1
|
Jelen LA, Young AH, Mehta MA. Opioid Mechanisms and the Treatment of Depression. Curr Top Behav Neurosci 2024; 66:67-99. [PMID: 37923934 DOI: 10.1007/7854_2023_448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Opioid receptors are widely expressed in the brain, and the opioid system has a key role in modulating mood, reward processing and stress responsivity. There is mounting evidence that the endogenous opioid system may be dysregulated in depression and that drug treatments targeting mu, delta and kappa opioid receptors may show antidepressant potential. The mechanisms underlying the therapeutic effects of opioid system engagement are complex and likely multi-factorial. This chapter explores various pathways through which the modulation of the opioid system may influence depression. These include impacts on monoaminergic systems, the regulation of stress and the hypothalamic-pituitary-adrenal axis, the immune system and inflammation, brain-derived neurotrophic factors, neurogenesis and neuroplasticity, social pain and social reward, as well as expectancy and placebo effects. A greater understanding of the diverse mechanisms through which opioid system modulation may improve depressive symptoms could ultimately aid in the development of safe and effective alternative treatments for individuals with difficult-to-treat depression.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Allan H Young
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Mitul A Mehta
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
Du W. Interactions Between Endogenous Opioids and the Immune System. ADVANCES IN NEUROBIOLOGY 2024; 35:27-43. [PMID: 38874717 DOI: 10.1007/978-3-031-45493-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The endogenous opioid system, which consists of opioid receptors and their ligands, is widely expressed in the nervous system and also found in the immune system. As a part of the body's defense machinery, the immune system is heavily regulated by endogenous opioid peptides. Many types of immune cells, including macrophages, dendritic cells, neutrophils, and lymphocytes are influenced by endogenous opioids, which affect cell activation, differentiation, proliferation, apoptosis, phagocytosis, and cytokine production. Additionally, immune cells also synthesize and secrete endogenous opioid peptides and participate peripheral analgesia. This chapter is structured into two sections. Part one focuses on immunoregulatory functions of central endogenous opioids; and part two describes how opioid peptide-containing immune cells participate in local analgesia.
Collapse
Affiliation(s)
- Wei Du
- Clinical Sciences Research, CAMC Institute for Academic Medicine, Charleston, WV, USA.
| |
Collapse
|
3
|
Wei W, Deng L, Qiao C, Yin Y, Zhang Y, Li X, Yu H, Jian L, Li M, Guo W, Wang Q, Deng W, Ma X, Zhao L, Sham PC, Palaniyappan L, Li T. Neural variability in three major psychiatric disorders. Mol Psychiatry 2023; 28:5217-5227. [PMID: 37443193 DOI: 10.1038/s41380-023-02164-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Across the major psychiatric disorders (MPDs), a shared disruption in brain physiology is suspected. Here we investigate the neural variability at rest, a well-established behavior-relevant marker of brain function, and probe its basis in gene expression and neurotransmitter receptor profiles across the MPDs. We recruited 219 healthy controls and 279 patients with schizophrenia, major depressive disorder, or bipolar disorders (manic or depressive state). The standard deviation of blood oxygenation level-dependent signal (SDBOLD) obtained from resting-state fMRI was used to characterize neural variability. Transdiagnostic disruptions in SDBOLD patterns and their relationships with clinical symptoms and cognitive functions were tested by partial least-squares correlation. Moving beyond the clinical sample, spatial correlations between the observed patterns of SDBOLD disruption and postmortem gene expressions, Neurosynth meta-analytic cognitive functions, and neurotransmitter receptor profiles were estimated. Two transdiagnostic patterns of disrupted SDBOLD were discovered. Pattern 1 is exhibited in all diagnostic groups and is most pronounced in schizophrenia, characterized by higher SDBOLD in the language/auditory networks but lower SDBOLD in the default mode/sensorimotor networks. In comparison, pattern 2 is only exhibited in unipolar and bipolar depression, characterized by higher SDBOLD in the default mode/salience networks but lower SDBOLD in the sensorimotor network. The expression of pattern 1 related to the severity of clinical symptoms and cognitive deficits across MPDs. The two disrupted patterns had distinct spatial correlations with gene expressions (e.g., neuronal projections/cellular processes), meta-analytic cognitive functions (e.g., language/memory), and neurotransmitter receptor expression profiles (e.g., D2/serotonin/opioid receptors). In conclusion, neural variability is a potential transdiagnostic biomarker of MPDs with a substantial amount of its spatial distribution explained by gene expressions and neurotransmitter receptor profiles. The pathophysiology of MPDs can be traced through the measures of neural variability at rest, with varying clinical-cognitive profiles arising from differential spatial patterns of aberrant variability.
Collapse
Affiliation(s)
- Wei Wei
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Lihong Deng
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Qiao
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yubing Yin
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yamin Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojing Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Hua Yu
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Lingqi Jian
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Mingli Li
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wanjun Guo
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Wang
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Lena Palaniyappan
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Quintanilla B, Medeiros GC, Greenstein D, Yuan P, Johnston JN, Park LT, Goes F, Gould TD, Zarate CA. κ-Opioid Receptor Plasma Levels Are Associated With Sex and Diagnosis of Major Depressive Disorder But Not Response to Ketamine. J Clin Psychopharmacol 2023; 43:89-96. [PMID: 36821406 PMCID: PMC9992159 DOI: 10.1097/jcp.0000000000001663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Preclinical evidence indicates that the κ-opioid receptor (KOR)/dynorphin pathway is implicated in depressive-like behaviors. Ketamine is believed to partly exert its antidepressant effects by modulating the opioid system. This post hoc study examined the following research questions: (1) at baseline, were there differences in KOR or dynorphin plasma levels between individuals with major depressive disorder (MDD) and healthy volunteers (HVs) or between men and women? (2) in individuals with MDD, did KOR or dynorphin baseline plasma levels moderate ketamine's therapeutic effects or adverse effects? and (3) in individuals with MDD, were KOR or dynorphin plasma levels affected after treatment with ketamine compared with placebo? METHODS Thirty-nine unmedicated individuals with MDD (23 women) and 25 HVs (16 women) received intravenous ketamine (0.5 mg/kg) and placebo in a randomized, crossover, double-blind trial. Blood was obtained from all participants at baseline and at 3 postinfusion time points (230 minutes, day 1, day 3). Linear mixed model regressions were used. RESULTS At baseline, participants with MDD had lower KOR plasma levels than HVs ( F1,60 = 13.16, P < 0.001), and women (MDD and HVs) had higher KOR plasma levels than men ( F1,60 = 4.98, P = 0.03). Diagnosis and sex had no significant effects on baseline dynorphin levels. Baseline KOR and dynorphin levels did not moderate ketamine's therapeutic or adverse effects. Compared with placebo, ketamine was not associated with postinfusion changes in KOR or dynorphin levels. CONCLUSIONS In humans, diagnosis of MDD and biological sex are involved with changes in components of the KOR/dynorphin pathway. Neither KOR nor dynorphin levels consistently moderated ketamine's therapeutic effects or adverse effects, nor were levels altered after ketamine infusion. TRIAL REGISTRATION NCT00088699 ( ClinicalTrials.gov ).
Collapse
Affiliation(s)
- Brandi Quintanilla
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Gustavo C. Medeiros
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Dede Greenstein
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Jenessa N. Johnston
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lawrence T. Park
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| | - Fernando Goes
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology and Anatomy & Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, NIMH-NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Wang Y, Zhou B, Fang S, Zhu S, Xu T, Dilikumaer M, Li G. Dynorphin participates in interaction between depression and non-erosive reflux disease. Esophagus 2023; 20:158-169. [PMID: 36244036 PMCID: PMC9813039 DOI: 10.1007/s10388-022-00955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/07/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND To explore the relationships between anxiety/depression and NERD, we focused on dynorphin (Dyn), an important member of visceral hypersensitivity, and its related pathways. METHODS Pearson's correlation analysis on patients with NERD and in vivo experiment on NERD rat model. Part 1: Pearson's correlation analysis among serum levels of Dyn, clinical symptoms and HADS scores of NERD patients were carried on. Part 2: Wistar rats were randomly divided into 2 groups: control group and model group. The data of pH value, immobility time, serum Dyn concentration, NMDAR1 and SP expression were, respectively, derived from automatic pH recorder, tail suspension test, enzyme-linked immunosorbent assay, immunohistochemistry and immunofluorescence. RESULTS Part 1: Pearson's correlation analysis showed that there was a linear correlation between Clinical Symptom (CS) score and HADS score (HAD-A, HAD-D), and the correlation coefficients were 0.385 and 0.273 respectively; the correlation coefficient between lg (Dyn) and lg (CS score) was r = 0.441, P = 0.002; the correlation coefficient between lg(Dyn) and lg (HAD-D score) was r = 0.447, P = 0.002. Part 2: The pH value of the lower esophagus in the model group was lower than that in the control group (P < 0.01). The tail suspension immobility time of model group was significantly longer than that of control group (P < 0.01). The serum Dyn concentration and the expression level of NMDAR1 in spinal cord and SP in lower esophageal mucosa of model group were significantly higher than those of control group (P < 0.05). CONCLUSION Increased serum dynorphin level may be a sign of correlation between depression and NERD.
Collapse
Affiliation(s)
- Yi Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingduo Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengquan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengliang Zhu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Xu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Makan Dilikumaer
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanwu Li
- Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
A pathway phenotype linking metabolic, immune, oxidative, and opioid pathways with comorbid depression, atherosclerosis, and unstable angina. CNS Spectr 2022; 27:676-690. [PMID: 34039448 DOI: 10.1017/s1092852921000432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND There is strong comorbidity between atherosclerosis (ATS) and depression which is attributed to increased atherogenicity, insulin resistance (IR), and immune and oxidative stress. AIM OF THE STUDY To examine the role of the above pathways and mu-opioid receptor (MOR), β-endorphin levels, zinc, copper, vitamin D3, calcium, and magnesium in depression due to ATS/unstable angina (UA). METHODS Biomarkers were assayed in 58 controls and 120 ATS patients divided into those with moderate and severe depression according to the Beck Depression Inventory-II (BDI-II) scores >19 and >29, respectively. RESULTS Neural network and logistic regression models showed that severe depression due to ATS/UA was best predicted by interleukin-6 (IL-6), UA, MOR, zinc, β-endorphin, calcium and magnesium, and that moderate depression was associated with IL-6, zinc, MOR, β-endorphin, UA, atherogenicity, IR, and calcium. Neural networks yielded a significant discrimination of severe and moderate depression with an area under the receiver operating curves of 0.831 and 0.931, respectively. Using Partial Least Squares path analysis, we found that 66.2% of the variance in a latent vector extracted from ATS/UA clinical features, and the BDI-II scores, atherogenicity, and IR could be explained by the regression on IL-6, IL-10, zinc, copper, calcium, MOR, and age. The BDI-II scores increased from controls to ATS to UA class III to UA class IV. CONCLUSIONS Immune activation, the endogenous opioid system, antioxidants, trace elements, and macrominerals modulate a common core shared by increased depressive symptoms, ATS, UA, atherogenicity, and IR.
Collapse
|
7
|
Miniksar ÖH, Onat T, Gocmen AY, Honca M. Serum levels of mu-opioid receptor according to menstrual cycle phases are associated with postoperative pain and opioid consumption in laparoscopic gynecological surgeries: a prospective observational study. Ir J Med Sci 2022:10.1007/s11845-022-03146-z. [PMID: 36094733 DOI: 10.1007/s11845-022-03146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
AIMS In this prospective observational clinical study, we aimed to evaluate the relationship between serum mu-opioid receptor (MOR) levels according to menstrual cycle phases on postoperative pain scores and analgesic requirements. METHODS A total of 80 female patients undergoing laparoscopic surgery were divided into two groups according to the phases of the menstrual cycle as follicular and luteal. Postoperative pain scores, total tramadol consumptions, and numbers of demands on patient-controlled analgesia (PCA) of the patients were recorded at 5 time points (T0: in the recovery room, T1: 1st hour in the ward, T2: 6th hour in the ward, T3: 12th hour in the ward, T4: 24th hour in the ward). Serum MOR concentrations were measured by enzyme-linked immunosorbent assay. RESULTS The mean serum MOR levels were significantly higher in the follicular group (275 ± 32 pg/ml) compared to the luteal group (254 ± 28 pg/ml) (p = 0.003). Total tramadol consumption (T0, T2, and T3) was significantly higher in the luteal group (p = 0.031, p = 0.012, p = 0.017, respectively). Postoperative pain scores did not differ significantly between the groups. With the exception of T4 (p = 0.057), the number of demands on PCA was significantly higher in the luteal group. However, multivariate logistic regression analysis showed that serum MOR levels were affected by the menstrual cycle phase (follicular) (β = 0.361) (p = 0.001). CONCLUSIONS Our study revealed that patients during the follicular phase with higher serum MOR levels consumed less opioid analgesic postoperatively. More comprehensive studies are needed to determine the relationship between serum MOR levels and menstrual cycle phases as well as postoperative pain. (Trial registration number: NCT04690491 www. CLINICALTRIALS gov ).
Collapse
Affiliation(s)
- Ökkeş Hakan Miniksar
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey.
| | - Taylan Onat
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Ayse Yesim Gocmen
- Department of Biochemistry, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Mehtap Honca
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
8
|
Gray ZJ, Shields GS, Sichko S, Bui TQ, Vinograd M, Olvera-Alvarez HA, Slavich GM. Neural and peripheral markers of reward during positive social evaluation are associated with less clinician-rated depression symptom severity in adolescence. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100149. [PMID: 35856064 PMCID: PMC9287766 DOI: 10.1016/j.cpnec.2022.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 10/31/2022] Open
Abstract
Although blunted sensitivity to reward is thought to play a key role in promoting risk for depression, most research on this topic has utilized monetary reward paradigms and focused on currently depressed adults. To address this issue, we analyzed neural reward and β-endorphin data from the Psychobiology of Stress and Adolescent Depression (PSY SAD) Study, which recruited a well-characterized sample of adolescent girls at high vs. low risk for major depressive disorder (MDD) (N = 52, M age = 14.90, SD = 1.35) based on their mothers' lifetime history of MDD. As hypothesized, greater striatal activity while receiving positive (vs. neutral) social evaluation was associated with lower depression symptom severity as independently assessed by the Kiddie Schedule for Affective Disorders and Schizophrenia (K-SADS). This association was present for girls at high but not low risk for MDD, suggesting that this neural response may represent a pre-clinical marker of risk for depression. Consistent with these results, higher post-social evaluation levels of a peripheral marker of reward sensitivity, β-endorphin, were related to lower clinician-rated depression symptom severity. Together, these results indicate that neural and peripheral markers of responsivity to social reward are both related to depression severity, which may have implications for understanding the pathophysiology of depression.
Collapse
Affiliation(s)
- Zach J. Gray
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Grant S. Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, AR, USA
| | - Stassja Sichko
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Theresa Q. Bui
- Tulane University School of Medicine, New Orleans, LA, USA
| | - Meghan Vinograd
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, and Department of Psychiatry, University of California, San Diego, CA, USA
| | | | - George M. Slavich
- Department of Psychiatry and Biobehavioral Science, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Wulf HA, Browne CA, Zarate CA, Lucki I. Mediation of the behavioral effects of ketamine and (2R,6R)-hydroxynorketamine in mice by kappa opioid receptors. Psychopharmacology (Berl) 2022; 239:2309-2316. [PMID: 35459958 DOI: 10.1007/s00213-022-06118-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/12/2022] [Indexed: 11/26/2022]
Abstract
Emerging evidence has implicated the endogenous opioid system in mediating ketamine's antidepressant activity in subjects with major depressive disorder. To date, mu opioid receptors have been suggested as the primary opioid receptor of interest. However, this hypothesis relies primarily on observations that the opioid antagonist naltrexone blocked the effects of ketamine in humans and rodents. This report confirms previous findings that pretreatment with naltrexone (1 mg/kg) just prior to ketamine (10 mg/kg) administration effectively blocks the behavioral effect of ketamine in the mouse forced swim test 24 h post-treatment. Furthermore, pharmacological blockade of kappa opioid receptors prior to ketamine administration with the selective, short-acting antagonist LY2444296 successfully blocked ketamine's effects in the forced swim test. Likewise, the ability of the ketamine metabolite (2R,6R)-hydroxynorketamine to reduce immobility scores in the forced swim test was also blocked following pretreatment with either naltrexone or LY2444296. These data support a potential role of kappa opioid receptors in mediating the behavioral activity of ketamine and its non-dissociate metabolite (2R,6R)-hydroxynorketamine.
Collapse
Affiliation(s)
- Hildegard A Wulf
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Caroline A Browne
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Carlos A Zarate
- National Institute on Mental Health, MD, 20814, Bethesda, USA
| | - Irwin Lucki
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, 20814, USA.
| |
Collapse
|
10
|
Smesam HN, Qazmooz HA, Khayoon SQ, Almulla AF, Al-Hakeim HK, Maes M. Pathway Phenotypes Underpinning Depression, Anxiety, and Chronic Fatigue Symptoms Due to Acute Rheumatoid Arthritis: A Precision Nomothetic Psychiatry Analysis. J Pers Med 2022; 12:476. [PMID: 35330475 PMCID: PMC8950237 DOI: 10.3390/jpm12030476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/19/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disorder which affects the joints in the wrists, fingers, and knees. RA is often associated with depressive and anxiety symptoms as well as chronic fatigue syndrome (CFS)-like symptoms. This paper examines the association between depressive symptoms (measured with the Beck Depression Inventory, BDI), anxiety (Hamilton Anxiety Rating Scale, HAMA), CFS-like (Fibro-fatigue Scale) symptoms and immune-inflammatory, autoimmune, and endogenous opioid system (EOS) markers, and lactosylcer-amide (CD17) in RA. The serum biomarkers were assayed in 118 RA and 50 healthy controls. Results were analyzed using the new precision nomothetic psychiatry approach. We found significant correlations between the BDI, FF, and HAMA scores and severity of RA, as assessed with the DAS28-4, clinical and disease activity indices, the number of tender and swollen joints, and patient and evaluator global assessment scores. Partial least squares analysis showed that 69.7% of the variance in this common core underpinning psychopathology and RA symptoms was explained by immune-inflammatory pathways, rheumatoid factor, anti-citrullinated protein antibodies, CD17, and mu-opioid receptor levels. We constructed a new endophenotype class comprising patients with very high immune-inflammatory markers, CD17, RA, affective and CF-like symptoms, and tobacco use disorder. We extracted a reliable and replicable latent vector (pathway phenotype) from immune data, psychopathology, and RA-severity scales. Depression, anxiety, and CFS-like symptoms due to RA are manifestations of the phenome of RA and are mediated by the effects of the same immune-inflammatory, autoimmune, and other pathways that underpin the pathophysiology of RA.
Collapse
Affiliation(s)
- Hasan Najah Smesam
- Department of Chemistry, College of Science, University of Kufa, Kufa 540011, Iraq; (H.N.S.); (H.K.A.-H.)
| | - Hasan Abbas Qazmooz
- Department of Ecology, College of Science, University of Kufa, Kufa 540011, Iraq;
| | - Sinan Qayes Khayoon
- Department of Biology, College of Science, University of Kufa, Kufa 540011, Iraq;
| | - Abbas F. Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq;
| | - Hussein Kadhem Al-Hakeim
- Department of Chemistry, College of Science, University of Kufa, Kufa 540011, Iraq; (H.N.S.); (H.K.A.-H.)
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, P.O. Box 281, Geelong, VIC 3220, Australia
| |
Collapse
|
11
|
Namchuk AB, Lucki I, Browne CA. Buprenorphine as a Treatment for Major Depression and Opioid Use Disorder. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10254. [PMID: 36177442 PMCID: PMC9518754 DOI: 10.3389/adar.2022.10254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rates of major depressive disorder (MDD) are disproportionally high in subjects with opioid use disorder (OUD) relative to the general population. MDD is often more severe in OUD patients, leading to compliance issues with maintenance therapies and poor outcomes. A growing body of literature suggests that endogenous opioid system dysregulation may play a role in the emergence of MDD. Buprenorphine, a mixed opioid receptor agonist/antagonist approved for the treatment of OUD and chronic pain, may have potential as a novel therapeutic for MDD, especially for patients with a dual diagnosis of MDD and OUD. This paper presents a comprehensive review of papers relevant to the assessment of buprenorphine as a treatment for MDD, OUD, and/or suicide compiled using electronic databases per Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The principal goal of this literature review was to compile the clinical studies that have interrogated the antidepressant activity of buprenorphine in opioid naïve MDD patients and OUD patients with comorbid MDD. Evidence supporting buprenorphine's superiority over methadone for treating comorbid OUD and MDD was also considered. Finally, recent evidence for the ability of buprenorphine to alleviate suicidal ideation in both opioid-naïve patients and opioid-experienced patients was evaluated. Synthesizing all of this information, buprenorphine emerges as a potentially effective therapeutic for the dual purposes of treating MDD and OUD.
Collapse
Affiliation(s)
- Amanda B. Namchuk
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, 20814, USA
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, 20814, USA
- Department of Psychiatry, Uniformed Services University, Bethesda, Maryland, 20814, USA
| | - Caroline A. Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, Maryland, 20814, USA
| |
Collapse
|
12
|
Dworsky-Fried Z, Chadwick CI, Kerr BJ, Taylor AMW. Multiple Sclerosis and the Endogenous Opioid System. Front Neurosci 2021; 15:741503. [PMID: 34602975 PMCID: PMC8484329 DOI: 10.3389/fnins.2021.741503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by chronic inflammation, neuronal degeneration and demyelinating lesions within the central nervous system. The mechanisms that underlie the pathogenesis and progression of MS are not fully known and current therapies have limited efficacy. Preclinical investigations using the murine experimental autoimmune encephalomyelitis (EAE) model of MS, as well as clinical observations in patients with MS, provide converging lines of evidence implicating the endogenous opioid system in the pathogenesis of this disease. In recent years, it has become increasingly clear that endogenous opioid peptides, binding μ- (MOR), κ- (KOR) and δ-opioid receptors (DOR), function as immunomodulatory molecules within both the immune and nervous systems. The endogenous opioid system is also well known to play a role in the development of chronic pain and negative affect, both of which are common comorbidities in MS. As such, dysregulation of the opioid system may be a mechanism that contributes to the pathogenesis of MS and associated symptoms. Here, we review the evidence for a connection between the endogenous opioid system and MS. We further explore the mechanisms by which opioidergic signaling might contribute to the pathophysiology and symptomatology of MS.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Caylin I. Chadwick
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bradley J. Kerr
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| | - Anna M. W. Taylor
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Kappa Opioid Receptors in the Pathology and Treatment of Major Depressive Disorder. Handb Exp Pharmacol 2021; 271:493-524. [PMID: 33580854 DOI: 10.1007/164_2020_432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The kappa opioid receptor (KOR) is thought to regulate neural systems associated with anhedonia and aversion and mediate negative affective states that are associated with a number of psychiatric disorders, but especially major depressive disorder (MDD). Largely because KOR antagonists mitigate the effects of stress in preclinical studies, KOR antagonists have been recommended as novel drugs for treating MDD. The purpose of this review is to examine the role of KORs and its endogenous ligand dynorphins (DYNs) in the pathology and treatment of MDD derived from different types of clinical studies. Evidence pertaining to the role of KOR and MDD will be reviewed from (1) post mortem mRNA expression patterns in MDD, (2) the utility of KOR neuroimaging agents and serum biomarkers in MDD, and (3) evidence from the recent Fast Fail clinical trial that established KOR antagonism as a potential therapeutic strategy for the alleviation of anhedonia, a core feature of MDD. These findings are compared with a focused evaluation of stress-induced alterations in OPRK and PDYN mRNA expression. Finally, the current status of the effects of KOR antagonists on behavioral phenotypes of stress in preclinical studies related to MDD is summarized.
Collapse
|
14
|
Moustafa SR, Al-Rawi KF, Stoyanov D, Al-Dujaili AH, Supasitthumrong T, Al-Hakeim HK, Maes M. The Endogenous Opioid System in Schizophrenia and Treatment Resistant Schizophrenia: Increased Plasma Endomorphin 2, and κ and μ Opioid Receptors Are Associated with Interleukin-6. Diagnostics (Basel) 2020; 10:E633. [PMID: 32858974 PMCID: PMC7554941 DOI: 10.3390/diagnostics10090633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND activation of the immune-inflammatory response system (IRS) and the compensatory immune-regulatory system (CIRS) plays a key role in schizophrenia (SCZ) and treatment resistant SCZ. There are only a few data on immune and endogenous opioid system (EOS) interactions in SCZ and treatment resistant SCZ. METHODS we examined serum β-endorphin, endomorphin-2 (EM2), mu-opioid (MOR) and kappa-opioid (KOR) receptors, and interleukin (IL)-6 and IL-10 in 60 non responders to treatment (NRTT), 55 partial RTT (PRTT) and 43 normal controls. RESULTS serum EM2, KOR, MOR, IL-6 and IL-10 were significantly increased in SCZ as compared with controls. β-endorphin, EM2, MOR and IL-6 were significantly higher in NRTT than in PRTT. There were significant correlations between IL-6, on the one hand, and β-endorphin, EM2, KOR, and MOR, on the other, while IL-10 was significantly correlated with MOR only. A large part of the variance in negative symptoms, psychosis, hostility, excitation, mannerism, psychomotor retardation and formal thought disorders was explained by the combined effects of EM2 and MOR with or without IL-6 while increased KOR was significantly associated with all symptom dimensions. Increased MOR, KOR, EM2 and IL-6 were also associated with neurocognitive impairments including in episodic, semantic and working memory and executive functions. CONCLUSION the EOS contributes to SCZ symptomatology, neurocognitive impairments and a non-response to treatment. In SCZ, EOS peptides/receptors may exert CIRS functions, whereas increased KOR levels may contribute to the pathophysiology of SCZ and EM2 and KOR to a non-response to treatment.
Collapse
Affiliation(s)
- Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil 44001, Iraq;
| | | | - Drozdstoi Stoyanov
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
| | | | | | | | - Michael Maes
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4000, Bulgaria;
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10110, Thailand;
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
15
|
Casado-Bedmar M, Keita ÅV. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Therap Adv Gastroenterol 2020; 13:1756284820910630. [PMID: 32313554 PMCID: PMC7153177 DOI: 10.1177/1756284820910630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by recurring abdominal pain and disturbed bowel habits. The aetiology of IBS is unknown but there is evidence that genetic, environmental and immunological factors together contribute to the development of the disease. Current treatment of IBS includes lifestyle and dietary interventions, laxatives or antimotility drugs, probiotics, antispasmodics and antidepressant medication. The gut-brain axis comprises the central nervous system, the hypothalamic pituitary axis, the autonomic nervous system and the enteric nervous system. Within the intestinal mucosa there are close connections between immune cells and nerve fibres of the enteric nervous system, and signalling between, for example, mast cells and nerves has shown to be of great importance during GI disorders such as IBS. Communication between the gut and the brain is most importantly routed via the vagus nerve, where signals are transmitted by neuropeptides. It is evident that IBS is a disease of a gut-brain axis dysregulation, involving altered signalling between immune cells and neurotransmitters. In this review, we analyse the most novel and distinct neuro-immune interactions within the IBS mucosa in association with already existing and potential therapeutic targets.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Medical Faculty, Linköping University, Campus US, Linköping, 581 85, Sweden
| |
Collapse
|