) rats. Eight groups of ovx (219 rats) and one group of intact female rats (48 rats) were left untreated for 11 weeks (age 3.5 months at the beginning). For the following 12 weeks, four ovx groups received subcutaneous injections of hPTH (75 microg/kg per day, 3 days/week) and four groups received vehicle. Treatments were then changed to: E2 (10 microg/kg per day, 2 days/week); Ris (3 microg/kg per day, 3 days/week); LowPTH (25 microg/kg per day, 3 days/week); or vehicle for 36 weeks. Bone tissue was collected at weeks -11 (baseline), 0 (ovx effect), 12 (hPTH effect), 24, 36, and 48 (maintenance effect). The endpoints were vertebral body BMD, ultimate stress (Ultstr), and moduli of elasticity from compression tests (ModM), and from ultrasound tests (ModUS). Ovariectomy resulted in lower BMD (p < 0.001). The hPTH treatment for 12 weeks restored BMD to the level of intact rats. Ultstr and ModUS followed a similar pattern, but the ovx-induced Ultstr was not significant (p = 0.073, ModUS: p = 0.003), nor was the hPTH-induced increase in ModUS (p = 0.131, Ultstr: p = 0.02). After hPTH withdrawal, BMD, Ultstr, and ModUS levels were not different from levels in ovx animals. In Ris-treated rats pretreated with hPTH, BMD (weeks 24 and 48, p < 0.002) and ModUS (week 24, p = 0.018) values were greater than in ovx animals. In LowPTH-treated rats pretreated with hPTH, BMD (weeks 24 and 48, p < 0.001) and Ultstr (week 48, p = 0.005) were greater than in ovx animals. In E(2)-treated rats pretreated with hPTH, BMD was greater than in ovx rats at week 24 (p = 0.009), but did not differ at weeks 36-48. Neither Ultstr nor ModUS in E(2)-treated rats differed significantly from ovx rats at any timepoint. Of the agents and dosing regimens used, we conclude that the hPTH-related vertebral bone mass gain in ovx rats can be maintained for up to 36 weeks with risedronate and low-dose hPTH treatment. Bone strength is maintained by treatment with low-dose hPTH, but only partially maintained with risedronate.
Collapse
Affiliation(s)
- E Samnegård
- Osteoporosis Research Center, Creighton University, Omaha, NE, USA.
| | | | | |
Collapse
|
25
|
John MR, Bösel J, Breit S, Wickert H, Ziegler R, Blind E. Changing serine-485 to alanine in the opossum parathyroid hormone (PTH)/PTH-related peptide receptor enhances PTH stimulation of phospholipase C in a stably transfected human kidney cell line: a useful model for PTH-analog screening? Bone 2001; 28:182-6. [PMID: 11182376 DOI: 10.1016/s8756-3282(00)00419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using site-directed mutagenesis, we have introduced a serine-485-to-alanine mutation in the opossum parathyroid hormone (PTH) receptor. This amino acid is considered to be phosphorylated by protein kinase A upon ligand binding. Both wild-type (WT) and mutant receptor were stably expressed in 293-EBNA HEK cells. The mutant receptor showed comparable binding characteristics and only a slight increase in cAMP production compared with WT. However, the PTH dose-dependent increase in inositol phosphate production was 24-fold for the mutant receptor vs. 6-fold for the WT receptor. This mutant might prove useful in the sensitive detection of phospholipase C activation through various ligands, as the PTH receptor becomes a target of therapeutic intervention in osteoporosis.
Collapse
Affiliation(s)
- M R John
- Department of Internal Medicine I-Endocrinology and Metabolism, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Steiniche T, Christiansen P, Vesterby A, Ullerup R, Hessov I, Mosekilde LE, Melsen F. Primary hyperparathyroidism: bone structure, balance, and remodeling before and 3 years after surgical treatment. Bone 2000; 26:535-43. [PMID: 10773596 DOI: 10.1016/s8756-3282(00)00260-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In 19 patients with primary hyperparathyroidism (PHPT) (14 women and 5 men; age 53 +/- 11 years, range 29-69 years), bone densitometry, biochemical markers of bone turnover, and iliac crest bone biopsies were obtained before and 3 years after successful surgical treatment. A significant increase in bone mineral content (BMC) was observed in both the lumbar spine (p < 0.001) and the proximal part of the distal forearm (p < 0.001), whereas the increase in BMC in the femoral neck was insignificant. Biochemical markers of bone formation (serum alkaline phosphatase, serum bone alkaline phosphatase and serum osteocalcin) and resorption (serum pyridinoline cross-linked telopeptide of type I collagen and urine N-telopeptide of type I collagen) all decreased following treatment. In cortical bone, relative cortical width increased following surgery (p < 0.05) and cortical porosity decreased (p < 0.01). No changes were observed in core width or cortical width. In cancellous bone, no significant changes were observed in any of the measured structural parameters. However, significant reductions in the extent of osteoid- (p < 0.01) and tetracycline-labeled surfaces (p < 0.001), and in bone formation rate (p < 0.001) and activation frequency (p < 0.001), were found. The numerical decrease in the extent of eroded surfaces did not reach significance (p = 0.057). No changes were observed in mineral appositional rate and adjusted appositional rate. The amount of bone resorbed (expressed as the resorption depth) and the amount of bone reformed (expressed as wall thickness) per remodeling cycle seemed unaffected by the treatment. Consequently, no effect on bone balance per remodeling cycle could be detected. The present study of PHPT patients showed that, within 3 years after surgery, BMC of both cancellous and cortical bone areas had increased. At the same time, bone turnover decreased markedly, as judged from biochemical as well as histomorphometric data, but no changes were seen in trabecular bone structure. In cortical bone, the relative cortical width increased and the cortical porosity decreased.
Collapse
Affiliation(s)
- T Steiniche
- University Institute of Pathology, Aarhus Kommunehospital, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
27
|
Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res 1999; 14:960-8. [PMID: 10352105 DOI: 10.1359/jbmr.1999.14.6.960] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The influence of intermittent parathyroid hormone (PTH(1-34)) administration on callus formation and mechanical strength of tibial fractures in rats was investigated after 20 and 40 days of healing. A dose of 60 microg of PTH(1-34)/kg/day and 200 microg of PTH(1-34)/kg/day, respectively, was administered during the entire periods of healing, and control animals with fractures were given vehicle. The dose of 200 microg of PTH(1-34)/kg/day increased the ultimate load and the external callus volume of the fractures by 75% and 99%, respectively, after 20 days of healing and by 175% and 72%, respectively, after 40 days of healing. The dose of 60 microg of PTH(1-34)/kg/day did not influence either ultimate load or external callus volume of the fractures after 20 days of healing, but the ultimate load was increased by 132% and the external callus volume was increased by 42% after 40 days of healing. During the healing period, the callus bone mineral content (BMC) increased in all groups. After 40 days of healing, the callus BMC was increased by 108% in the 200 microg of PTH(1-34)/kg/day group and by 76% in the 60 microg of PTH(1-34)/kg/day group. Both doses of PTH(1-34) steadily augmented the contralateral intact tibia BMC (20 days and 40 days: 60 microg of PTH (1-34)/kg/day 9% and 19%, respectively; 200 microg of PTH (1-34)/kg/day 12% and 27%, respectively) and bone mineral density (20 days and 40 days: 60 microg of PTH(1-34)/kg/day 11% and 12%, respectively; 200 microg of PTH(1-34)/kg/day 11% and 15%, respectively).
Collapse
Affiliation(s)
- T T Andreassen
- Department of Connective Tissue Biology, Institute of Anatomy, University of Aarhus, Aarhus, Denmark
| | | | | |
Collapse
|