1
|
Galyamina AG, Smagin DA, Kovalenko IL, Redina OE, Babenko VN, Kudryavtseva NN. The Dysfunction of Carcinogenesis- and Apoptosis-Associated Genes that Develops in the Hypothalamus under Chronic Social Defeat Stress in Male Mice. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1050-1064. [PMID: 36180995 DOI: 10.1134/s0006297922090152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Chronic social stress caused by daily agonistic interactions in male mice leads to a mixed anxiety/depression-like disorder that is accompanied by the development of psychogenic immunodeficiency and stimulation of oncogenic processes concurrently with many neurotranscriptomic changes in brain regions. The aim of the study was to identify carcinogenesis- and apoptosis-associated differentially expressed genes (DEGs) in the hypothalamus of male mice with depression-like symptoms and, for comparison, in aggressive male mice with positive social experience. To obtain two groups of animals with the opposite 20-day social experiences, a model of chronic social conflict was used. Analysis of RNA-Seq data revealed similar expression changes for many DEGs between the aggressive and depressed animals in comparison with the control group; however, the number of DEGs was significantly lower in the aggressive than in the depressed mice. It is likely that the observed unidirectional changes in the expression of carcinogenesis- and apoptosis-associated genes in the two experimental groups may be a result of prolonged social stress (of different severity) caused by the agonistic interactions. In addition, 26 DEGs were found that did not change expression in the aggressive animals and could be considered genes promoting carcinogenesis or inhibiting apoptosis. Akt1, Bag6, Foxp4, Mapk3, Mapk8, Nol3, Pdcd10, and Xiap were identified as genes whose expression most strongly correlated with the expression of other DEGs, suggesting that their protein products play a role in coordination of the neurotranscriptomic changes in the hypothalamus. Further research into functions of these genes may be useful for the development of pharmacotherapies for psychosomatic pathologies.
Collapse
Affiliation(s)
- Anna G Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitry A Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina L Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga E Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir N Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia N Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| |
Collapse
|
2
|
Comorbidity of Novel CRHR2 Gene Variants in Type 2 Diabetes and Depression. Int J Mol Sci 2022; 23:ijms23179819. [PMID: 36077219 PMCID: PMC9456299 DOI: 10.3390/ijms23179819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 12/18/2022] Open
Abstract
The corticotropin-releasing hormone receptor 2 (CRHR2) gene encodes CRHR2, contributing to the hypothalamic–pituitary–adrenal stress response and to hyperglycemia and insulin resistance. CRHR2−/− mice are hypersensitive to stress, and the CRHR2 locus has been linked to type 2 diabetes and depression. While CRHR2 variants confer risk for mood disorders, MDD, and type 2 diabetes, they have not been investigated in familial T2D and MDD. In 212 Italian families with type 2 diabetes and depression, we tested 17 CRHR2 single nucleotide polymorphisms (SNPs), using two-point parametric-linkage and linkage-disequilibrium (i.e., association) analysis (models: dominant-complete-penetrance-D1, dominant-incomplete-penetrance-D2, recessive-complete-penetrance-R1, recessive-incomplete-penetrance-R2). We detected novel linkage/linkage-disequilibrium/association to/with depression (3 SNPs/D1, 2 SNPs/D2, 3 SNPs/R1, 3 SNPs/R2) and type 2 diabetes (3 SNPs/D1, 2 SNPs/D2, 2 SNPs/R1, 1 SNP/R2). All detected risk variants are novel. Two depression-risk variants within one linkage-disequilibrium block replicate each other. Two independent novel SNPs were comorbid while the most significant conferred either depression- or type 2 diabetes-risk. Although the families were primarily ascertained for type 2 diabetes, depression-risk variants showed higher significance than type 2 diabetes-risk variants, implying CRHR2 has a stronger role in depression-risk than type 2 diabetes-risk. In silico analysis predicted variants’ dysfunction. CRHR2 is for the first time linked to/in linkage-disequilibrium/association with depression-type 2 diabetes comorbidity and may underlie the shared genetic pathogenesis via pleiotropy.
Collapse
|
3
|
Norkeviciene A, Gocentiene R, Sestokaite A, Sabaliauskaite R, Dabkeviciene D, Jarmalaite S, Bulotiene G. A Systematic Review of Candidate Genes for Major Depression. Medicina (B Aires) 2022; 58:medicina58020285. [PMID: 35208605 PMCID: PMC8875554 DOI: 10.3390/medicina58020285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The aim of this systematic review was to analyse which candidate genes were examined in genetic association studies and their association with major depressive disorder (MDD). Materials and Methods: We searched PUBMED for relevant studies published between 1 July 2012 and 31 March 2019, using combinations of keywords: “major depressive disorder” OR “major depression” AND “gene candidate”, “major depressive disorder” OR “major depression” AND “polymorphism”. Synthesis focused on assessing the likelihood of bias and investigating factors that may explain differences between the results of studies. For selected gene list after literature overview, functional enrichment analysis and gene ontology term enrichment analysis were conducted. Results: 141 studies were included in the qualitative review of gene association studies focusing on MDD. 86 studies declared significant results (p < 0.05) for 172 SNPs in 85 genes. The 13 SNPs associations were confirmed by at least two studies. The 18 genetic polymorphism associations were confirmed in both the previous and this systematic analysis by at least one study. The majority of the studies (68.79 %) did not use or describe power analysis, which may have had an impact over the significance of their results. Almost a third of studies (N = 54) were conducted in Chinese Han population. Conclusion: Unfortunately, there is still insufficient data on the links between genes and depression. Despite the reported genetic associations, most studies were lacking in statistical power analysis, research samples were small, and most gene polymorphisms have been confirmed in only one study. Further genetic research with larger research samples is needed to discern whether the relationship is random or causal. Summations: This systematic review had summarized all reported genetic associations and has highlighted the genetic associations that have been replicated. Limitations: Unfortunately, most gene polymorphisms have been confirmed only once, so further studies are warranted for replicating these genetic associations. In addition, most studies included a small number of MDD cases that could be indicative for false positive. Considering that polymorphism loci and associations with MDD is also vastly dependent on interpersonal variation, extensive studies of gene interaction pathways could provide more answers to the complexity of MDD.
Collapse
Affiliation(s)
- Audrone Norkeviciene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Romena Gocentiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
| | - Agne Sestokaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Rasa Sabaliauskaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Daiva Dabkeviciene
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Sonata Jarmalaite
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
| | - Giedre Bulotiene
- Clinic of Psychiatry, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio Str. 21/27, LT-03101 Vilnius, Lithuania; (A.N.); (R.G.)
- National Cancer Institute, Santariskiu Str. 1, LT-08660 Vilnius, Lithuania; (A.S.); (R.S.); (D.D.); (S.J.)
- Correspondence:
| |
Collapse
|
4
|
Eshmawey M, Arlt S, Ledschbor-Frahnert C, Guenther U, Popp J. Preoperative Depression and Plasma Cortisol Levels as Predictors of Delirium after Cardiac Surgery. Dement Geriatr Cogn Disord 2020; 48:207-214. [PMID: 32008004 DOI: 10.1159/000505574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Delirium is common in old patients who undergo cardiac surgery, and it is associated with adverse outcomes. The genesis of delirium is thought to be multi-factorial, but it is still not well understood. Symptoms of depression and elevated cortisol level have been described in some previous studies as factors associated with delirium, suggesting a shared pathophysiology. AIMS The objective of the present study was to determine whether preoperative depression symptoms and increased cortisol level represent risk factors for delirium after cardiac surgery. METHODS We performed a prospective cohort study in 183 patients aged >50 years undergoing elective cardiac surgery. The Geriatric Depression Scale (GDS) was used to assess patients for depressive symptoms before surgery. Preoperative plasma cortisol levels were available in 145 participants. Delirium was diagnosed using the Confusion Assessment Method for Intensive Care Unit (CAM-ICU) during the first 7 days after surgery. Spearman correlation was used for correlations between GDS, Mini-Mental State Examination (MMSE), Charlson comorbidity index, and age. Binary logistic regression was used to determine whether GDS and cortisol levels predict postoperative delirium. RESULTS Delirium occurred in 60 patients out of 183 (32.8%) included and lasted 2.3 days (SD 1.36). GDS was correlated with age (p = 0.001) and comorbidity index (p = 0.003) and inversely correlated with MMSE score (p < 0.001). Higher preoperative GDS scores were associated with incidence of delirium in the postoperative period (p = 0.002). The association was significant after controlling for age, MMSE score, history of stroke, and Charlson comorbidity index (p = 0.045). Preoperative cortisol level was not associated with the development of postoperative delirium. CONCLUSION Our results suggest that a higher preoperative depression score is associated with an increased risk of postoperative delirium. On the other hand, preoperative plasma cortisol level does not seem to be a predictor of delirium after surgery. Further studies are needed to determine the potential of preoperative depression treatment to prevent postoperative delirium.
Collapse
Affiliation(s)
- Mohamed Eshmawey
- Geriatric Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland,
| | - Sönke Arlt
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ulf Guenther
- University Clinic of Anesthesiology, Intensive Care, Emergency Medicine, Pain Therapy, Klinikum Oldenburg, Oldenburg, Germany
| | - Julius Popp
- Geriatric Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.,Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Abstract
Chronic low-grade inflammation has been observed in major depression and other major psychiatric disorders and has been implicated in metabolic changes that are commonly associated with these disorders. This raises the possibility that the effects of dysfunctional metabolism may facilitate changes in neuronal structure and function which contribute to neuroprogression. Such changes may have implications for the progress from major depression to dementia in the elderly patient. The purpose of this review is to examine the contribution of inflammation and hypercortisolaemia, which are frequently associated with major depression, to neurodegeneration and how they detrimentally impact on brain energy metabolism. A key factor in these adverse events is insulin insensitivity caused by pro-inflammatory cytokines in association with desensitised glucocorticoid receptors. Identifying the possible metabolic changes initiated by inflammation opens new targets to ameliorate the adverse metabolic changes. This has resulted in the identification of dietary and drug targets which are of interest in the development of a new generation of psychotropic drugs.
Collapse
|
6
|
Gene-environment interactions between HPA-axis genes and stressful life events in depression: a systematic review. Acta Neuropsychiatr 2019; 31:186-192. [PMID: 31106715 DOI: 10.1017/neu.2019.16] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Depression is a disorder caused by genetics and environmental factors. The aim of this study was to perform a review investigating the interaction between genetic variations located in genes involved in hypothalamus-pituitary-adrenal axis (HPA-axis) and stressful life events (SLEs) in depression. METHODS In this systematic review, we selected articles investigating the interaction between genes involved in the HPA-axis, such as Arginine Vasopressin (AVP), Angiotensin Converting Enzyme (ACE), Corticotrophin Releasing Hormone (CRH), Corticotrophin Releasing Hormone Receptor 1 (CRHR1), Corticotrophin Releasing Hormone Receptor 2 (CRHR2), FK506 binding protein (FKBP5), Nuclear Receptor subfamily 3 group C member 1 (NR3C1), Nuclear Receptor subfamily 3 group C member 2 (NR3C2), and SLE. The literature search was conducted using the Pubmed, Embase, and PsychINFO databases in adherence with the PRISMA guidelines. RESULTS The search yielded 48 potentially relevant studies, of which 40 were excluded following screening. Eight studies were included in the final review. A total of 97 single nucleotide polymorphisms (SNPs) were examined in the eight included studies. The most prevalent gene was FKBP5, and the best studied polymorphism was FKBP5:rs1360780. Two of the five studies reported significant gene-environment (G × E) interactions between rs1360780 and SLE. Overall, four studies reported significant G × E interactions between FKBP5, CRH, or CRHR1 and SLE, respectively. No significant G × E interactions were found for the remaining genes. CONCLUSIONS Our results suggest that genetic variation in three genes in the HPA-axis possibly moderate the effects of SLEs in depression.
Collapse
|
7
|
Zhao F, Yue Y, Jiang H, Yuan Y. Shared genetic risk factors for depression and stroke. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:55-70. [PMID: 30898617 DOI: 10.1016/j.pnpbp.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND The comorbidity of major depressive disorder (MDD) and stroke are common in clinic. There is a growing body of evidence suggesting a bi-directional relationship between stroke and depression. However, the mechanisms underlying the relationship between MDD and stroke are poorly investigated. Considering that both MDD and stroke can be heritable and are influenced by multiple risk genes, shared genetic risk factors between MDD and stroke may exist. OBJECTIVE The objective is to review the existing evidence for common genetic risk factors for both MDD and stroke and to outline the possible pathophysiological mechanisms mediating this association. METHODS A systematic review and meta-analysis was performed. Gene association studies regarding stroke and depression were searched in the database PubMed, CNKI, and Chinese Biomedical Literature Database before December 2018. Statistical analysis was performed using the software Revman 5.3. RESULTS Genetic polymorphisms of 4 genes, methylenetetrahydrofolate reductase (MTHFR) and apolipoprotein E (ApoE) have been demonstrated to associate with the increased risk for both MDD and stroke, while the association between identified polymorphisms in angiotensin converting enzyme (ACE) and serum paraoxonase (PON1) with depression is still under debate, for the existing studies are insufficient in sample size. These results suggest the possible pathophysiological mechanisms that are common to these two disorders, including immune-inflammatory imbalance, increased oxidative and nitrative stress, dysregulation of lipoprotein and lipid metabolism, and changes of cerebrovascular morphology and function. Other associated genes with few or conflicting results have also been included, and a few studies have investigated the effects of the described polymorphisms on MDD and stroke comorbidity, such as post stroke depression. CONCLUSION These findings suggest that shared genetic pathways may contribute to the comorbidity of MDD and stroke. Studies to evaluate the shared genetic variations between MDD and stroke may provide insights into the molecular mechanisms that trigger disease progression.
Collapse
Affiliation(s)
- Fuying Zhao
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China
| | - Haitang Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medical, Institute of Psychosomatics, Southeast University, China.
| |
Collapse
|
8
|
HPA Axis Genes, and Their Interaction with Childhood Maltreatment, are Related to Cortisol Levels and Stress-Related Phenotypes. Neuropsychopharmacology 2017; 42:2446-2455. [PMID: 28589964 PMCID: PMC5645736 DOI: 10.1038/npp.2017.118] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Stress responses are controlled by the hypothalamus pituitary adrenal (HPA)-axis and maladaptive stress responses are associated with the onset and maintenance of stress-related disorders such as major depressive disorder (MDD). Genes that play a role in the HPA-axis regulation may likely contribute to the relation between relevant neurobiological substrates and stress-related disorders. Therefore, we performed gene-wide analyses for 30 a priori literature-based genes involved in HPA-axis regulation in 2014 subjects (34% male; mean age: 42.5) to study the relations with lifetime MDD diagnosis, cortisol awakening response, and dexamethasone suppression test (DST) levels (subsample N=1472) and hippocampal and amygdala volume (3T MR images; subsample N=225). Additionally, gene by childhood maltreatment (CM) interactions were investigated. Gene-wide significant results were found for dexamethasone suppression (CYP11A1, CYP17A1, POU1F1, AKR1D1), hippocampal volume (CYP17A1, CYP11A1, HSD3B2, PROP1, AVPRA1, SRD5A1), amygdala volume (POMC, CRH, HSD3B2), and lifetime MDD diagnosis (FKBP5 and CRH), all permutation p-values<0.05. Interactions with CM were found for several genes; the strongest interactions were found for NR3C2, where the minor allele of SNP rs17581262 was related to smaller hippocampal volume, smaller amygdala volume, higher DST levels, and higher odds of MDD diagnosis only in participants with CM. As hypothesized, several HPA-axis genes are associated with stress-related endophenotypes including cortisol response and reduced brain volumes. Furthermore, we found a pleiotropic interaction between CM and the mineralocorticoid receptor gene, suggesting that this gene plays an important moderating role in stress and stress-related disorders.
Collapse
|
9
|
Spierling SR, Zorrilla EP. Don't stress about CRF: assessing the translational failures of CRF 1antagonists. Psychopharmacology (Berl) 2017; 234:1467-1481. [PMID: 28265716 PMCID: PMC5420464 DOI: 10.1007/s00213-017-4556-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dr. Athina Markou sought treatments for a common neural substrate shared by depression and drug dependence. Antagonists of corticotropin-releasing factor (CRF) receptors, a target of interest to her, have not reached the clinic despite strong preclinical rationale and sustained translational efforts. METHODS We explore potential causes for the failure of CRF1 antagonists and review recent findings concerning CRF-CRF1 systems in psychopathology. RESULTS Potential causes for negative outcomes include (1) poor safety and efficacy of initial drug candidates due to bad pharmacokinetic and physicochemical properties, (2) specificity problems with preclinical screens, (3) the acute nature of screens vs. late-presenting patients, (4) positive preclinical results limited to certain models and conditions with dynamic CRF-CRF1 activation not homologous to tested patients, (5) repeated CRF1 activation-induced plasticity that reduces the importance of ongoing CRF1 agonist stimulation, and (6) therapeutic silencing which may need to address CRF2 receptor or CRF-binding protein molecules, constitutive CRF1 activity, or molecules that influence agonist-independent activity or to target structural regions other than the allosteric site bound by all drug candidates. We describe potential markers of activation towards individualized treatment, human genetic, and functional data that still implicate CRF1 systems in emotional disturbance, sex differences, and suggestive clinical findings for CRF1 antagonists in food craving and CRF-driven HPA-axis overactivation. CONCLUSION The therapeutic scope of selective CRF1 antagonists now appears narrower than had been hoped. Yet, much remains to be learned about CRF's role in the neurobiology of dysphoria and addiction and the potential for novel anti-CRF therapies therein.
Collapse
Affiliation(s)
- Samantha R Spierling
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|