1
|
Akhrimenko V, Garcia M, Aguirre C, Agirre U, Morera-Herreras T, Hernández-Palacios R, Medrano J, Lertxundi U. Intranasal esketamine and manic symptoms: A disproportionality analysis in EudraVigilance. Eur Neuropsychopharmacol 2024; 86:44-45. [PMID: 38924979 DOI: 10.1016/j.euroneuro.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Vladimir Akhrimenko
- NanoBioCel Group, Laboratory of Pharmaceutics, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain
| | - Montserrat Garcia
- Biobizkaia Health Research Institute, Osakidetza Basque Health Service, Galdakao-Usansolo Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Spain
| | - Carmelo Aguirre
- Biobizkaia Health Research Institute, Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Urko Agirre
- Research Unit, Osakidetza Basque Health Service, Barrualde-Galdakao Integrated Health Organisation, Galdakao-Usansolo Hospital, Galdakao, Spain. Kronikgune Institute for Health Services Research, Barakaldo, Spain; Network for Research on Chronicity, Primary Care, and Health Promotion (RICAPPS), Galdakao, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain; Neurodegenerative diseases Group, Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Rafael Hernández-Palacios
- Internal Medicine Service. Araba Psychiatric Hospital. Araba Mental Health Network, C/alava 43, 01006 Vitoria-Gasteiz. Alava, Spain
| | - Juan Medrano
- Psychiatry Service. Araba Psychiatric Hospital. Araba Mental Health Network, C/alava 43, 01006 Vitoria-Gasteiz. Alava. Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain. c/Alava 43, 01006 Vitoria-Gasteiz, Álava, Spain.
| |
Collapse
|
2
|
Chaves-Filho A, Eyres C, Blöbaum L, Landwehr A, Tremblay MÈ. The emerging neuroimmune hypothesis of bipolar disorder: An updated overview of neuroimmune and microglial findings. J Neurochem 2024; 168:1780-1816. [PMID: 38504593 DOI: 10.1111/jnc.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Bipolar disorder (BD) is a severe and multifactorial disease, with onset usually in young adulthood, which follows a progressive course throughout life. Replicated epidemiological studies have suggested inflammatory mechanisms and neuroimmune risk factors as primary contributors to the onset and development of BD. While not all patients display overt markers of inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease and seems to be mood phase dependent, likely explaining the heterogeneity of findings observed in this population. As the brain's immune cells, microglia orchestrate the brain's immune response and play a critical role in maintaining the brain's health across the lifespan. Microglia are also highly sensitive to environmental changes and respond to physiological and pathological events by adapting their functions, structure, and molecular expression. Recently, it has been highlighted that instead of a single population of cells, microglia comprise a heterogeneous community with specialized states adjusted according to the local molecular cues and intercellular interactions. Early evidence has highlighted the contribution of microglia to BD neuropathology, notably for severe outcomes, such as suicidality. However, the roles and diversity of microglial states in this disease are still largely undermined. This review brings an updated overview of current literature on the contribution of neuroimmune risk factors for the onset and progression of BD, the most prominent neuroimmune abnormalities (including biomarker, neuroimaging, ex vivo studies) and the most recent findings of microglial involvement in BD neuropathology. Combining these different shreds of evidence, we aim to propose a unifying hypothesis for BD pathophysiology centered on neuroimmune abnormalities and microglia. Also, we highlight the urgent need to apply novel multi-system biology approaches to characterize the diversity of microglial states and functions involved in this enigmatic disorder, which can open bright perspectives for novel biomarkers and therapeutic discoveries.
Collapse
Affiliation(s)
- Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
| | - Capri Eyres
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leonie Blöbaum
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Antonia Landwehr
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Women Health Research Institute, Vancouver, British Columbia, Canada
- Brain Health Cluster at the Institute on Aging & Lifelong Health (IALH), Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Molecular Medicine, Université Laval, Québec City, Quebec, Canada
| |
Collapse
|
3
|
Wu X, Zhou Y, Xi Y, Zhou H, Tang Z, Xiong L, Qin D. Polyphenols: Natural Food-Grade Biomolecules for the Treatment of Nervous System Diseases from a Multi-Target Perspective. Pharmaceuticals (Basel) 2024; 17:775. [PMID: 38931442 PMCID: PMC11206395 DOI: 10.3390/ph17060775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Polyphenols are the most prevalent naturally occurring phytochemicals in the human diet and range in complexity from simple molecules to high-molecular-weight polymers. They have a broad range of chemical structures and are generally categorized as "neuroprotective", "anti-inflammatory", and "antioxidant" given their main function of halting disease onset and promoting health. Research has shown that some polyphenols and their metabolites can penetrate the blood-brain barrier and hence increase neuroprotective signaling and neurohormonal effects to provide anti-inflammatory and antioxidant effects. Therefore, multi-targeted modulation of polyphenols may prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for difficult-to-treat neuropsychiatric disorders. Therefore, multi-target modulation of polyphenols has the potential to prevent the progression of neuropsychiatric disorders and provide a new practical therapeutic strategy for such nervous system diseases. Herein, we review the therapeutic benefits of polyphenols on autism-spectrum disorders, anxiety disorders, depression, and sleep disorders, along with in vitro and ex vivo experimental and clinical trials. Although their methods of action are still under investigation, polyphenols are still seldom employed directly as therapeutic agents for nervous system disorders. Comprehensive mechanistic investigations and large-scale multicenter randomized controlled trials are required to properly evaluate the safety, effectiveness, and side effects of polyphenols.
Collapse
Affiliation(s)
- Xinchen Wu
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yang Zhou
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Yujiang Xi
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Haimei Zhou
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Zhengxiu Tang
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
| | - Lei Xiong
- The First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.W.); (Y.Z.); (Y.X.)
| | - Dongdong Qin
- School of Basic Medical Science, Yunnan University of Chinese Medicine, Kunming 650500, China; (H.Z.); (Z.T.)
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
4
|
Tang SW, Helmeste DM, Leonard BE. COVID-19 as a polymorphic inflammatory spectrum of diseases: a review with focus on the brain. Acta Neuropsychiatr 2023; 35:248-269. [PMID: 36861428 DOI: 10.1017/neu.2023.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
There appear to be huge variations and aberrations in the reported data in COVID-19 2 years now into the pandemic. Conflicting data exist at almost every level and also in the reported epidemiological statistics across different regions. It is becoming clear that COVID-19 is a polymorphic inflammatory spectrum of diseases, and there is a wide range of inflammation-related pathology and symptoms in those infected with the virus. The host's inflammatory response to COVID-19 appears to be determined by genetics, age, immune status, health status and stage of disease. The interplay of these factors may decide the magnitude, duration, types of pathology, symptoms and prognosis in the spectrum of COVID-19 disorders, and whether neuropsychiatric disorders continue to be significant. Early and successful management of inflammation reduces morbidity and mortality in all stages of COVID-19.
Collapse
Affiliation(s)
- Siu Wa Tang
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Daiga Maret Helmeste
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
- Institute of Brain Medicine, Hong Kong, China
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, China
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
5
|
Olgiati P, Serretti A. Antidepressant emergent mood switch in major depressive disorder: onset, clinical correlates and impact on suicidality. Int Clin Psychopharmacol 2023; 38:342-351. [PMID: 37351585 PMCID: PMC10373846 DOI: 10.1097/yic.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/08/2023] [Indexed: 06/24/2023]
Abstract
Antidepressant (AD)- emergent mood switch (AEMS) is a common complication of bipolar depression. This study aimed to investigate the prevalence and clinical correlates of subthreshold AEMS (i.e. not fulfilling DSM criteria for hypomanic episodes) in major depressive disorder (MDD) and, prognostically, its impact on AD treatment outcome and suicidality. The study involved 425 outpatients with MDD followed during the acute phase (12 weeks) and continuation (weeks 13-28) AD treatment. AEMS was assessed through the Altman Self-Rating Mania scale (ASRM ≥ 6). Several clinical features differentiated individuals with or without subthreshold AEMS (n = 204 vs. 221): negative self-perception [odds ratio (OR) 1.017-1.565]; panic disorder (OR 1.000-1.091); subthreshold hypomanic episodes (OR 1.466-13.352); childhood emotional abuse (OR 1.053-2.447); lifetime suicidal behaviour (OR 1.027-1.236); AD-related remission (χ 2 = 22.903 P < 0.0001) and suicide ideation (χ 2 = 16.701 P < 0.0001). In AEMS earlier onset showed a strong correlation with bipolar spectrum disorder (overall score: P = 0.0053; mixed depression: P = 0.0154; subthreshold hypomania: P = 0.0150) whereas late-onset was associated with more severe suicidal behaviour ( P < 0.001). In conclusion, our results demonstrate that subthreshold mood switches occur frequently in unipolar depression during acute AD treatment as well as in continuation phase. Time of switch onset seems to have the greatest diagnostic and prognostic value.
Collapse
Affiliation(s)
- Paolo Olgiati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
6
|
Langan MT, Smith DA, Verma G, Khegai O, Saju S, Rashid S, Ranti D, Markowitz M, Belani P, Jette N, Mathew B, Goldstein J, Kirsch CFE, Morris LS, Becker JH, Delman BN, Balchandani P. Semi-automated Segmentation and Quantification of Perivascular Spaces at 7 Tesla in COVID-19. Front Neurol 2022; 13:846957. [PMID: 35432151 PMCID: PMC9010775 DOI: 10.3389/fneur.2022.846957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/10/2022] [Indexed: 01/12/2023] Open
Abstract
While COVID-19 is primarily considered a respiratory disease, it has been shown to affect the central nervous system. Mounting evidence shows that COVID-19 is associated with neurological complications as well as effects thought to be related to neuroinflammatory processes. Due to the novelty of COVID-19, there is a need to better understand the possible long-term effects it may have on patients, particularly linkage to neuroinflammatory processes. Perivascular spaces (PVS) are small fluid-filled spaces in the brain that appear on MRI scans near blood vessels and are believed to play a role in modulation of the immune response, leukocyte trafficking, and glymphatic drainage. Some studies have suggested that increased number or presence of PVS could be considered a marker of increased blood-brain barrier permeability or dysfunction and may be involved in or precede cascades leading to neuroinflammatory processes. Due to their size, PVS are better detected on MRI at ultrahigh magnetic field strengths such as 7 Tesla, with improved sensitivity and resolution to quantify both concentration and size. As such, the objective of this prospective study was to leverage a semi-automated detection tool to identify and quantify differences in perivascular spaces between a group of 10 COVID-19 patients and a similar subset of controls to determine whether PVS might be biomarkers of COVID-19-mediated neuroinflammation. Results demonstrate a detectable difference in neuroinflammatory measures in the patient group compared to controls. PVS count and white matter volume were significantly different in the patient group compared to controls, yet there was no significant association between PVS count and symptom measures. Our findings suggest that the PVS count may be a viable marker for neuroinflammation in COVID-19, and other diseases which may be linked to neuroinflammatory processes.
Collapse
Affiliation(s)
- Mackenzie T. Langan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- *Correspondence: Mackenzie T. Langan
| | - Derek A. Smith
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Gaurav Verma
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Oleksandr Khegai
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Sera Saju
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Shams Rashid
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Daniel Ranti
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
| | - Matthew Markowitz
- The Graduate Center, City University of New York, New York, NY, United States
| | - Puneet Belani
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brian Mathew
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jonathan Goldstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Claudia F. E. Kirsch
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- Department of Radiology, Zucker Hofstra School of Medicine at Northwell Health, Uniondale, NY, United States
| | - Laurel S. Morris
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- Department of Psychiatry at the Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jacqueline H. Becker
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bradley N. Delman
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priti Balchandani
- Biomedical Engineering and Imaging Institute at Mount Sinai School of Medicine, New York, NY, United States
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|