1
|
Woodward B, Hillyer LM, Monk JM. The Tolerance Model of Non-Inflammatory Immune Competence in Acute Pediatric Malnutrition: Origins, Evidence, Test of Fitness and Growth Potential. Nutrients 2023; 15:4922. [PMID: 38068780 PMCID: PMC10707886 DOI: 10.3390/nu15234922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The tolerance model rests on the thesis of a physiologically regulated, albeit unsustainable, systemic attempt to adapt to the catabolic challenge posed by acute prepubescent malnutrition even in its severe forms. The model centers on the immunological component of the attempt, positing reorientation toward a non-inflammatory form of competence in place of the classic paradigm of immunological attrition and exhaustion. The foundation of the model was laid in 1990, and sixteen years later it was articulated formally on the basis of a body of evidence centered on T cell cytokines and interventions with cytokine and hormonal mediators. The benefit originally suggested was a reduced risk of autoimmune pathologies consequent to the catabolic release of self-antigens, hence the designation highlighting immune tolerance. Herein, the emergence of the tolerance model is traced from its roots in the recognition that acute malnutrition elicits an endocrine-based systemic adaptive attempt. Thereafter, the growth of the evidence base supporting the model is outlined, and its potential to shed new light on existing information is tested by application to the findings of a published clinical study of acutely malnourished children. Finally, some knowledge gaps pertinent to the model are identified and its potential for growth consonant with evolving perceptions of immunobiology is illustrated.
Collapse
Affiliation(s)
- Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.M.H.); (J.M.M.)
| | | | | |
Collapse
|
2
|
Schneider A, Wood HN, Geden S, Greene CJ, Yates RM, Masternak MM, Rohde KH. Growth hormone-mediated reprogramming of macrophage transcriptome and effector functions. Sci Rep 2019; 9:19348. [PMID: 31852980 PMCID: PMC6920138 DOI: 10.1038/s41598-019-56017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Macrophages are an important component of the innate immune response. Priming and activation of macrophages is stimulated by cytokines (i.e IFNγ). However, growth hormone (GH) can also stimulate macrophage activation. Based on these observations, the goal of this work was to 1) to compare the transcriptome profile of macrophages activated in vitro with GH and IFNγ, and 2) to assess the impact of GH on key macrophage functional properties like reactive oxygen species (ROS) production and phagosomal proteolysis. To assess the global transcriptional and functional impact of GH on macrophage programming, bone marrow derived macrophages were treated with GH or IFNγ. Our data strongly support a potential link between GH, which wanes with age, and impaired macrophage function. The notable overlap of GH with IFNγ-induced pathways involved in innate immune sensing of pathogens and antimicrobial responses argue for an important role for GH in macrophage priming and maturation. By using functional assays that report on biochemical activities within the lumen of phagosomes, we have also shown that GH alters physiologically relevant processes such as ROS production and proteolysis. These changes could have far reaching impacts on antimicrobial capacity, signaling, and antigen presentation.
Collapse
Affiliation(s)
- Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Hillary N Wood
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Sandra Geden
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA
| | - Catherine J Greene
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland.
| | - Kyle H Rohde
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
3
|
Hillyer LM, Woodward B. Acutely malnourished weanling mice administered Flt3 ligand can support a cell-mediated inflammatory response. Cytokine 2018; 113:39-49. [PMID: 30539781 DOI: 10.1016/j.cyto.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/20/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
The main objective of this investigation was to determine whether, despite acute (wasting) deficits of dietary nitrogen and energy, weanling mice could respond to the dendritic cell hematopoietin, Fms-like tyrosine kinase 3 ligand (Flt3L), in terms of an index of cell-mediated inflammatory competence. Male and female C57BL/6J weanlings were used, initially 19 days of age, and malnutrition was produced using a nitrogen-deficient diet. In preliminary work ten daily subcutaneous 1.0 µg doses of murine Flt3L, comparable to a protocol effective in humans, expanded the splenic conventional dendritic cell compartment (CD11c+F4/80-/low) of healthy weanlings without affecting the numbers of lymphocytes, macrophages, or recoverable mononuclear cells. Two subsequent experiments showed that, despite advancing malnutrition, exogenous Flt3L was able both to exert its classic influence on splenic conventional dendritic cell numbers and to invigorate the attenuated primary splenic cell-mediated inflammatory response to sheep erythrocytes. A final experiment showed that the cytokine intervention did not affect dendritic cell maturity according to several phenotypic indices. The findings provide new support for the proposition that dendritic cell numbers are the first limiting factor in the weak cell-mediated immune competence of acute pre-pubescent malnutrition. More substantially, intervention with Flt3L sustained an inflammatory systemic immune character despite progressive weanling malnutrition and weight loss. This outcome provides new support of fundamental character for the Tolerance Model which posits that the cell-mediated inflammatory incompetence of acute pre-pubescent protein and energy deficits is a regulated adaptive attempt, the antithesis of the classic paradigm of unregulated immunological attrition.
Collapse
Affiliation(s)
- Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
4
|
Woodward B. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition. Int J Mol Sci 2016; 17:541. [PMID: 27077845 PMCID: PMC4848997 DOI: 10.3390/ijms17040541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022] Open
Abstract
Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition.
Collapse
Affiliation(s)
- Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
5
|
Kolling G, Wu M, Guerrant RL. Enteric pathogens through life stages. Front Cell Infect Microbiol 2012; 2:114. [PMID: 22937528 PMCID: PMC3427492 DOI: 10.3389/fcimb.2012.00114] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/08/2012] [Indexed: 01/30/2023] Open
Abstract
Enteric infections and diarrheal diseases constitute pervasive health burdens throughout the world, with rates being highest at the two ends of life. During the first 2–3 years of life, much of the disease burden may be attributed to infection with enteric pathogens including Salmonella, rotavirus, and many other bacterial, viral, and protozoan organisms; however, infections due to Clostridium difficile exhibit steady increases with age. Still others, like Campylobacter infections in industrialized settings are high in early life (<2 years old) and increase again in early adulthood (called the “second weaning” by some). The reasons for these differences undoubtedly reside in part in pathogen differences; however, host factors including the commensal intestinal microbial communities, immune responses (innate and acquired), and age-dependant shifts likely play important roles. Interplay of these factors is illustrated by studies examining changes in human gut microbiota with inflammatory bowel disease and irritable bowel syndrome. Recent gut microbial surveys have indicated dramatic shifts in gut microbial population structure from infants to young adults to the elders. An understanding of the evolution of these factors and their interactions (e.g., how does gut microbiota modulate the “inflamm-aging” process or vice versa) through the human life “cycle” will be important in better addressing and controlling these enteric infections and their consequences for both quality and quantity of life (often assessed as disability adjusted life-years or “DALYs”).
Collapse
Affiliation(s)
- Glynis Kolling
- Department of Internal Medicine, Division of Infectious Diseases and International Health, Center for Global Health, University of Virginia Charlottesville, VA, USA
| | | | | |
Collapse
|
6
|
A non-inflammatory form of immune competence prevails in acute pre-pubescent malnutrition: new evidence based on critical mRNA transcripts in the mouse. Br J Nutr 2011; 107:1249-53. [PMID: 21944220 DOI: 10.1017/s0007114511004399] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The declining inflammatory immune competence of acute (i.e. wasting) pre-pubescent protein-energy malnutrition has been regarded as reflecting an unregulated immunological disintegration. Recent evidence, however, suggests that malnutrition stimulates a regulated immunological reconfiguration to achieve a non-inflammatory form of competence, perhaps offering protection against autoimmune reactions - the 'Tolerance Model'. Our objective was to determine the influence of acute pre-pubescent malnutrition on the expression of genes critical to tolerogenic regulation. Male and female C57BL/6J mice, initially 19 d old, consumed a complete purified diet either ad libitum (age-matched controls) or in restricted daily quantities (mimicking marasmus), or consumed an isoenergetic low-protein diet ad libitum (mimicking incipient kwashiorkor) for 14 d (six animals per dietary group). Gene expression in the spleen, typically an inflammatory organ, and in the small intestine, a site designed for non-inflammatory defence, was assessed by real-time quantitative RT-PCR, and normalised to β-actin. In the spleen of the malnourished groups, both IL-10 and transforming growth factor-β1 mRNA expression increased compared with controls (P < 0.05), whereas mRNA expression of IL-12p40 decreased (P < 0.05). Conversely, malnutrition exerted no influence on the expression of mRNA for these cytokines in the small intestine (P>0.05). Moreover, forkhead box P3 mRNA expression, indicative of cell-based tolerogenic potential, was sustained in both the spleen and intestine of the malnourished groups (P>0.05). Thus, despite limited supplies of energy and substrates, the spleen shifted towards a non-inflammatory character and the intestine was sustained in this mode in advanced pre-pubescent weight loss. These findings provide the first support for the Tolerance Model at the level of mRNA transcript expression.
Collapse
|
7
|
Constitutive, but not challenge-induced, interleukin-10 production is robust in acute pre-pubescent protein and energy deficits: new support for the tolerance hypothesis of malnutrition-associated immune depression based on cytokine production in vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:117-35. [PMID: 21318019 PMCID: PMC3037065 DOI: 10.3390/ijerph8010117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/06/2011] [Accepted: 01/08/2011] [Indexed: 01/27/2023]
Abstract
The tolerance model of acute (i.e., wasting) pre-pubescent protein and energy deficits proposes that the immune depression characteristic of these pathologies reflects an intact anti-inflammatory form of immune competence that reduces the risk of autoimmune reactions to catabolically released self antigens. A cornerstone of this proposition is the finding that constitutive (first-tier) interleukin(IL)-10 production is sustained even into the advanced stages of acute malnutrition. The IL-10 response to inflammatory challenge constitutes a second tier of anti-inflammatory regulation and was the focus of this investigation. Weanling mice consumed a complete diet ad libitum, a low-protein diet ad libitum (mimicking incipient kwashiorkor), or the complete diet in restricted daily quantities (mimicking marasmus), and their second-tier IL-10 production was determined both in vitro and in vivo using lipopolysaccharide (LPS) and anti-CD3 as stimulants of innate and adaptive defences, respectively. Both early (3 days) and advanced (14 days) stages of wasting pathology were examined and three main outcomes emerged. First, classic in vitro systems are unreliable for discerning cytokine production in vivo. Secondly, in diverse forms of acute malnutrition declining challenge-induced IL-10 production may provide an early sign that anti-inflammatory control over immune competence is failing. Thirdly, and most fundamentally, the investigation provides new support for the tolerance model of malnutrition-associated inflammatory immune depression.
Collapse
|
8
|
Ishikawa LLW, França TGD, Chiuso-Minicucci F, Zorzella-Pezavento SFG, Marra NM, Pereira PCM, Silva CL, Sartori A. Dietary restriction abrogates antibody production induced by a DNA vaccine encoding the mycobacterial 65 kDa heat shock protein. GENETIC VACCINES AND THERAPY 2009; 7:11. [PMID: 19607696 PMCID: PMC2717961 DOI: 10.1186/1479-0556-7-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/16/2009] [Indexed: 11/17/2022]
Abstract
Background Protein-calorie malnutrition (PCM) is the most common type of malnutrition. PCM leads to immunodeficiency and consequent increased susceptibility to infectious agents. In addition, responses to prophylactic vaccines depend on nutritional status. This study aims to evaluate the ability of undernourished mice to mount an immune response to a genetic vaccine (pVAXhsp65) against tuberculosis, containing the gene coding for the heat shock protein 65 from mycobacteria. Methods Young adult female BALB/c mice were fed ad libitum or with 80% of the amount of food consumed by a normal diet group. We initially characterized a mice model of dietary restriction by determining body and spleen weights, hematological parameters and histopathological changes in lymphoid organs. The ability of splenic cells to produce IFN-gamma and IL-4 upon in vitro stimulation with LPS or S. aureus and the serum titer of specific IgG1 and IgG2a anti-hsp65 antibodies after intramuscular immunization with pVAXhsp65 was then tested. Results Dietary restriction significantly decreased body and spleen weights and also the total lymphocyte count in blood. This restriction also determined a striking atrophy in lymphoid organs as spleen, thymus and lymphoid tissue associated with the small intestine. Specific antibodies were not detected in mice submitted to dietary restriction whereas the well nourished animals produced significant levels of both, IgG1 and IgG2a anti-hsp65. Conclusion 20% restriction in food intake deeply compromised humoral immunity induced by a genetic vaccine, alerting, therefore, for the relevance of the nutritional condition in vaccination programs based on these kinds of constructs.
Collapse
Affiliation(s)
- Larissa Lumi Watanabe Ishikawa
- Department of Microbiology and Immunology, Biosciences Institute, São Paulo State University (UNESP), Botucatu, São Paulo, 18618-000, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Elevated blood interleukin-10 levels and undiminished systemic interleukin-10 production rate prevail throughout acute protein-energy malnutrition in the weanling mouse. Cytokine 2009; 47:126-31. [PMID: 19541500 DOI: 10.1016/j.cyto.2009.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/02/2009] [Accepted: 05/26/2009] [Indexed: 11/23/2022]
Abstract
The objectives were to determine if blood IL-10 levels rise during the early stages of acute (wasting) pre-pubescent malnutrition in metabolically distinct murine models known to depress inflammatory immune competence and whether systemic IL-10 production is affected in these pathologies. Weanling C57BL/6J mice were assigned to dietary protocols that elicited wasting pathologies mimicking the human diseases of marasmus (restricted-intake group) or incipient kwashiorkor (low-protein group). An age-matched control group also was included. Serum IL-10 bioactivities were assessed in the early (day 3) and advanced (day 14) stages of weight loss, and net systemic IL-10 production was assessed at the same stages of pathology by in vivo cytokine capture. Blood IL-10 levels were elevated in both malnourished groups relative to controls at days 3 and 14 (range of P values: 0.03-0.0001). Further, despite a limited supply of energy and nitrogenous substrates, the systemic IL-10 production rate was at least sustained in the malnourished groups and, in fact, was elevated in the marasmic group (P=0.05) throughout the progression of weight loss. IL-10 emerges as an anti-inflammatory mediator positioned to participate in initiating and upholding the depressed immune competence that accompanies acute pre-pubescent deficits of protein and energy.
Collapse
|
10
|
Salva S, Villena J, Racedo S, Alvarez S, Agüero G. Lactobacillus caseiaddition to a repletion diet-induced early normalisation of cytokine profils during a pneumococcal infection in malnourished mice. FOOD AGR IMMUNOL 2008. [DOI: 10.1080/09540100802247243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Susana Salva
- a Facultad de Bioquímica, Química y Farmacia , Universidad Nacional de Tucumán. Balcarce, San Miguel de Tucumán , Tucumán, Argentina
| | - Julio Villena
- a Facultad de Bioquímica, Química y Farmacia , Universidad Nacional de Tucumán. Balcarce, San Miguel de Tucumán , Tucumán, Argentina
- b Centro de Referencia para Lactobacilos (CERELA-CONICET) , San Miguel de Tucumán , Tucumán, Argentina
| | - Silvia Racedo
- b Centro de Referencia para Lactobacilos (CERELA-CONICET) , San Miguel de Tucumán , Tucumán, Argentina
| | - Susana Alvarez
- a Facultad de Bioquímica, Química y Farmacia , Universidad Nacional de Tucumán. Balcarce, San Miguel de Tucumán , Tucumán, Argentina
- b Centro de Referencia para Lactobacilos (CERELA-CONICET) , San Miguel de Tucumán , Tucumán, Argentina
| | - Graciela Agüero
- a Facultad de Bioquímica, Química y Farmacia , Universidad Nacional de Tucumán. Balcarce, San Miguel de Tucumán , Tucumán, Argentina
| |
Collapse
|