1
|
Wang Y, Ma J, Du Y, Miao J, Chen N. Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling. Mol Cells 2016; 39:186-94. [PMID: 26743906 PMCID: PMC4794600 DOI: 10.14348/molcells.2016.2159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs signicantly promoted the proliferation and osteoblastic differentiation of H2O2-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.
Collapse
Affiliation(s)
- Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Junchi Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Jing Miao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| |
Collapse
|
2
|
Human Amnion-Derived Mesenchymal Stem Cells Promote Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells by Influencing the ERK1/2 Signaling Pathway. Stem Cells Int 2015; 2016:4851081. [PMID: 26697075 PMCID: PMC4677248 DOI: 10.1155/2016/4851081] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/12/2022] Open
Abstract
Human amnion-derived mesenchymal stem cells (HAMSCs) are considered to be an important resource in the field of tissue engineering because of their anti-inflammatory properties and fewer ethical issues associated with their use compared with other sources of stem cells. HAMSCs can be obtained from human amniotic membranes, a readily available and abundant tissue. However, the potential of HAMSCs as seed cells for treating bone deficiency is unknown. In this study, HAMSCs were used to promote proliferation and osteoblastic differentiation in human bone marrow mesenchymal stem cells (HBMSCs) in a Transwell coculture system. Proliferation levels were investigated by flow cytometry and immunofluorescence staining of 5-ethynyl-2′-deoxyuridine (EdU). Osteoblastic differentiation and mineralization were evaluated in chromogenic alkaline phosphatase (ALP) activity substrate assays, Alizarin red S staining, and RT-PCR analysis of early HBMSCs osteogenic marker expression. We demonstrated that HAMSCs stimulated increased alkaline phosphatase (ALP) activity, mRNA expression of osteogenic marker genes, and mineralized matrix deposition. Moreover, the effect of HAMSCs was significantly inhibited by U0126, a highly selective inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2) signaling. We demonstrate that HAMSCs promote osteogenic differentiation in HBMSCs by influencing the ERK1/2 signaling pathway. These observations confirm the potential of HAMSCs as a seed cell for the treatment of bone deficiency.
Collapse
|
3
|
Wang Y, Yin Y, Jiang F, Chen N. Human amnion mesenchymal stem cells promote proliferation and osteogenic differentiation in human bone marrow mesenchymal stem cells. J Mol Histol 2014; 46:13-20. [PMID: 25432786 DOI: 10.1007/s10735-014-9600-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/18/2014] [Indexed: 11/30/2022]
Abstract
Human amnion mesenchymal stem cells (HAMSCs) can be obtained from human amniotic membrane, a highly abundant and readily available tissue. HAMSC sources present fewer ethical issues, have low immunogenicity, anti-inflammatory properties, considerable advantageous characteristics, and are considered an attractive potential treatment material in the field of regenerative medicine. We used a co-culture system to determine whether HAMSCs could promote osteogenesis in human bone marrow mesenchymal stem cells (HBMSCs). We isolated HAMSCs from discarded amnion samples and collected them using pancreatin/collagenase digestion. We cultured HAMSCs and HBMSCSs in basal medium. Activity of alkaline phosphatase (ALP), an early osteogenesis marker, was increased in the co-culture system compared to the control single cultures, which we also confirmed by ALP staining. We used immunofluorescence testing to investigate the effects of co-culturing with HAMSCs on HBMSC proliferation, which revealed that the co-culturing enhanced EdU expression in HBMSCs. Western blotting and quantitative real-time PCR indicated that co-culturing promoted osteogenesis in HBMSCs. Furthermore, Alizarin red S staining revealed that extracellular matrix calcium levels in mineralized nodule formation produced by the co-cultures were higher than that in the controls. Using the same co-culture system, we further observed the effects of HAMSCs on osteogenic differentiation in primary osteoblasts by Western blotting, which better addressed the mechanism for HAMSCs in bone regeneration. The results showed HAMSCs are osteogenic and not only play a role in promoting HBMSC proliferation and osteogenic differentiation but also in osteoblasts, laying the foundation for new regenerative medicine methods.
Collapse
Affiliation(s)
- Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | | | | | | |
Collapse
|
4
|
Gittens RA, Olivares-Navarrete R, Hyzy SL, Sandhage KH, Schwartz Z, Boyan BD. Superposition of nanostructures on microrough titanium-aluminum-vanadium alloy surfaces results in an altered integrin expression profile in osteoblasts. Connect Tissue Res 2014; 55 Suppl 1:164-8. [PMID: 25158204 PMCID: PMC4287400 DOI: 10.3109/03008207.2014.923881] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies of new surface modifications that superimpose well-defined nanostructures on microrough implants, thereby mimicking the hierarchical complexity of native bone, report synergistically enhanced osteoblast maturation and local factor production at the protein level compared to growth on surfaces that are smooth, nanorough, or microrough. Whether the complex micro/nanorough surfaces enhance the osteogenic response by triggering similar patterns of integrin receptors and their associated signaling pathways as with well-established microrough surfaces, is not well understood. Human osteoblasts (hOBs) were cultured until confluent for gene expression studies on tissue culture polystyrene (TCPS) or on titanium alloy (Ti6Al4V) disks with different surface topographies: smooth, nanorough, microrough, and micro/nanorough surfaces. mRNA expression of osteogenesis-related markers such as osteocalcin (BGLAP) and bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2), BMP4, noggin (NOG) and gremlin 1 (GREM1) were all higher on microrough and micro/nanorough surfaces, with few differences between them, compared to smooth and nanorough groups. Interestingly, expression of integrins α1 and α2, which interact primarily with collagens and laminin and have been commonly associated with osteoblast differentiation on microrough Ti and Ti6Al4V, were expressed at lower levels on micro/nanorough surfaces compared to microrough ones. Conversely, the αv subunit, which binds ligands such as vitronectin, osteopontin, and bone sialoprotein among others, had higher expression on micro/nanorough surfaces concomitantly with regulation of the β3 mRNA levels on nanomodified surfaces. These results suggest that the maturation of osteoblasts on micro/nanorough surfaces may be occurring through different integrin engagement than those established for microrough-only surfaces.
Collapse
Affiliation(s)
- Rolando A. Gittens
- Center for Biodiversity and Drug Discovery, Institute for Scientific Research and High Technology Services (INDICASAT-AIP), Panama, Republic of Panama,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Sharon L. Hyzy
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenneth H. Sandhage
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA,Department of Periodontics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Barbara D. Boyan
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA,Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA, USA,Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
5
|
He X, Liu Y, Yuan X, Lu L. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PLoS One 2014; 9:e104061. [PMID: 25084008 PMCID: PMC4118996 DOI: 10.1371/journal.pone.0104061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
In this study, we designed a chitosan/alginate/hydroxyapatite scaffold as a carrier for recombinant BMP-2 (CAH/B2), and evaluated the release kinetics of BMP-2. We evaluated the effect of the CAH/B2 scaffold on the viability and differentiation of bone marrow mesenchymal stem cells (MSCs) by scanning electron microscopy, MTS, ALP assay, alizarin-red staining and qRT-PCR. Moreover, MSCs were seeded on scaffolds and used in a 8 mm rat calvarial defect model. New bone formation was assessed by radiology, hematoxylin and eosin staining 12 weeks postoperatively. We found the release kinetics of BMP-2 from the CAH/B2 scaffold were delayed compared with those from collagen gel, which is widely used for BMP-2 delivery. The BMP-2 released from the scaffold increased MSC differentiation and did not show any cytotoxicity. MSCs exhibited greater ALP activity as well as stronger calcium mineral deposition, and the bone-related markers Col1α, osteopontin, and osteocalcin were upregulated. Analysis of in vivo bone formation showed that the CAH/B2 scaffold induced more bone formation than other groups. This study demonstrates that CAH/B2 scaffolds might be useful for delivering osteogenic BMP-2 protein and present a promising bone regeneration strategy.
Collapse
Affiliation(s)
- Xiaoning He
- Department of Stomatology, the 4th Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Oral Biology, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yang Liu
- Department of Stomatology, the 4th Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Yuan
- Department of Oral Biology, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Li Lu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Ho Y, Kok SH, Wang JS, Lin LD. Translucent titanium coating altered the composition of focal adhesions and promoted migration of osteoblast-like MG-63 cells on glass. J Biomed Mater Res A 2013; 102:1187-201. [DOI: 10.1002/jbm.a.34760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/02/2013] [Accepted: 04/17/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Yi Ho
- Graduate Institute of Clinical Dentistry, School of Dentistry; National Taiwan University; Taipei Taiwan
| | - Sang-Heng Kok
- Department of Dentistry, School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; Taipei Taiwan
| | - Juo-Song Wang
- Department of Dentistry, School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; Taipei Taiwan
| | - Li-Deh Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry, School of Dentistry; National Taiwan University; Taipei Taiwan
- Department of Dentistry; National Taiwan University Hospital; Taipei Taiwan
| |
Collapse
|
7
|
He X, Dziak R, Mao K, Genco R, Swihart M, Swithart M, Li C, Yang S. Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration. Tissue Eng Part A 2012; 19:508-18. [PMID: 22994418 DOI: 10.1089/ten.tea.2012.0244] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The repair of craniofacial bone defects is surgically challenging due to the complex anatomical structure of the craniofacial skeleton. Current strategies for bone tissue engineering using a preformed scaffold have not resulted in the expected clinical regeneration due to difficulty in seeding cells into the deep internal space of scaffold, and the inability to inject them in minimally invasive surgeries. In this study, we used the osteoconductive and mechanical properties of nano-scale calcium sulfate (nCS) and the biocompatibility of alginate to develop the injectable nCS/alginate (nCS/A) paste, and characterized the effect of this nCS/A paste loaded with bone morphogenetic protein 2 (BMP2) gene-modified rat mesenchymal stem cells (MSCs) on bone and blood vessel growth. Our results showed that the nCS/A paste was injectable under small injection forces. The mechanical properties of the nCS/A paste were increased with an increased proportion of alginate. MSCs maintained their viability after the injection, and MSCs and BMP2 gene-modified MSCs in the injectable pastes remained viable, osteodifferentiated, and yielded high alkaline phosphatase activity. By testing the ability of this injectable paste and BMP2-gene-modified MSCs for the repair of critical-sized calvarial bone defects in a rat model, we found that BMP2-gene-modified MSCs in nCS/A (nCS/A+M/B2) showed robust osteogenic activity, which resulted in consistent bone bridging of the bone defects. The vessel density in nCS/A+M/B2 was significantly higher than that in the groups of blank control, nCS/A alone, and nCS/A mixed with MSCs (nCS/A+M). These results indicate that BMP2 promotes MSCs-mediated bone formation and vascularization in nCS/A paste. Overall, the results demonstrated that the combination of injectable nCS/A paste and BMP2-gene-modified MSCs is a new and effective strategy for the repair of bone defects.
Collapse
Affiliation(s)
- Xiaoning He
- Department of Oral Biology, The State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang W, Olson D, Liang G, Franceschi RT, Li C, Wang B, Wang SS, Yang S. Collagen XXIV (Col24α1) promotes osteoblastic differentiation and mineralization through TGF-β/Smads signaling pathway. Int J Biol Sci 2012; 8:1310-22. [PMID: 23139630 PMCID: PMC3492790 DOI: 10.7150/ijbs.5136] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022] Open
Abstract
Collagen XXIV (Col24α1) is a recently discovered fibrillar collagen. It is known that mouse Col24α1 is predominantly expressed in the forming skeleton of the mouse embryo, as well as in the trabecular bone and periosteum of the newborn mouse. However, the role and mechanism of Col24α1 in osteoblast differentiation and mineralization remains unclear. By analyzing the expression pattern of Col24α1, we confirmed that it is primarily expressed in bone tissues, and this expression gradually increased concomitant with the progression of osteoblast differentiation. Through the use of a lentivirus vector-mediated interference system, silencing Col24α1 expression in MC3T3-E1 murine preosteoblastic cells resulted in significant inhibition of alkaline phosphatase (ALP) activity, cell mineralization, and the expression of osteoblast marker genes such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN), ALP, and type I collagen (Col I). Subsequent overexpression not only rescued the deficiency in osteoblast differentiation from Col24α1 silenced cells, but also enhanced osteoblastic differentiation in control cells. We further revealed that Col24α1 interacts with integrin β3, and silencing Col24α1 up-regulated the expression of Smad7 during osteoblast differentiation while at the same time inhibiting the phosphorylation of the Smad2/3 complex. These results suggest that Col24α1 imparts some of its regulatory control on osteoblast differentiation and mineralization at least partially through interaction with integrin β3 and the transforming growth factor beta (TGF-β) /Smads signaling pathway.
Collapse
Affiliation(s)
- Weizhuo Wang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Yang S, Wang C. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis. Bone 2012; 51:407-17. [PMID: 22771375 PMCID: PMC3412883 DOI: 10.1016/j.bone.2012.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/20/2012] [Accepted: 06/23/2012] [Indexed: 12/21/2022]
Abstract
Intraflagellar transport (IFT) proteins are essential for the assembly and maintenance of cilia, which play important roles in development and homeostasis. IFT80 is a newly defined IFT protein. Partial mutation of IFT80 in humans causes diseases such as Jeune asphyxiating thoracic dystrophy (JATD) and short rib polydactyly (SRP) type III with abnormal skeletal development. However, the role and mechanism of IFT80 in osteogenesis is unknown. Here, we first detected IFT80 expression pattern and found that IFT80 was highly expressed in mouse long bone, skull, and during osteoblast differentiation. By using lentivirus-mediated RNA interference (RNAi) technology to silence IFT80 in murine mesenchymal progenitor cell line-C3H10T1/2 and bone marrow derived stromal cells, we found that silencing IFT80 led to either shortening or loss of cilia and the decrease of Arl13b expression - a small GTPase that is localized in cilia. Additionally, silencing IFT80 blocked the expression of osteoblast markers and significantly inhibited ALP activity and cell mineralization. We further found that IFT80 silencing inhibited the expression of Gli2, a critical transcriptional factor in the hedgehog signaling pathway. Overexpression of Gli2 rescued the deficiency of osteoblast differentiation from IFT80-silenced cells, and dramatically promoted osteoblast differentiation. Moreover, introduction of Smo agonist (SAG) promotes osteoblast differentiation, which was partially inhibited by IFT80 silencing. Thus, these results suggested that IFT80 plays an important role in osteogenesis through regulating Hedgehog/Gli signal pathways.
Collapse
Affiliation(s)
- Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, 14214, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, The State University of New York, Buffalo, NY, 14203, USA
- Address correspondence to: Dr. Shuying Yang, MD, PhD, Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, 14214, USA. Tel: 716-829-6338, Fax: 716-829-3942, . Changdong Wang, Ph.D, Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, 14214, USA. Tel: 716-829-2426, Fax: 716-829-3942,
| | - Changdong Wang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, 14214, USA
| |
Collapse
|
10
|
Wang W, Li F, Wang K, Cheng B, Guo X. PAPSS2 promotes alkaline phosphates activity and mineralization of osteoblastic MC3T3-E1 cells by crosstalk and Smads signal pathways. PLoS One 2012; 7:e43475. [PMID: 22916269 PMCID: PMC3420899 DOI: 10.1371/journal.pone.0043475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/20/2012] [Indexed: 12/17/2022] Open
Abstract
Several studies have indicated that PAPSS2 (3'-phosphoadenosine-5'-phosphosulfate synthetase 2) activity is important to normal skeletal development. Mouse PAPSS2 is predominantly expressed during the formation of the skeleton and cartilaginous elements of the mouse embryo and in newborn mice. However, the role and mechanism of PAPSS2 in bone formation remains largely unidentified. By analyzing the expression pattern of the PAPSS2 gene, we have found that PAPSS2 is expressed in bone tissue and bone formation. PAPSS2 transcripts increase during osteoblast differentiation and are in less level in RANKL-induced osteoclast like cells. By using lentivirus-mediated RNA interference (RNAi) technology, we knocked down PAPSS2 expression in MC3T3-E1 osteoblast. Silencing of PAPSS2 expression significantly decreases ALP activity and cell mineralization, inhibits expression of osteoblast marker osteopontin (OPN) and collagen I. Conversely, overexpression of PAPSS2 promotes the MC3T3-E1 to differentiate into osteoblast and mineralization. Moreover, compared to that in the control cells, the mRNA level and protein expression of phosphorylated Smad 2/3, which is a key transcriptional factor in the Smad osteoblast differentiation pathway, showed significant decreases in PAPSS2-silenced cells and increases in PAPSS2-overexpression cells. These results suggest that PAPSS2 might regulate osteoblast ALP activity and cell mineralization, probably through Smads signal pathways.
Collapse
Affiliation(s)
- Weizhuo Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| | | | | | | | | |
Collapse
|
11
|
Xu JK, Chen HJ, Li XD, Huang ZL, Xu H, Yang HL, Hu J. Optimal intensity shock wave promotes the adhesion and migration of rat osteoblasts via integrin β1-mediated expression of phosphorylated focal adhesion kinase. J Biol Chem 2012; 287:26200-12. [PMID: 22654119 PMCID: PMC3406705 DOI: 10.1074/jbc.m112.349811] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/15/2012] [Indexed: 02/05/2023] Open
Abstract
To search for factors promoting bone fracture repair, we investigated the effects of extracorporeal shock wave (ESW) on the adhesion, spreading, and migration of osteoblasts and its specific underlying cellular mechanisms. After a single period of stimulation by 10 kV (500 impulses) of shock wave (SW), the adhesion rate was increased as compared with the vehicle control. The data from both wound healing and transwell tests confirmed an acceleration in the migration of osteoblasts by SW treatment. RT-PCR, flow cytometry, and Western blotting showed that SW rapidly increased the surface expression of α5 and β1 subunit integrins, indicating that integrin β1 acted as an early signal for ESW-induced osteoblast adhesion and migration. It has also been found that a significant elevation occurred in the expression of phosphorylated β-catenin and focal adhesion kinase (FAK) at the site of tyrosine 397 in response to SW stimulation after the increasing expression of the integrin β1 molecule. When siRNAs of integrin α5 and β1 subunit were added, the level of FAK phosphorylation elevated by SW declined. Interestingly, the adhesion and migration of osteoblasts were decreased when these siRNA reagents as well as the ERK1/2 signaling pathway inhibitors, U0126 and PD98059, were present. Further studies demonstrated that U0126 could inhibit the downstream integrin-dependent signaling pathways, such as the FAK signaling pathway, whereas it had no influence on the synthesis of integrin β1 molecule. In conclusion, these data suggest that ESW promotes the adhesion and migration of osteoblasts via integrin β1-mediated expression of phosphorylated FAK at the Tyr-397 site; in addition, ERK1/2 are also important for osteoblast adhesion, spreading, migration, and integrin expression.
Collapse
Affiliation(s)
- Jian-kun Xu
- From the Department of Orthopedics, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Hong-jiang Chen
- From the Department of Orthopedics, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Xue-dong Li
- From the Department of Orthopedics, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Zhong-lian Huang
- From the Department of Orthopedics, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Huan Xu
- From the Department of Orthopedics, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Hai-long Yang
- From the Department of Orthopedics, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
| | - Jun Hu
- From the Department of Orthopedics, First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, China
- To whom correspondence should be addressed. Tel.: 86-754-88905206; Fax: 86-754-88259850; E-mail:
| |
Collapse
|
12
|
Wang W, Olson D, Cheng B, Guo X, Wang K. Sanguis Draconis resin stimulates osteoblast alkaline phosphatase activity and mineralization in MC3T3-E1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:168-174. [PMID: 22543168 DOI: 10.1016/j.jep.2012.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/19/2012] [Accepted: 04/10/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanguis Draconis (SD), "Dragon's Blood", is a resin that is obtained from Daemonorops draco (Palmae). Used in traditional medicine, it has shown activity in the prevention of osteoporosis as well as promoting the healing of bone fractures. MATERIALS AND METHODS In this study, the effects of Sanguis Dranonis ethanol extract on β-glycerolphosphate and ascorbic acid induced differentiation using mouse calvaria origin MC3T3-E1 osteoblastic cells was examined. We looked at osteoblast differentiation, proliferation, and mineralization by measuring alkaline phosphatase (ALP) and specific bone marker activities. Osteoblast-like MC3T3-E1 cells were cultured in various concentrations of SD ethanol extract (0.005-1mg/mL) during the osteoblast differentiation period (1, 5, 15, and 25 days). RESULTS As measured by 3-[4,5-dimethylthiazol-2-y]-2,5-diphenyltetrazolium bromide assay, SD extracts increased cell proliferation as compared to control. The most pronounced effect was observed at the concentration range between 0.01 and 0.1 mg/mL (P<0.01). This SD stimulatory effect for cell proliferation was observed during the whole osteogenic period. Cellular (synthesized) ALP activity was increased during 15 days of culture, and was confirmed by the staining of ALP activity on cell matrix layers for matrix calcification. SD stimulatory effect for cell mineralization we observed in 14 and 21 days. Elevated mRNA or protein levels of bone morphogenetic protein-2(BMP 2), the differentiation marker osteocalcin, osteopontin, collgen I, and a master osteogenic transcription factor, Runx2, were observed in SD-treated cells. CONCLUSIONS These results suggest that SD may increase osteogenic effect by stimulating cell ALP activity and affect the BMP signaling pathway cascades in osteoblastic cells, then promotes osteoblast differentiation, mineralization, and bone formation.
Collapse
Affiliation(s)
- Weizhuo Wang
- Department of Orthopedics Surgery, the Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | | | | | | | | |
Collapse
|
13
|
Kokkinos PA, Koutsoukos PG, Deligianni DD. Detachment strength of human osteoblasts cultured on hydroxyapatite with various surface roughness. Contribution of integrin subunits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1489-1498. [PMID: 22484862 DOI: 10.1007/s10856-012-4628-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/19/2012] [Indexed: 05/31/2023]
Abstract
Hydroxyapatite (HA) has been widely used as a bone substitute in dental, maxillofacial and orthopaedic surgery and as osteoconductive bone substitute or precoating of pedicle screws and cages in spine surgery. The aim of the present study was to investigate the osteoblastic adhesion strength on HA substrata with different surface topography and biochemistry (pre-adsorption of fibronectin) after blocking of specific integrin subunits with monoclonal antibodies. Stoichiometric HA was prepared by precipitation followed by ageing and characterized by SEM, EDX, powder XRD, Raman spectroscopy, TGA, and specific surface area analysis. Human bone marrow derived osteoblasts were cultured on HA disc-shaped substrata which were sintered and polished resulting in two surface roughness grades. For attachment evaluation, cells were incubated with monoclonal antibodies and seeded for 2 h on the substrata. Cell detachment strength was determined using a rotating disc device. Cell detachment strength was surface roughness, fibronectin preadsorption and intergin subunit sensitive.
Collapse
Affiliation(s)
- Petros A Kokkinos
- Department of Mechanical Engineering and Aeronautics, University of Patras, Rion, Patras, Greece
| | | | | |
Collapse
|
14
|
Schneider GB, Zaharias R, Seabold D, Stanford C. Integrin-associated tyrosine kinase FAK affects Cbfa1 expression. J Orthop Res 2011; 29:1443-7. [PMID: 21412826 DOI: 10.1002/jor.21382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 01/18/2011] [Indexed: 02/04/2023]
Abstract
Following cell adhesion, focal adhesion kinase (FAK) autophosphorylates on tyrosine and regulates intracellular signaling cascades that regulate cell growth and differentiation. The hypothesis of this study was FAK mediates osteoblast differentiation dependent Cbfa1 expression. Slowly mineralizing UI and rapidly mineralizing UMR-106-01 BSP osteoblasts formed focal adhesions; however, the level of FAK in UI focal adhesions was less than that seen in BSP cells. UI cultures had less FAK expression (p < 0.05) along with elevated levels of FAK phosphotyrosine in comparison to rapidly mineralizing BSP cultures. Mineralization decreased in a dose-dependent manner in response to Herbimycin A, a tyrosine kinase inhibitor. Overexpression of FAK in UI cells led to a fourfold increase in Cbfa1 gene expression (p < 0.02), and an increase in Cbfa1 protein expression. These results suggest that the integrin-associated tyrosine kinase FAK contributes to the regulation of the osteoblast differentiation in part through the regulation of Cbfa1 expression.
Collapse
Affiliation(s)
- Galen B Schneider
- Department of Prosthodontics, University of Iowa College of Dentistry, The University of Iowa, Iowa City, Iowa 52242-1001, USA.
| | | | | | | |
Collapse
|
15
|
Park SJ, Bae SB, Kim SK, Eom TG, Song SI. Effect of implant surface microtopography by hydroxyapatite grit-blasting on adhesion, proliferation, and differentiation of osteoblast-like cell line, MG-63. J Korean Assoc Oral Maxillofac Surg 2011. [DOI: 10.5125/jkaoms.2011.37.3.214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Sung-Jae Park
- Department of Dentistry, School of Medicine, Ajou University, Suwon, Korea
| | - Sang-Bum Bae
- Department of Dentistry, School of Medicine, Ajou University, Suwon, Korea
| | - Su-Kyoung Kim
- Department of Implant Research, Implant R&D Center, Osstem Co., Ltd., Busan, Korea
| | - Tae-Gwan Eom
- Department of Implant Research, Implant R&D Center, Osstem Co., Ltd., Busan, Korea
| | - Seung-Il Song
- Department of Dentistry, School of Medicine, Ajou University, Suwon, Korea
| |
Collapse
|
16
|
Chang SF, Chang TK, Peng HH, Yeh YT, Lee DY, Yeh CR, Zhou J, Cheng CK, Chang CA, Chiu JJ. BMP-4 induction of arrest and differentiation of osteoblast-like cells via p21 CIP1 and p27 KIP1 regulation. Mol Endocrinol 2009; 23:1827-38. [PMID: 19819988 DOI: 10.1210/me.2009-0143] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell cycle regulation by differentiation signals is critical for eukaryote development. We investigated the roles of bone morphogenetic protein (BMP)-4, an important stimulator of osteoblast differentiation and bone formation, in regulating cell cycle distribution in four osteoblast-like cell lines and mouse primary osteoblasts, and the underlying mechanisms. In all cells used, BMP-4 induced G(0)/G(1) arrest. The molecular basis of the BMP-4 effect was analyzed, and the presentation on molecular mechanism is focused on human MG63 cells. BMP-4 induced p21(CIP1) and p27(KIP1) expressions and hence cell differentiation but had no effects on the expressions of cyclins A, B1, D1, and E, cyclin-dependent protein kinase-2, -4, and -6. Using specific small interfering RNA (siRNA), we found that BMP-4-induced G(0)/G(1) arrest, and p21(CIP1) and p27(KIP1) expressions were mediated by BMP receptor type IA (BMPRIA)-specific Sma- and Mad-related protein (Smad)1/5. BMP-4 induced transient phosphorylations of ERK; transfection of MG63 cells with ERK2, but not ERK1, -specific siRNA inhibited the BMP-4-induced responses in MG63 cells. Pretreatment of MG63 cells with Arg-Gly-Asp-Ser, which blocks the cell-extracellular matrix interaction, or transfection with beta(3) integrin-specific siRNA inhibited BMP-4-induced ERK and Smad1/5 phosphorylations. BMP-4 induced transient increases in associations of beta(3)-integrin with focal adhesion kinase and Shc, the dominant-negative mutants of which inhibited BMP-4-induced ERK and Smad1/5 phosphorylations. Our results indicate that BMP-4 induces G(0)/G(1) arrest and hence differentiation in osteoblast-like cells through increased expressions of p21(CIP1) and p27(KIP1), which are mediated by BMPRIA-specific Smad1/5. The extracellular matrix/beta(3) integrin/ focal adhesion kinase/Shc/ERK2 signaling pathway is involved in these BMP-4-induced responses in osteoblast-like cells.
Collapse
Affiliation(s)
- Shun-Fu Chang
- Division of Medical Engineering Research, National Chiao Tung University, Hsinchu 30010, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mikelis C, Sfaelou E, Koutsioumpa M, Kieffer N, Papadimitriou E. Integrin alpha(v)beta(3) is a pleiotrophin receptor required for pleiotrophin-induced endothelial cell migration through receptor protein tyrosine phosphatase beta/zeta. FASEB J 2009; 23:1459-69. [PMID: 19141530 DOI: 10.1096/fj.08-117564] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that the angiogenic growth factor pleiotrophin (PTN) induces migration of endothelial cells through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTPbeta/zeta). In this study, we show that a monoclonal antibody against alpha(nu)beta(3) but not alpha(5)beta(1) integrin abolished PTN-induced human endothelial cell migration in a concentration-dependent manner. Integrin alpha(nu)beta(3) was found to directly interact with PTN in an RGD-independent manner, whereas a synthetic peptide corresponding to the specificity loop of the beta(3) integrin extracellular domain ((177)CYDMKTTC(184)) inhibited PTN-alpha(nu)beta(3) interaction and totally abolished PTN-induced endothelial cell migration. Interestingly, alpha(nu)beta(3) was also found to directly interact with RPTPbeta/zeta, and PTN-induced Y773 phosphorylation of beta(3) integrin was dependent on both RPTPbeta/zeta and the downstream c-src kinase activation. Midkine was found to interact with RPTPbeta/zeta, but not with alpha(nu)beta(3), and caused a small but statistically significant decrease in cell migration. In the same line, PTN decreased migration of different glioma cell lines that express RPTPbeta/zeta but do not express alpha(nu)beta(3), while it stimulated migration of U87MG cells that express alpha(nu)beta(3) on their cell membrane. Overexpression or down-regulation of beta(3) stimulated or abolished, respectively, the effect of PTN on cell migration. Collectively, these data suggest that alpha(nu)beta(3) is a key molecule that determines the stimulatory or inhibitory effect of PTN on cell migration.
Collapse
Affiliation(s)
- Constantinos Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, GR 26504, Greece
| | | | | | | | | |
Collapse
|
18
|
Boehrs J, Zaharias RS, Laffoon J, Ko YJ, Schneider GB. Three-Dimensional Culture Environments Enhance Osteoblast Differentiation. J Prosthodont 2008; 17:517-21. [DOI: 10.1111/j.1532-849x.2008.00330.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
19
|
Siebers MC, Walboomers XF, van den Dolder J, Leeuwenburgh SCG, Wolke JGC, Jansen JA. The behavior of osteoblast-like cells on various substrates with functional blocking of integrin-beta1 and integrin-beta3. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:861-8. [PMID: 17665129 PMCID: PMC2233710 DOI: 10.1007/s10856-007-0166-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 02/08/2007] [Indexed: 05/16/2023]
Abstract
This study was designed to examine the influence of integrin subunit-beta1 and subunit-beta3 on the behavior of primary osteoblast-like cells, cultured on calcium phosphate (CaP)-coated and non coated titanium (Ti). Osteoblast-like cells were incubated with specific monoclonal antibodies against integrin-beta1 and integrin-beta3 to block the integrin function. Subsequently, cells were seeded on Ti discs, either non coated or provided with a 2 microm carbonated hydroxyapatite coating using Electrostatic Spray Deposition. Results showed that on CaP coatings, cellular attachment was decreased after a pre-treatment with either anti-integrin-beta1 or anti-integrin-beta3 antibodies. On Ti, cell adhesion was only slightly affected after a pre-treatment with anti-integrin-beta3 antibodies. Scanning electron microscopy showed that on both types of substrate, cellular morphology was not changed after a pre-treatment with either antibody. With quantitative PCR, it was shown for both substrates that mRNA expression of integrin-beta1 was increased after a pre-treatment with either anti-integrin-beta1 or anti-integrin-beta3 antibodies. Furthermore, after a pre-treatment with either antibody, mRNA expression of integrin-beta3 and ALP was decreased, on both types of substrate. In conclusion, osteoblast-like cells have the ability to compensate to great extent for the blocking strategy as applied here. Still, integrin-beta1 and beta3 seem to play different roles in attachment, proliferation, and differentiation of osteoblast-like cells, and responses on CaP-coated substrates differ to non coated Ti. Furthermore, the influence on ALP expression suggests involvement of both integrin subunits in signal transduction for cellular differentiation.
Collapse
Affiliation(s)
- M. C. Siebers
- Department of Periodontology and Biomaterials, College of Dental Science 309, Radboud University Nijmegen Medical Centre, Nijmegen, PO Box 9101, 6500 HB The Netherlands
| | - X. F. Walboomers
- Department of Periodontology and Biomaterials, College of Dental Science 309, Radboud University Nijmegen Medical Centre, Nijmegen, PO Box 9101, 6500 HB The Netherlands
| | - J. van den Dolder
- Department of Periodontology and Biomaterials, College of Dental Science 309, Radboud University Nijmegen Medical Centre, Nijmegen, PO Box 9101, 6500 HB The Netherlands
| | - S. C. G. Leeuwenburgh
- Department of Periodontology and Biomaterials, College of Dental Science 309, Radboud University Nijmegen Medical Centre, Nijmegen, PO Box 9101, 6500 HB The Netherlands
| | - J. G. C. Wolke
- Department of Periodontology and Biomaterials, College of Dental Science 309, Radboud University Nijmegen Medical Centre, Nijmegen, PO Box 9101, 6500 HB The Netherlands
| | - J. A. Jansen
- Department of Periodontology and Biomaterials, College of Dental Science 309, Radboud University Nijmegen Medical Centre, Nijmegen, PO Box 9101, 6500 HB The Netherlands
| |
Collapse
|
20
|
Moradian-Oldak J, Wen HB, Schneider GB, Stanford CM. Tissue engineering strategies for the future generation of dental implants. Periodontol 2000 2006; 41:157-76. [PMID: 16686932 DOI: 10.1111/j.1600-0757.2006.00153.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Janet Moradian-Oldak
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
21
|
Masaki C, Schneider GB, Zaharias R, Seabold D, Stanford C. Effects of implant surface microtopography on osteoblast gene expression. Clin Oral Implants Res 2005; 16:650-6. [PMID: 16307571 DOI: 10.1111/j.1600-0501.2005.01170.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The promotion of osteoblast attachment and differentiation has been evaluated on various implant surfaces. However, the effects of different implant surface properties on gene expression of key osteogenic factors are not fully understood. OBJECTIVE The objectives of this study were to evaluate how topographical effects on titanium surface alter the expression of bone-related genes and transcription factors. METHODS Osteoblasts were cultured on titanium disks prepared with a titanium dioxide grit blasting (TiOBlast) or grit blasted and etched with hydrofluoric acid (Osseospeed), grit blasted and etched (SLA-1), or grit blasted, etched and rinsed with N2 protection and stored in isotonic NaCl (SLA-2) commercially pure titanium implant discs. High-density cultures of human mesenchymal pre-osteoblastic cells (HEPM 1486, ATCC) were grown for 72 h and real-time PCR used for quantitative analysis of alkaline phosphatase (ALP), core-binding factor alpha1 (Cbfa1), Osterix, Type I Collagen, Osteocalcin and bone sialoprotein II gene expression. RESULTS Real-time PCR showed significant (P<0.001) increases in ALP gene expression in osteoblasts grown on SLA-2, relative to all other surfaces. Cbfa1/RUNX-2 gene expression was significantly (P<0.01) increased on Osseospeed and TiOBlast surface as compared with SLA-1 and SLA-2 surfaces. The expression of Osterix had a trend similar to that of Cbfa1. CONCLUSION In conclusion, implant surface properties may contribute to the regulation of osteoblast differentiation by influencing the level of bone-related genes and transcription factors in human mesenchymal pre-osteoblastic cells.
Collapse
Affiliation(s)
- Chihiro Masaki
- Department of Advanced Prosthodontics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
22
|
Facer SR, Zaharias RS, Andracki ME, Lafoon J, Hunter SK, Schneider GB. Rotary culture enhances pre-osteoblast aggregation and mineralization. J Dent Res 2005; 84:542-7. [PMID: 15914592 DOI: 10.1177/154405910508400611] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional environments have been shown to enhance cell aggregation and osteoblast differentiation. Thus, we hypothesized that three-dimensional (3D) growth environments would enhance the mineralization rate of human embryonic palatal mesenchymal (HEPM) pre-osteoblasts. The objective of this study was to investigate the potential use of rotary cell culture systems (RCCS) as a means to enhance the osteogenic potential of pre-osteoblast cells. HEPM cells were cultured in a RCCS to create 3D enviroments. Tissue culture plastic (2D) cultures served as our control. 3D environments promoted three-dimensional aggregate formations. Increased calcium and phosphorus deposition was significantly enhanced three- to 18-fold (P < 0.001) in 3D cultures as compared with 2D environments. 3D cultures mineralized in 1 wk as compared with the 2D cultures, which took 4 wks, a decrease in time of nearly 75%. In conclusion, our studies demonstrated that 3D environments enhanced osteoblast cell aggregation and mineralization.
Collapse
Affiliation(s)
- S R Facer
- Department of Endodontics, University of Iowa, College of Dentistry, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lee A, Schneider G, Finkelstein M, Southard T. Root resorption: The possible role of extracellular matrix proteins. Am J Orthod Dentofacial Orthop 2004; 126:173-7. [PMID: 15316471 DOI: 10.1016/j.ajodo.2004.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During maxillary permanent canine eruption, the deciduous canine root is selectively resorbed while the adjacent permanent lateral incisor root is left intact. An understanding of this selective resorption could provide insights into the cause of moderate to severe iatrogenic root resorption during orthodontic tooth movement. This study investigated the possible role of extracellular matrix (ECM) proteins in the selective resorption process. The spatial expression patterns of 2 ECM proteins, osteopontin (OPN) and bone sialoprotein (BSP), were assessed within the periodontal ligament (PDL) surrounding root surface areas of deciduous and permanent teeth. Intact and resorbed root surface areas from 14 deciduous roots and intact root surface areas from 12 permanent tooth roots were examined. In the deciduous roots, BSP and OPN were locally expressed in the cell layer adjacent to the root surface and most intensely concentrated in areas surrounding and within odontoclasts proximal to the resorptive lacunae. In contrast, BSP and OPN were expressed in a generalized pattern throughout the PDL of permanent roots. These preliminary findings suggest a differential expression of ECM proteins on deciduous versus permanent tooth roots, which could act as a signal for selective odontoclast adhesion to, and subsequent resorption of, deciduous root surfaces.
Collapse
Affiliation(s)
- Adam Lee
- Department of Orthodontics, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
24
|
Schneider GB, English A, Abraham M, Zaharias R, Stanford C, Keller J. The effect of hydrogel charge density on cell attachment. Biomaterials 2004; 25:3023-8. [PMID: 14967535 DOI: 10.1016/j.biomaterials.2003.09.084] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 09/19/2003] [Indexed: 11/24/2022]
Abstract
The competitive growth patterns of osteoblasts and fibroblasts can determine if healthy bone or pathologic scar tissue is formed at a wound site. Cell interactions with various alloplastic biomaterials used for tissue-engineering applications is complex. Defined synthetic mediums are valuable for studying ionic and cell receptor-specific interactions. The objectives of this study were to determine if fibroblasts and osteoblasts differentially attached to HEMA and PEG hydrogels copolymerized with positive, negative, or neutral charge densities, or when grafted with specific integrin receptor RGD adhesion ligand. Cytoskeletal phenotypes were assessed with immunofluorescent microscopy and cell attachment assays. Osteoblast cell attachment to both HEMA and PEG hydrogels was significantly higher (P<0.01) as compared to fibroblast cells. Positively charged HEMA and PEG hydrogels supported the greatest cell attachment, followed by RGD grafted, negative, and neutral charge densities, respectively. Each of these conditions elicited nearly a two-fold increase in osteoblast cell attachment, as compared to fibroblasts. Cell attachment to serum-coated coverslips was used as the control. Immunofluorescent analysis showed that both cell types attached and spread better on the positively charged hydrogels. However, fibroblasts demonstrated less spreading as compared to osteoblasts. In conclusion, differences in hydrophilic properties differentially affect osteoblast and fibroblast cell attachment and spreading.
Collapse
Affiliation(s)
- Galen B Schneider
- Dows Institute for Dental Research, University of Iowa College of Dentistry, N402, Iowa City, IA 52242-1010, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Cho P, Schneider GB, Krizan K, Keller JC. Examination of the Bone???Implant Interface in Experimentally Induced Osteoporotic Bone. IMPLANT DENT 2004; 13:79-87. [PMID: 15017309 DOI: 10.1097/01.id.0000116456.76235.bc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objective of this study was to explore the hypothesis that osteoporotic-like (OP) conditions have a negative effect on osseointegration (OI) of dental implants. Using an ovariectomized (OVX) rat model, the extent of OI using histologic and histomorphometric analysis (HMA) under a variety of OVX conditions was assessed. Five experimental groups (n = 7 rats per group) were used: 1) OP control, 2) OI control, () OI followed by OVX treatment to induce OP (OI-->OP), 4) OP induction followed by OI (OP-->OI), and 5) OP induction simultaneously with OI (OI = OP). Using undecalcified plastic-embedded cross-sections of the implant site, HMA was performed to determine the percent of bone contact (BC) at the implant-tissue interface and percent of bone area (BA) immediately (1.5-mm diameter) surrounding the implant site. The presence of Bone Sialoprotein (BSP), an important extracellular matrix component of bone, was evaluated using immunohistochemical staining procedures. The implant control resulted in the highest level of OI (BC = 79%; BA = 87%), whereas all groups in which OVX was performed resulted in a significant reduction in BA (70-75%). High levels of BC were observed in established OP conditions (OP-->OI; BC = 79%); however, following OI, induction of OP conditions (OI-->OP) led to a significant reduction in BC (50%). In each of the OP treatment groups, a diminution of cortical bone, increased trabecularization of the host bone site, and loss of staining of BSP was observed. The results of this work indicate that although OI is possible under a variety of OP-like conditions simulating implant placement, the long-term biomechanical stability of implants under these conditions could be compromised and remains unclear. Further research to understand implant use in the complex bone environment under OP-like conditions is encouraged.
Collapse
Affiliation(s)
- Peter Cho
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City, 52242, USA
| | | | | | | |
Collapse
|
26
|
Matsuzaka K, Walboomers XF, Yoshinari M, Inoue T, Jansen JA. The attachment and growth behavior of osteoblast-like cells on microtextured surfaces. Biomaterials 2003; 24:2711-9. [PMID: 12711517 DOI: 10.1016/s0142-9612(03)00085-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In previous studies, we showed that the application of microgrooves on a surface can direct cellular morphology and the deposition of mineralized matrix of osteoblast-like cells (Biomaterials 20 (1999) 1293; Clin. Oral Impl Res. 11 (2000) 325). In this study, we evaluated the attachment and growth behavior of these cells, using scanning- and transmission electron microscopy (SEM/TEM). Smooth and microgrooved polystyrene substrates were made (groove depth 0.5-1.5 microm, groove- and ridge width 1-10 microm). On these substrates, osteoblast-like cells were cultured for periods up to 16 days. SEM showed that the cells, and their extensions, closely followed the surface on smooth and wider grooved (>5 microm) substrates. In contrast, narrow grooves (<2 microm) were bridged. After 16 days of incubation, the matrix showed extensive deposition of collagen fibrils, and the formation of calcified nodules. With TEM it was shown that on the smooth and wider grooved substrates, focal adhesions were spread throughout the surface. However, on narrow grooves focal adhesions were always positioned on the edges of surface ridges only. Apparently, most extracellular matrix (ECM) was produced by the cells that directly adhered to the substrate. Deposition of ECM was seen in the surface grooves, as well as in between the cell layers. On basis of the current study and previous experiments, we conclude that microgrooves are able to influence bone cell behavior by (1) determining the alignment of cells and cellular extensions, (2) altering the formation and placement of cell focal adhesions, and (3) altering ECM production. Therefore, microgrooved surfaces seem interesting to be applied on bone-anchored implants.
Collapse
Affiliation(s)
- Kenichi Matsuzaka
- Department of Clinical Pathophysiology, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| | | | | | | | | |
Collapse
|
27
|
Schneider GB, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, Stanford C. Implant surface roughness affects osteoblast gene expression. J Dent Res 2003; 82:372-6. [PMID: 12709504 DOI: 10.1177/154405910308200509] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The transcription factor Cbfa1 regulates osteoblast differentiation and expression of genes necessary for the development of a mineralized phenotype. The purpose of this study was to determine if Cbfa1 and BSPII gene expression are influenced by implant surface microtopography. Osteoblasts were cultured on 600-grit (grooved) or sandblasted (roughened) cpTi implant discs. Mineralization was evaluated by Alizarin-Red-S staining. Real Time PCR was used for quantitative analysis of Cbfa1 and BSPII gene expression. Enhanced mineralization was seen in osteoblasts grown on roughened implant surfaces relative to tissue culture plastic. Real Time PCR showed significant (P < 0.05) increases in Cbfa1 gene expression in cells grown on roughened, as compared with grooved, implant surfaces. BSPII gene expression was also increased on rough surfaces in the UMR cells, but was reduced in the rat calvarial osteoblast cultures. These results suggest that osteoblast gene expression and mineralization are affected by roughened implant surface microtopographies during osseointegration of dental implants.
Collapse
Affiliation(s)
- G B Schneider
- N402, Dows Institute for Dental Research and the Department of Prosthodontics, University of Iowa College of Dentistry, Iowa City 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
ter Brugge PJ, Torensma R, De Ruijter JE, Figdor CG, Jansen JA. Modulation of integrin expression on rat bone marrow cells by substrates with different surface characteristics. TISSUE ENGINEERING 2002; 8:615-26. [PMID: 12202001 DOI: 10.1089/107632702760240535] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biomaterials have been shown to be able to influence the growth and differentiation of osteogenic cells cultured on the surface. Although the precise mechanisms by which the materials influence osteogenic cells are unclear, it is possible that the materials manipulate the expression of integrins by the cells. We therefore studied the expression of a number of integrins by rat bone marrow (RBM) cells, after culture on culture polystyrene, on machined and grit-blasted titanium, and on calcium phosphate-coated titanium. Integrin expression was studied by FACS analysis. We found a large variation in the expression of integrins by cells in replicate experiments. After culture on polystyrene for 7 days, cells expressed alpha1, alpha2, alpha3, alpha5, alpha6, beta1, and beta3, although some of the subunits were expressed only occasionally. The cells did not express the alpha4 subunit. After culture of RBM cells for 8 days on coated and noncoated titanium substrates, cells always expressed alpha3, alpha5, alpha6, and beta1. The alpha1 and beta3 subunits were only expressed in some of the experiments. Frequently, the expression of alpha5, alpha6, and beta1 was higher on the coated than on the noncoated titanium substrates. Based on our results, we conclude that the studied materials are capable of influencing the expression of integrins by RBM cells cultured on relevant implant materials.
Collapse
Affiliation(s)
- P J ter Brugge
- Department of Biomaterials, College of Dental Science, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
Dalby MJ, Di Silvio L, Gurav N, Annaz B, Kayser MV, Bonfield W. Optimizing HAPEX topography influences osteoblast response. TISSUE ENGINEERING 2002; 8:453-67. [PMID: 12167231 DOI: 10.1089/107632702760184718] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
HAPEX (hydroxyapatite-reinforced polyethylene composite) is a second-generation orthopedic biomaterial designed as a bone analog material, which has found clinical success. The use of topography in cell engineering has been shown to affect cell attachment and subsequent response. Thus, by combining bioactivity and enhancing osteoblast response to the implant surface, improved tissue repair and implant life span may be achieved. In this study a primary human osteoblast-like cell model has been used to study the influence of surface topography and chemistry produced by three different production methods. Scanning electron microscopy, fluorescence microscopy, and confocal scanning laser microscopy have been used to study cell adhesion; tritiated thymidine uptake has been used to observe cell proliferation; and the reverse transcriptase-polymerase chain reaction and biochemical methods have been used to study phenotypic expression. Transmission electron microscopy has also been used to look at more long-term morphology. The results show that topography significantly influences cell response, and may be a means of enhancing bone apposition on HAPEX.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 800, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Dalby MJ, Di Silvio L, Harper EJ, Bonfield W. Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 2002; 23:569-76. [PMID: 11761177 DOI: 10.1016/s0142-9612(01)00139-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Poly(methylmethacrylate) (PMMA) is the current standard for cement held prostheses. It forms a strong bond with the implant, but the bond between the cement and the bone is considered to be weak, with fibroblastic cells observed at the implant site, rather than direct bone contact, a contributing factor leading to implant failure. Incorporation of hydroxyapatite (HA) increases the biological response to the cement from tissue around the implant site, thus giving increased bone apposition. In this study, PMMA discs with 0, 4.6 and 8.8 vol%. HA were examined. Primary human osteoblast-like cells (HOBs) were used for the biological evaluation of the response to the cements in vitro. Morphology was observed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Measurement of tritiated thymidine (3H-TdR) incorporation and alkaline phosphatase (ALP) activity were used to assess proliferation and differentiation. A synergy between increasing focal contact formation, cytoskeletal organisation, cell proliferation and expression of phenotype was observed with increasing HA volume. Preferential anchorage of HOBs to HA rather than PMMA was a prominent observation.
Collapse
Affiliation(s)
- M J Dalby
- IRC in Biomedical Materials, Institute of Orthopaedics, Stanmore, Middlesex, UK.
| | | | | | | |
Collapse
|
31
|
Suzuki N, Ohyama M, Maeno M, Ito K, Otsuka K. Attachment of human periodontal ligament cells to enamel matrix-derived protein is mediated via interaction between BSP-like molecules and integrin alpha(v)beta3. J Periodontol 2001; 72:1520-6. [PMID: 11759863 DOI: 10.1902/jop.2001.72.11.1520] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Although enamel matrix-derived protein (EMD) can stimulate attachment of human periodontal ligament (HPDL) cells to the root surface, the biological mechanism of this phenomenon is unclear. The purpose of this study was to determine which molecules in EMD are involved in the attachment of HPDL cells, and which types of integrins on the cell surface mediate the interaction between the cells and EMD. METHODS HPDL explants were obtained from tooth surfaces extracted from 4 individuals, and cells taken from the individual explants were separately harvested and subcultured through as many as 5 passages. Cells were incubated on EMD-coated culture plates with and without neutral antibodies for integrins or RGD-sequence blocking peptides and stained with toluidine blue. Proteins in EMD that were able to induce cell attachment were identified by incubating sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) replicas with HPDL cells; the cell-binding regions were detected by staining the cells with toluidine blue. Characteristics of the cell-binding proteins in the EMD were identified by Western blot analysis. RESULTS It was shown that anti-alpha(v)beta3 antibody and GRGDSP peptide markedly reduced attachment of HPDL cells to EMD. When the cells were incubated with SDS-PAGE replicas, distinct cell attachment was observed at a molecular mass of approximately 55 kDa. The cell-binding ability of this protein was completely blocked by treatment with anti-alpha(v)beta3 antibody or GRGDSP peptide. In the Western blot analysis, the 55 kDa protein was recognized by anti-bone sialoprotein (BSP) antibody as a single band. CONCLUSIONS Our study provides the first evidence that the attachment of HPDL cells to EMD can be mediated by interaction between a BSP-like molecule and integrin alpha(v)beta3 on the cell surface.
Collapse
Affiliation(s)
- N Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
32
|
Perinpanayagam H, Zaharias R, Stanford C, Brand R, Keller J, Schneider G. Early cell adhesion events differ between osteoporotic and non-osteoporotic osteoblasts. J Orthop Res 2001; 19:993-1000. [PMID: 11781027 DOI: 10.1016/s0736-0266(01)00045-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In osteoporosis, the regenerative capacity of bone is compromised, which may involve altered osteoblast (OB) activity. This could be attributed to an inappropriate synthesis and assembly of an extracellular matrix (ECM), altered cell adhesion to the ECM, or be due to inappropriate downstream activation of adhesion-mediated signaling cascades through proteins such as focal adhesion kinase (FAK). The purpose of our study was to compare early adhesion-mediated events using previously described and characterized clinically derived OBs obtained from human patients undergoing major joint arthroplasty for osteoporosis or osteoarthritis. The presence or absence of osteoporosis was established with a radiographic index. Using light microscopy and crystal violet staining, we show that OB cells derived from sites of osteoporosis do not attach and spread as well as non-osteoporotic (OP) OB cells. OP cells initially have a more rounded morphology, and show significantly less (P < 0.001) attachment to serum-coated tissue culture plastic over a 24 h time period. Immunofluorescent labeling after 24 h of attachment showed that OP OB focal adhesions (FAs) and stress fibers were less defined, and that the OP cells were smaller and had a more motile phenotype. When normalized protein lysates were Western blotted for phosphotyrosine (PY) a band corresponding to pp125FAK was identified. FAK tyrosine phosphorylation was evident at 6 h in both the OP and non-OP OBs, but decreased or was absent through 24 h in OP OBs. These results suggest early adhesion-mediated events, such as cell adhesion, attachment, and FAK signaling via PY may be altered in OP OBs.
Collapse
Affiliation(s)
- H Perinpanayagam
- Dows Institute for Dental Research, College of Dentistry, The University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | |
Collapse
|
33
|
Dalby MJ, Di Silvio L, Harper EJ, Bonfield W. Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement. Biomaterials 2001; 22:1739-47. [PMID: 11396877 DOI: 10.1016/s0142-9612(00)00334-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Failure of the bone/cement interface in cemented joint prostheses is a contributor to implant loosening. The introduction of a bioactive phase, such as hydroxyapatite (HA), to cement may enhance fixation by encouraging direct bone apposition rather than encapsulation of the implant by fibrous tissue. The effect of poly(methylmethacrylate) (PMMA) bone cement (incorporating 17.5% HA wt.) on bioactivity has been investigated using primary human osteoblast-like cells (HOB). A significantly higher cell proliferation and differentiation was seen on the PMMA/HA cement compared to the PMMA cement alone, with retention of phenotype up to 21 days of culture on both materials.
Collapse
Affiliation(s)
- M J Dalby
- IRC in Biomedical Materials, Institute of Orthopaedics, Stanmore, Middlesex, UK
| | | | | | | |
Collapse
|
34
|
Schneider GB, Zaharias R, Stanford C. Osteoblast integrin adhesion and signaling regulate mineralization. J Dent Res 2001; 80:1540-4. [PMID: 11499509 DOI: 10.1177/00220345010800061201] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Integrin adhesion and signaling events may contribute to the progressive differentiation of the osteoblast and to the initiation of a mineralized matrix. The purpose of our study was to begin to analyze the role of integrin receptors, in particular alpha2beta1, alpha5beta1, and alphaVbeta3, regarding mediation of the initiation of a mineralized matrix. Integrin-perturbation assays were conducted in microdot cultures of UMR-106-01 Bone Sialoprotein (BSP) osteoblast cells. For phenotypic analysis, we performed bright-field microscopy and Aliziran Red S staining to analyze effects on mineralization initiation. Mineralization was reduced significantly (P < 0.001) following the addition of alpha5- or beta1-integrin subunit antibody by approximately 20% and 45%, respectively--alphaVbeta3 integrin by nearly 65%, and alpha2beta1 integrin by nearly 95%. This effect was reversible following the removal of the antiintegrin antibody. These results suggest that integrin adhesion and signaling events may contribute to the ability of this cell line to mediate the initiation of the mineralization phenotype biologically.
Collapse
Affiliation(s)
- G B Schneider
- Dows Institute for Dental Research and the Department of Prosthodontics, University of Iowa College of Dentistry, Iowa City 52242, USA.
| | | | | |
Collapse
|
35
|
Lai CF, Chaudhary L, Fausto A, Halstead LR, Ory DS, Avioli LV, Cheng SL. Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells. J Biol Chem 2001; 276:14443-50. [PMID: 11278600 DOI: 10.1074/jbc.m010021200] [Citation(s) in RCA: 308] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Extracellular signal-regulated kinases (Erks), members of the mitogen-activated protein kinase superfamily, play an important role in cell proliferation and differentiation. In this study we employed a dominant negative approach to determine the role of Erks in the regulation of human osteoblastic cell function. Human osteoblastic cells were transduced with a pseudotyped retrovirus encoding either a mutated Erk1 protein with a dominant negative action against both Erk1 and Erk2 (Erk1DN cells) or the LacZ protein (LacZ cells) as a control. Both basal and growth factor-stimulated MAPK activity and cell proliferation were inhibited in Erk1DN cells. Expression of Erk1DN protein suppressed both osteoblast differentiation and matrix mineralization by decreasing alkaline phosphatase activity and the deposition of bone matrix proteins. Cell adhesion to collagen, osteopontin, and vitronectin was decreased in Erk1DN cells as compared with LacZ cells. Cell spreading and migration on these matrices were also inhibited. In Erk1DN cells, expression of alphabeta(1), alpha(v)beta(3), and alpha(v)beta(5) integrins on the surface was decreased. Metabolic labeling indicated that the synthesis of these integrins was inhibited in Erk1DN cells. These data suggest that Erks are not only essential for the growth and differentiation of osteoblasts but also are important for osteoblast adhesion, spreading, migration, and integrin expression.
Collapse
Affiliation(s)
- C F Lai
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Cheng SL, Lai CF, Blystone SD, Avioli LV. Bone mineralization and osteoblast differentiation are negatively modulated by integrin alpha(v)beta3. J Bone Miner Res 2001; 16:277-88. [PMID: 11204428 DOI: 10.1359/jbmr.2001.16.2.277] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Numerous bone matrix proteins can interact with alpha(v)-containing integrins including alpha(v)beta3. To elucidate the net effects of the interaction between these proteins and alpha(v)beta3 on osteoblast function, we developed a murine osteoblastic cell line that overexpressed human alpha(v)beta3. Human alpha(v)beta3-integrin was expressed on cell membrane, in which its presence did not alter the surface level of endogenous mouse alpha(v)beta3. The expressed human alpha(v)beta3 was functional because cell adhesion to osteopontin was increased and this increment was abolished by antibody against human alpha(v)beta3. The proliferation rate of cells overexpressing alpha(v)beta3 (alpha(v)beta3-cells) was increased whereas matrix mineralization was decreased. To elucidate the mechanisms leading to inhibition of matrix mineralization, the expression of proteins important for mineralization was analyzed. Alkaline phosphatase activity and the expression of osteocalcin, type I collagen, and bone sialoprotein (BSP) were decreased whereas osteopontin was stimulated in alpha(v)beta3-cells. The regulation of osteopontin, osteocalcin, and BSP expression was mediated via transcriptional mechanism because their promoter activities were altered. Examination of molecules involved in integrin signaling indicated that activator protein-1 (AP-1) and extracellular signal-regulated kinase (Erk) activities were enhanced whereas c-jun N-terminal kinase (JNK) activity was decreased in alpha(v)beta3-cells. The activity of p38 and the levels of focal adhesion kinase (FAK) and vinculin were not altered. Moreover, the adhesions of alpha(v)beta3-cells to type I collagen and fibronectin were inhibited, which was attributed to decreased beta1-integrin levels on cell surface. In conclusion, overexpressing alpha(v)beta3-integrin in osteoblasts stimulated cell proliferation but retarded differentiation, which were derived via altered integrin-matrix interactions, signal transduction, and matrix protein expression.
Collapse
Affiliation(s)
- S L Cheng
- Department of Internal Medicine, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
37
|
Neff S, Mason PW, Baxt B. High-efficiency utilization of the bovine integrin alpha(v)beta(3) as a receptor for foot-and-mouth disease virus is dependent on the bovine beta(3) subunit. J Virol 2000; 74:7298-306. [PMID: 10906183 PMCID: PMC112250 DOI: 10.1128/jvi.74.16.7298-7306.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously reported that Foot-and-mouth disease virus (FMDV), which is virulent for cattle and swine, can utilize the integrin alpha(v)beta(3) as a receptor on cultured cells. Since those studies were performed with the human integrin, we have molecularly cloned the bovine homolog of the integrin alpha(v)beta(3) and have compared the two receptors for utilization by FMDV. Both the alpha(v) and beta(3) subunits of the bovine integrin have high degrees of amino acid sequence similarity to their corresponding human subunits in the ectodomains (96%) and essentially identical transmembrane and cytoplasmic domains. Within the putative ligand-binding domains, the bovine and human alpha(v) subunits have a 98.8% amino acid sequence similarity while there is only a 93% similarity between the beta(3) subunits of these two species. COS cell cultures, which are not susceptible to FMDV infection, become susceptible if cotransfected with alpha(v) and beta(3) subunit cDNAs from a bovine or human source. Cultures cotransfected with the bovine alpha(v)beta(3) subunit cDNAs and infected with FMDV synthesize greater amounts of viral proteins than do infected cultures cotransfected with the human integrin subunits. Cells cotransfected with a bovine alpha(v) subunit and a human beta(3) subunit synthesize viral proteins at levels equivalent to those in cells expressing both human subunits. However, cells cotransfected with the human alpha(v) and the bovine beta(3) subunits synthesize amounts of viral proteins equivalent to those in cells expressing both bovine subunits, indicating that the bovine beta(3) subunit is responsible for the increased effectiveness of this receptor. By engineering chimeric bovine-human beta(3) subunits, we have shown that this increase in receptor efficiency is due to sequences encoding the C-terminal one-third of the subunit ectodomain, which contains a highly structured cysteine-rich repeat region. We postulate that amino acid sequence differences within this region may be responsible for structural differences between the human and bovine beta(3) subunit, leading to more efficient utilization of the bovine receptor by this bovine pathogen.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Aphthovirus/genetics
- Aphthovirus/metabolism
- Aphthovirus/physiology
- COS Cells
- Cattle
- Cloning, Molecular
- DNA, Complementary
- Humans
- Integrin beta3
- Molecular Sequence Data
- Platelet Membrane Glycoproteins/chemistry
- Platelet Membrane Glycoproteins/genetics
- Platelet Membrane Glycoproteins/metabolism
- Protein Structure, Tertiary
- Receptors, Virus/metabolism
- Receptors, Vitronectin/genetics
- Receptors, Vitronectin/metabolism
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Transfection
- Virus Replication
Collapse
Affiliation(s)
- S Neff
- Foot-and-Mouth Disease Research Unit, USDA Agricultural Research Service, Plum Island Animal Disease Center, Greenport, New York 11944, USA
| | | | | |
Collapse
|
38
|
Byzova TV, Kim W, Midura RJ, Plow EF. Activation of integrin alpha(V)beta(3) regulates cell adhesion and migration to bone sialoprotein. Exp Cell Res 2000; 254:299-308. [PMID: 10640428 DOI: 10.1006/excr.1999.4765] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha(V)beta(3), a broadly distributed member of the integrin family of adhesion receptors, has been implicated in a variety of physiological and pathophysiological events, including control of bone density, angiogenesis, apoptosis, tumor growth, and metastasis. Recently, it has been shown that activation of alpha(V)beta(3), its transition from a low- to a high-affinity/avidity state, influences its recognition of certain ligands. Bone sialoprotein (BSP) is recognized as an important ligand for alpha(V)beta(3) in processes ranging from bone formation to the homing of metastatic tumor cells. Here, the influence of alpha(V)beta(3) activation on the adhesion and migration of relevant cells to BSP has been examined. Stimulation of lymphoblastoid, osteoblastoid, and human umbilical vein endothelial cells (HUVEC) with PMA or Mn(2+) markedly enhanced alpha(V)beta(3)-dependent adhesion to BSP. alpha(V)beta(3)-mediated migration of HUVEC or osteoblastic cells to BSP was substantially enhanced by stimulation, demonstrating that alpha(V)beta(3) activation enhances both adhesive and migratory responses. However, adhesion and/or migration of certain tumor cell lines, including M21 melanoma and MDA MB435 and SKBR3 breast carcinoma cell lines, to BSP was constitutively high and was not augmented by alpha(V)beta(3)-activating stimuli. Inhibitors of the intracellular signaling molecules, phosphatidylinositol 3-kinase with wortmannin, hsp90-dependent kinases with geldanamycin, and calpain with calpeptin, but not MAPKK with PD98059, reduced the high spontaneous adhesion and migration of the M21 cells to BSP, consistent with the constitutive activation of the receptor on these tumor cells. These results indicate that the activation state of alpha(V)beta(3) can regulate cell migration and adhesion to BSP and, by extension, to other ligands of this receptor. The constitutive activation of alpha(V)beta(3) on neoplastic cells may contribute to tumor growth and metastatic potential.
Collapse
Affiliation(s)
- T V Byzova
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|