1
|
Balouei F, Stefanon B, Armone R, Randazzo A, Chiofalo B. Nutritional and Microbiome Effects of a Partial Substitution of Poultry Meat with Hydrolyzed Feather Meal in Dog Diets. Microorganisms 2025; 13:121. [PMID: 39858889 PMCID: PMC11767478 DOI: 10.3390/microorganisms13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Two extruded diets isoenergetic, isonitrogenous, and isolipidic were formulated with poultry meal (control diet) as the source of animal-origin proteins (160 g/kg of feed) or with 90 g/kg of poultry meal and 70 g/kg of hydrolyzed feather meal (treated diet) and were fed to eight dogs (four adult female and four adult male English Setters). Body condition, muscle condition, and fecal consistency scores and body weight were monitored at the beginning of the trial and after 3, 7, 15, and 45 days, and no significant differences (p > 0.05) were observed between diets and between sex. Fecal samples, collected at the same time points, were analyzed for microbiota composition. No significant difference was calculated for the alpha diversity index between control diet and treated diet, nor for the diets × times of sampling interaction and for sex. Beta diversity was different (p-value 0.001) between the control and treated groups. The beta diversity between sexes was significantly different (p-value = 0.047). Linear Discriminant analysis effect size analysis revealed significant differences between dietary groups, identifying Clostridiales, Coprococcus, Bacteroides plebeius, Eubacterium biforme, Catenibacterium, and Prevotella copri as more abundant in the CTR diet, while Fusobacterium, Bacteroides, Fusobacteriaceae, Paraprevotellaceae, Enterococcus, Faecalibacterium, Enterobacteriaceae, Peptostreptococcaceae, and Clostridium spiroforme were more abundant in the treated diet. Sex differences were also significant, with 25 taxa differing between male and female dogs. Overall, the study underscores the impact of HFM and sex on gut microbiota composition in dogs, with potential implications for dietary interventions and microbiome research.
Collapse
Affiliation(s)
- Fatemeh Balouei
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy;
| | - Bruno Stefanon
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via delle Scienze 206, 33100 Udine, Italy;
| | - Rosangela Armone
- Department of Veterinary Sciences, University of Messina, Via Palatucci Snc, 98168 Messina, Italy; (R.A.); (A.R.); (B.C.)
| | - Andrea Randazzo
- Department of Veterinary Sciences, University of Messina, Via Palatucci Snc, 98168 Messina, Italy; (R.A.); (A.R.); (B.C.)
| | - Biagina Chiofalo
- Department of Veterinary Sciences, University of Messina, Via Palatucci Snc, 98168 Messina, Italy; (R.A.); (A.R.); (B.C.)
| |
Collapse
|
2
|
Geary EL, Oba PM, Templeman JR, Swanson KS. Apparent total tract nutrient digestibility of frozen raw, freeze-dried raw, fresh, and extruded dog foods and their effects on serum metabolites and fecal characteristics, metabolites, and microbiota of healthy adult dogs. Transl Anim Sci 2024; 8:txae163. [PMID: 39687915 PMCID: PMC11648562 DOI: 10.1093/tas/txae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Various pet food diet formats are available, but many are poorly studied. The objective of this study was to determine the apparent total tract macronutrient digestibility (ATTD) of frozen raw, freeze-dried raw, fresh, and extruded dog foods and assess their effects on serum metabolites, hematology, and fecal characteristics, metabolites, and microbiota of healthy adult dogs. Ten beagle dogs (4.10 ± 0.74 yr) were used in a replicated 5 × 5 Latin square study to test the following diets: Chicken and Barley Recipe (extruded; Hill's Science Diet [EXT]), Chicken and White Rice Recipe (fresh; Just Food for Dogs [FRSH]), Chicken Formula (frozen raw; Primal [FRZN]), Chicken and Sorghum Hybrid Freeze-dried Formula (freeze-dried raw; Primal [HFD]), and Chicken Dinner Patties (freeze-dried raw; Stella & Chewy's [FD]). The experiment was composed of five 35-d periods, with each ending with fecal and blood collections. Data were analyzed using Mixed Models in SAS 9.4, with P < 0.05 being significant. Treatment was a fixed effect and dog a random effect. Protein ATTD was higher for FRZN and FD than other diets and higher for HFD than FRSH and EXT. Fat ATTD was higher for HFD than FRZN and EXT and lower for EXT than other diets. Fecal output was higher for dogs fed EXT than those fed other diets and higher for dogs fed FRSH than those fed FRZN, HFD, or FD. Fecal pH was lower in dogs fed EXT and FRSH than those fed other diets. Fecal scores were higher (looser) in dogs fed EXT and FRSH than those fed FRZN and FD. Fecal dry matter was higher in dogs fed FD than those fed other diets and higher in those fed FRZN and HFD than those fed EXT and FRSH. In general, fecal short-chain fatty acids were highest in dogs fed EXT, intermediate in dogs fed FRSH and HFD, and lowest in dogs fed FRZN and FD. Fecal isobutyrate and isovalerate were highest in dogs fed HFD, lowest in dogs fed FRSH, and intermediate in dogs fed other diets. Fecal primary bile acids were higher, while secondary bile acids were lower in dogs fed FRSH than in dogs fed other diets. Fecal microbiota were greatly impacted by diet, with alpha diversity, beta diversity, and relative abundances of over 40 bacterial genera being different among treatments. This study shows that dietary format may lead to great differences in nutrient digestibility and fecal characteristics, metabolites, and microbiota. More research is needed to distinguish the effects of ingredient source, processing method, and nutrient composition.
Collapse
Affiliation(s)
- Elizabeth L Geary
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Patrícia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Shah H, Trivedi M, Gurjar T, Sahoo DK, Jergens AE, Yadav VK, Patel A, Pandya P. Decoding the Gut Microbiome in Companion Animals: Impacts and Innovations. Microorganisms 2024; 12:1831. [PMID: 39338505 PMCID: PMC11433972 DOI: 10.3390/microorganisms12091831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
The changing notion of "companion animals" and their increasing global status as family members underscores the dynamic interaction between gut microbiota and host health. This review provides a comprehensive understanding of the intricate microbial ecology within companion animals required to maintain overall health and prevent disease. Exploration of specific diseases and syndromes linked to gut microbiome alterations (dysbiosis), such as inflammatory bowel disease, obesity, and neurological conditions like epilepsy, are highlighted. In addition, this review provides an analysis of the various factors that impact the abundance of the gut microbiome like age, breed, habitual diet, and microbe-targeted interventions, such as probiotics. Detection methods including PCR-based algorithms, fluorescence in situ hybridisation, and 16S rRNA gene sequencing are reviewed, along with their limitations and the need for future advancements. Prospects for longitudinal investigations, functional dynamics exploration, and accurate identification of microbial signatures associated with specific health problems offer promising directions for future research. In summary, it is an attempt to provide a deeper insight into the orchestration of multiple microbial species shaping the health of companion animals and possible species-specific differences.
Collapse
Affiliation(s)
- Harsh Shah
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Mithil Trivedi
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Tejas Gurjar
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Virendra Kumar Yadav
- Marwadi University Research Center, Department of Microbiology, Faculty of Sciences, Marwadi University, Rajkot 360003, India;
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India;
| | - Parth Pandya
- TREE Lab, Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara 391410, India (M.T.)
| |
Collapse
|
4
|
Belà B, Crisi PE, Pignataro G, Fusaro I, Gramenzi A. Effects of a Nutraceutical Treatment on the Intestinal Microbiota of Sled Dogs. Animals (Basel) 2024; 14:2226. [PMID: 39123751 PMCID: PMC11310959 DOI: 10.3390/ani14152226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Dog sledding is the main discipline of working dogs on snow, consisting of a team of dogs pulling a sled under the guidance of the owner. To carry out this sport, dogs must have adequate nutrition and vitamin and antioxidant supplementation to ensure that the physical effort is optimal. The present study evaluated the effect that sporting activity and stress have on the canine intestinal microbiota by dividing the dogs into two groups: a control group that did not take any nutraceutical products and the treated group to which a nutraceutical product was administered. The nutraceutical administered in this study is used in all cases of canine intestinal dysbiosis in which it is essential to quickly restore a balanced intestinal microbiota. The results obtained show that in dogs not taking the nutraceutical, there is an increase in bacteria, such as Streptococcus spp. and E. coli, considered enteropathogenic to the detriment of beneficial bacterial species such as Faecalibacterium spp., Turicibacter spp., Blautia spp., Fusobacterium spp., and Clostridium hiranonis. Instead, the group of dogs treated with nutraceutical displays a lower amount of enteropathogenic bacteria and a great increase in the other bacterial species considered beneficial for the animal's health. The results obtained in the present study show that Microbiotal cane® can be used in dogs subject to intense sporting activity by preventing severe alterations at intestinal ecosystem levels by maintaining intestinal bacterial composition as balanced as possible.
Collapse
Affiliation(s)
- Benedetta Belà
- Department of Veterinary Medicine, University of Teramo, Piano d’Accio, 64100 Teramo, Italy; (P.E.C.); (G.P.); (I.F.); (A.G.)
| | | | | | | | | |
Collapse
|
5
|
McGrath AP, Motsinger LA, Brejda J, Hancock L. Prebiotic fiber blend supports growth and development and favorable digestive health in puppies. Front Vet Sci 2024; 11:1409394. [PMID: 38872806 PMCID: PMC11173085 DOI: 10.3389/fvets.2024.1409394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction A healthy gastrointestinal (GI) microbiome has been shown to be essential for proper nutrient absorption and metabolism, maintenance of intestinal epithelial integrity and osmolarity, gut immunomodulation, and overall health. One of the most effective ways to promote a healthy GI microbiome is through dietary interventions, such as the addition of prebiotics. Prebiotics are substrates that are selectively utilized by the host GI microbiome through fermentation to confer a health benefit. However, research on prebiotics in companion animals is limited, especially in growing animals. Thus, this study was conducted to assess the effects of a novel prebiotic fiber blend on key parameters related to intestinal health and growth in puppies. Methods Twenty-two puppies at least 4 months of age but not older than 10 months were fed a commercially available dry food during a prefeed period, and then fed a similarly formulated test food with the addition of the prebiotic fiber blend for a minimum of 90 days. Serum and fecal samples were collected at the end of the prefeed period and throughout the test period. Results Puppies fed the test food grew as expected for puppies of this age. Complete blood count and serum chemistry analyses were clinically normal for all animals. Fecal score increased linearly, fecal moisture decreased linearly, and pH exhibited a cubic trend throughout the study duration. There was a linear increase in short-chain fatty acids throughout the study, which is associated with favorable digestive and overall health. The inflammatory cytokine interleukin-7 decreased linearly and interleukin-18 trended towards linear decrease. Conclusion This study showed that puppies continued to grow and develop normally, and experienced serum and stool characteristics indicative of improved GI health when fed a growth food fortified with a novel prebiotic fiber blend. Furthermore, these results contribute to the overall understanding of the effects of prebiotics on the GI health of growing companion animals.
Collapse
Affiliation(s)
| | | | - John Brejda
- Alpha Statistical Consulting, Lincoln, NE, United States
| | | |
Collapse
|
6
|
Phimister FD, Anderson RC, Thomas DG, Farquhar MJ, Maclean P, Jauregui R, Young W, Butowski CF, Bermingham EN. Using meta-analysis to understand the impacts of dietary protein and fat content on the composition of fecal microbiota of domestic dogs (Canis lupus familiaris): A pilot study. Microbiologyopen 2024; 13:e1404. [PMID: 38515236 PMCID: PMC10958101 DOI: 10.1002/mbo3.1404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
The interplay between diet and fecal microbiota composition is garnering increased interest across various host species, including domestic dogs. While the influence of dietary macronutrients and their associated microbial communities have been extensively reviewed, these reviews are descriptive and do not account for differences in microbial community analysis, nor do they standardize macronutrient content across studies. To address this, a meta-analysis was performed to assess the impact of dietary crude protein ("protein") and dietary crude fat ("fat") on the fecal microbiota composition in healthy dogs. Sixteen publications met the eligibility criteria for the meta-analysis, yielding a final data set of 314 dogs. Diets were classed as low, moderate, high, or supra in terms of protein or fat content. Sequence data from each publication were retrieved from public databases and reanalyzed using consistent bioinformatic pipelines. Analysis of community diversity indices and unsupervised clustering of the data with principal coordinate analysis revealed a small effect size and complete overlap between protein and fat levels at the overall community level. Supervised clustering through random forest analysis and partial least squares-discriminant analysis indicated alterations in the fecal microbiota composition at a more individual taxonomic level, corresponding to the levels of protein or fat. The Prevotellaceae Ga6A1 group and Enterococcus were associated with increasing levels of protein, while Allobaculum and Clostridium sensu stricto 13 were associated with increasing levels of fat. Interestingly, the random forest analyses revealed that Sharpea, despite its low relative abundance in the dog's fecal microbiome, was primarily responsible for the separation of the microbiome for both protein and fat. Future research should focus on validating and understanding the functional roles of these relatively low-abundant genera.
Collapse
Affiliation(s)
- Francis D. Phimister
- AgResearch LtdManawatu‐WhanganuiNew Zealand
- School of Agricultural and EnvironmentMassey UniversityManawatu‐WhanganuiNew Zealand
| | | | - David G. Thomas
- School of Agricultural and EnvironmentMassey UniversityManawatu‐WhanganuiNew Zealand
| | | | | | | | | | | | | |
Collapse
|
7
|
Monti M, Loureiro BA, Pedreira RS, Mendonça FS, Putarov TC, Villaverde C, Carciofi AC. Guava fibre characterization and effects on digestibility, fermentation products, gastrointestinal transit time and palatability of dry diets for dogs. J Anim Physiol Anim Nutr (Berl) 2024; 108:500-510. [PMID: 38044537 DOI: 10.1111/jpn.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/27/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
The use of fruit fibres as a way of reusing industrial waste is attractive and necessary, increasing the efficiency and reducing the environmental impact of the industry. This study characterized guava fibre as a fibrous ingredient and evaluated its effects when included in extruded diets for dogs on nutrient digestibility, faecal traits, fermentation products, gastrointestinal transit time and palatability. Four diets were formulated: CO (control diet, no fibrous ingredients added), GF3 (3% guava fibre), GF6 (6% guava fibre) and GF12 (12% guava fibre). The guava fibre was added to diets in replacement of maize, with small adjustments in the other ingredients to ensure similar contents of protein and fat. The diets were fed to 24 adult Beagle dogs (6 per diet) during 15 days for adaptation followed by 15 days for assessment of digestibility, fermentation end products and gastrointestinal transit time. The palatability of G6 and G12 treatments was evaluated against the CO by the two-pan test. Results were compared by analysis of variance and polynomial contrasts according to the guava fibre inclusion level (p < 0.05). The addition of guava fibre did not change nutrient intake except for the increase on dietary fibre (p < 0.001). Fibre inclusion resulted in a quadratic reduction in total tract apparent digestibility for dry matter, organic matter, crude protein and crude energy (p < 0.001), and on the metabolizable energy content of the foods (p < 0.001). Guava fibre addition did not change the faecal concentration of ammonia, lactic acid, faecal pH and branched chain fatty acids but it decreased acetic and propionic acids concentration (p < 0.01). The inclusion of 12% guava fibre did result in a faster transit time (p = 0.046) compared to the control diet. Guava fibre can be characterized as a novel insoluble non-fermentable fibre source that could be safely used in levels up to 12% in canine extruded diets.
Collapse
Affiliation(s)
- Mariana Monti
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Bruna A Loureiro
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Raquel Silveira Pedreira
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Fernanda S Mendonça
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Thaila C Putarov
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Aulus Cavalieri Carciofi
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
8
|
Li H, Bao L, Wang T, Guan Y. Dietary change influences the composition of the fecal microbiota in two rescued wild raccoon dogs ( Nyctereutes procyonoides). Front Microbiol 2024; 15:1335017. [PMID: 38404601 PMCID: PMC10884114 DOI: 10.3389/fmicb.2024.1335017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
The gut microbiota of wild animals, influenced by various factors including diet, nutrition, gender, and age, plays a critical role in their health and disease status. This study focuses on raccoon dogs (Nyctereutes procyonoides), a commonly found wild animal, and its gut microbiota composition in response to dietary shifts. The study aimed to compare the fecal bacterial communities and diversity of rescued raccoon dogs fed three different diet types (fish and amphibians, mixed protein with maize, and solely maize) using high-throughput sequencing. Results indicated that the dietary composition significantly influenced the gut microbiota, with notable differences in the abundance of several key phyla and genera. The study identified Firmicutes as the dominant phylum in all diet groups, with notable variations in the relative abundances of Bacteroidota, Proteobacteria, and Verrucomicrobiota. Notably, the group solely fed maize exhibited a significant increase in Proteobacteria, potentially linked to dietary fiber and lignin degradation. The genus-level analysis highlighted significant differences, with Lactobacillus and Bifidobacterium responding to dietary shifts. The genus Akkermansia in Verrucomicrobiota can be identified as a marker for assessing the health of the gut and deserves further investigation. Gender-specific differences in the gut microbiota were observed, highlighting the influence of individual variation. Furthermore, the analysis of bacterial functions suggested a connection between diet and host metabolism, emphasizing the need for further research to understand the complex mechanisms underlying the relationship between dietary composition and gut microbiota in wild animals. These findings provide crucial insights into conservation and rescue efforts for wild animals.
Collapse
Affiliation(s)
- Hailong Li
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, China
- College of Geography and Ocean Science, Yanbian University, Yanji, China
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Lei Bao
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, China
| | - Tianming Wang
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, China
| | - Yu Guan
- National Forestry and Grassland Administration Key Laboratory for Conservation Ecology in the Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Montserrat-Malagarriga M, Castillejos L, Salas-Mani A, Torre C, Martín-Orúe SM. The Impact of Fiber Source on Digestive Function, Fecal Microbiota, and Immune Response in Adult Dogs. Animals (Basel) 2024; 14:196. [PMID: 38254365 PMCID: PMC10812474 DOI: 10.3390/ani14020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
This study evaluated the impact of different fiber sources on intestinal function, fecal microbiota, and overall health in dogs. Twelve dogs were used in a crossover design, involving three periods of 6 weeks and three diets: a low-fiber diet (CTR), a cereal-fiber and beet-pulp-supplemented diet (BRA), and a fruit-fiber-supplemented diet (FRU). Each period included a digestibility trial and fecal and blood sampling in the last week. Short-chain fatty acids (SCFAs) and microbiota taxonomy (16S rRNA Illumina-MiSeq) and functionality (Shotgun-NovaSeq 6000) were determined in the feces. General biochemistry, complete blood cells, and lymphocyte subsets were also analyzed. The fiber-supplemented diets showed lower digestibility without significant changes in the fecal consistency. The BRA diet showed higher total SCFA concentrations (p = 0.056), with increases in alpha diversity and particular beneficial genera, such as Lachnospira, Bifidobacterium, and Faecalibacterium. The BRA microbiota was also associated with an overabundance of genes related to carbohydrate and amino acid metabolism. The FRU diet had a distinct impact on the microbiota composition and functionality, leading to higher levels of CD8 lymphocytes. These findings emphasize the importance of selecting the right fiber source when formulating dog diets, as it can have a differential impact on gut microbiota and animal health.
Collapse
Affiliation(s)
- Miquel Montserrat-Malagarriga
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (M.M.-M.); (S.M.M.-O.)
| | - Lorena Castillejos
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (M.M.-M.); (S.M.M.-O.)
| | - Anna Salas-Mani
- Affinity Pet Care, Hospitalet de Llobregat, 08902 Barcelona, Spain; (A.S.-M.); (C.T.)
| | - Celina Torre
- Affinity Pet Care, Hospitalet de Llobregat, 08902 Barcelona, Spain; (A.S.-M.); (C.T.)
| | - Susana M. Martín-Orúe
- Animal Nutrition and Welfare Service, Department of Animal and Food Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; (M.M.-M.); (S.M.M.-O.)
| |
Collapse
|
10
|
Marchi PH, Vendramini THA, Zafalon RVA, Príncipe LDA, Cesar CGL, Perini MP, Putarov TC, Gomes COMS, Balieiro JCDC, Brunetto MA. Effects of Increasing Levels of Purified Beta-1,3/1,6-Glucans on the Fecal Microbiome, Digestibility, and Immunity Variables of Healthy Adult Dogs. Microorganisms 2024; 12:113. [PMID: 38257940 PMCID: PMC10818568 DOI: 10.3390/microorganisms12010113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Yeast-purified beta-1,3/1,6-glucans (BG) can modulate dogs' immune systems and microbiome, but the optimal inclusion dose remains unknown. The aim of the study was to evaluate the effects of 0.0, 0.07, 0.14, and 0.28% inclusion of BG in a dry extruded diet on the digestibility, immunity, and fecal microbiota of healthy adult dogs. Eight male and female border collies [n = 4; body condition score (BCS) = 5] and English cocker spaniels (n = 4; BCS = 5), aged 3.5 ± 0.5 years, were randomly distributed into two 4 × 4 balanced Latin squares. Fecal microbiota (using 16S rRNA sequencing, Illumina®), apparent digestibility coefficients (ADC) of nutrients, fecal concentrations of short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA), ammoniacal nitrogen, lactic acid, IgA and pH, lymphocyte immunophenotyping, intensity and percentage of phagocytosis and oxidative burst were determined. No differences were observed in Faith (p = 0.1414) and Pielou-evenness (p = 0.1151) between treatments, but beta diversity was different between 0.0% and 0.14% BG groups (p = 0.047). Moreover, the Firmicutes phylum was the most abundant in all groups and exhibited the highest relative abundance after the consumption of 0.14% BG, a finding considered beneficial for the canine microbiome. The Erysipelotrichaceae and Ruminococcaceae families, along with the Faecalibacterium and Prevotella genera, considered favorable for their involvement in butyrate production and other metabolites, showed increased abundance after the consumption of 0.14% BG. The potentially pathogenic Proteobacteria phylum displayed lower abundance after the consumption of 0.14% BG. Fecal concentrations of the evaluated compounds and pH did not differ after consumption of the BG at all percentages. Higher crude protein ADC was found after 0.14 and 0.28% BG consumption (p < 0.0001), but no differences were found for other nutrients. Phagocytosis, oxidative burst, and lymphocyte populations were not modulated by any of the treatments; however, 0.14% BG modulated the lymphocyte T CD4+:CD8+ ratio (p = 0.0368), an important marker of immune system efficiency. The inclusion of 0.14% BG resulted in the best responses and was the best dose evaluated.
Collapse
Affiliation(s)
- Pedro Henrique Marchi
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Thiago Henrique Annibale Vendramini
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Rafael Vessecchi Amorim Zafalon
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Leonardo de Andrade Príncipe
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Cinthia Gonçalves Lenz Cesar
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Mariana Pamplona Perini
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | | | | | - Júlio Cesar de Carvalho Balieiro
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| | - Marcio Antonio Brunetto
- Pet Nutrology Research Center, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga 13635-000, Brazil; (P.H.M.); (R.V.A.Z.); (L.d.A.P.); (C.G.L.C.); (M.P.P.); (J.C.d.C.B.)
| |
Collapse
|
11
|
Hsu C, White B, Lambrakis L, Oba PM, He F, Utterback P, Parsons CM, de Godoy MRC. Green banana flour as a novel functional ingredient in retorted feline diets. J Anim Sci 2024; 102:skae039. [PMID: 38359903 PMCID: PMC10924536 DOI: 10.1093/jas/skae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Green banana flour (GBF) is a novel ingredient that is high in resistant starch and could be a dietary fiber source in companion animal nutrition. In addition, with its light brown color and pectin content, GBF could potentially serve as a natural color additive and thickening agent in pet food manufacturing. The purpose of this research is to evaluate different sources of GBF, the effect of GBF on texture and color in canned foods, and its effect on apparent total tract digestibility (ATTD), fecal characteristics, and fecal fermentative end-products in healthy adult cats. Prior to the feline study, different sources of GBF were analyzed for chemical composition, manufacturing properties, true metabolizable energy, and fermentability. For the feline feeding trial, all treatment diets were formulated to meet or exceed the Association of American Feed Control Officials (Association of American Feed Control Officials (AAFCO) 2020. Official Publication. Champaign, IL.) guidelines for adult cat maintenance. There were five dietary treatments: rice control (4% rice flour), potato control (4% dehydrated potato flakes), 1% GBF (1% GBF and 3% rice flour), 2% GBF (2% GBF and 2% rice flour), and 4% GBF. All treatment diets were analyzed for texture and color. The animal study was conducted using a completely randomized design with 39 adult domestic cats. There was a 7-d diet adaptation period followed by a baseline fresh fecal collection to determine fecal score, pH, short-chain fatty acid, branched-chain fatty acid, phenol, indole, ammonia, and microbiota. The treatment period lasted for 21 d and a total fecal collection was performed during the last 4 d of this period to determine the ATTD. A fresh fecal sample was also collected during the total fecal collection to evaluate fecal score, pH, metabolites, and microbiota. The MIXED model procedures of SAS version 9.4 were used for statistical analysis. Treatment diets containing GBF had a lower hardness from the texture profile analysis (P < 0.05). For color analysis, the 4% GBF diet was darker in color compared with the rice diet (P < 0.05). There was no difference in food intake, fecal output, or ATTD of macronutrients among the treatment groups (P > 0.05). There was no interaction of treatment and time or main effects shown in fecal score, pH, metabolites, or microbiota diversity (P > 0.05). In conclusion, adding GBF to canned diets may affect the texture and color of the product, but GBF was comparable to traditional carbohydrate sources, rice, and potato, from a nutritional aspect.
Collapse
Affiliation(s)
- Clare Hsu
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fei He
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pamela Utterback
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Carl M Parsons
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Maria R C de Godoy
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
12
|
Belchik SE, Oba PM, Lin CY, Swanson KS. Effects of a veterinary gastrointestinal low-fat diet on fecal characteristics, metabolites, and microbiota concentrations of adult dogs treated with metronidazole. J Anim Sci 2024; 102:skae297. [PMID: 39344678 PMCID: PMC11568346 DOI: 10.1093/jas/skae297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024] Open
Abstract
Antibiotics are known to cause loose stools, disrupt the fecal microbiota, and alter fecal bile acid (BA) profiles of dogs. Recovery may be aided by diet, but little research has been conducted. The objective of this study was to determine how a veterinary low-fat diet affected the fecal characteristics, metabolites, BA, and microbiota of dogs receiving antibiotics. Twenty-four healthy adult dogs [7.38 ± 1.95 yr; 7.67 ± 0.76 kg body weight (BW)] were used in an 8-wk completely randomized design study. During a 2-wk baseline, all dogs were fed a leading grocery brand diet (GBD). Over the next 2 wk, dogs were fed GBD and received metronidazole orally (20 mg/kg BW twice daily). At week 4, dogs were randomly allotted to one of two treatments [GBD or Blue Buffalo Natural Veterinary Diet GI Gastrointestinal Support Low-Fat (BB)] and fed for 4 wk. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, 7, and 8 for measurement of pH, dry matter content, and metabolite and BA concentrations. Fecal microbiota populations were analyzed using 16S rRNA gene amplicon sequencing and qPCR-based dysbiosis index (DI). All data were analyzed as repeated measures using the Mixed Models procedure of SAS 9.4, testing for effects of treatment, time, and treatment*time and significance set at P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools), reduced fecal short-chain fatty acid, branched-chain fatty acid, phenol, and indole concentrations, increased primary BA concentrations, and decreased secondary BA concentrations. Metronidazole also reduced fecal bacterial alpha diversity, altered the abundance of 58 bacterial genera, and increased DI. During antibiotic recovery, changes in fecal pH, dry matter percentage, and metabolite and immunoglobulin A concentrations were altered (P < 0.05) by diet. Fecal BA concentrations recovered quickly for all dogs. Change in lithocholic acid was affected (P < 0.0001) by diet, but other BA were not. Recovery of over 25 bacterial genera was impacted by diet (P < 0.05). While many bacterial taxa returned to baseline levels after 4 wk, others did not fully recover. DI and bacterial alpha diversity measures recovered quickly for all dogs but were not impacted by diet. In conclusion, metronidazole drastically altered the fecal microbiota and metabolites of dogs. While most variables returned to baseline by week 8, diet may be used to aid in recovery.
Collapse
Affiliation(s)
- Sara E Belchik
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Belchik SE, Oba PM, Lin CY, Swanson KS. Effects of a veterinary gastrointestinal diet on fecal characteristics, metabolites, and microbiota concentrations of adult cats treated with metronidazole. J Anim Sci 2024; 102:skae274. [PMID: 39279199 PMCID: PMC11465373 DOI: 10.1093/jas/skae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are used to treat gastrointestinal diseases or infections but are known to negatively affect stool quality and gut microbiota in cats and dogs. Therefore, identifying dietary strategies that may aid in antibiotic recovery is of interest. The objective of this study was to determine how a veterinary gastrointestinal diet affected the fecal characteristics, microbiota, and metabolite and bile acid (BA) concentrations of cats recovering from metronidazole administration. Twenty-four healthy adult cats were used in an 8-wk completely randomized design study. During a 2-wk baseline, all cats consumed a leading grocery brand diet (GBD). Over the next 2 wk, cats consumed GBD and received metronidazole (20 mg/kg body weight twice daily). At week 4, cats were randomly allotted to one of 2 treatments [GBD; BLUE Natural Veterinary Diet GI Gastrointestinal Support (BB)] and fed for 4 wk. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, 7, and 8 for measurement of pH, dry matter (DM) %, metabolites, and microbiota. Microbiota was analyzed by 16S rRNA gene sequencing and qPCR, which was used to calculate dysbiosis index. Data were analyzed as repeated measures using the Mixed Models procedure of SAS 9.4, testing for effects of diet, time and diet*time. Metronidazole had dramatic effects on all outcomes, including increased fecal scores (looser stools), reduced fecal pH and DM%, reduced fecal short-chain fatty acid, branched-chain fatty acid, ammonia, phenol, and indole concentrations, and altered fecal BA concentrations (increased primary BA; reduced secondary BA). Metronidazole reduced fecal bacterial alpha diversity, increased dysbiosis index, and altered the relative abundance of 78 bacterial genera. Fecal outcomes partially recovered over the next 4 wk, with some being impacted by diet. Fecal acetate concentrations were higher after metronidazole in cats fed BB. Dysbiosis index and alpha diversity measures slowly recovered over 4 wk, without diet differences. Recovery of 16 bacterial genera was impacted by diet. Fecal BA profiles demonstrated a prolonged impairment of primary to secondary BA conversion, with cholic acid being lower after metronidazole in cats fed BB. In conclusion, our data demonstrate that metronidazole is a powerful antibiotic that has long-lasting effects on the fecal microbiota and metabolites of cats. Outcome variables slowly recovered over time, but a gastrointestinal diet may aid in recovery.
Collapse
Affiliation(s)
- Sara E Belchik
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Kilburn-Kappeler LR, Doerksen T, Lu A, Palinski RM, Lu N, Aldrich CG. Evaluation of corn fermented protein on the fecal microbiome of cats. J Anim Sci 2024; 102:skae268. [PMID: 39276154 PMCID: PMC11537796 DOI: 10.1093/jas/skae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/13/2024] [Indexed: 09/16/2024] Open
Abstract
Co-products from the ethanol industry, such as distillers dried grains with solubles (DDGS), can provide alternative protein sources for pet food. Corn fermented protein (CFP) is produced using postfermentation technology to split the protein and yeast from fiber prior to drying. This results in a higher protein ingredient compared to DDGS, increasing its appeal for pet food. In addition, the substantial yeast component, at approximately 20% to 25%, may promote gut health through modulation of the microbiome and the production of short-chain fatty acids. Therefore, the objective of this study was to determine the effect of CFP on the fecal microbiome of cats. The 4 experimental diets included a control with no yeast (T1) and diets containing either 3.5% brewer's dried yeast (T2), 2.5% brewer's dried yeast plus 17.5% DDGS (T3), or 17.5% CFP (T4). All diets except T1 were formulated to contain 3.5% yeast. Diets were fed to adult cats (n = 11) in an incomplete 4 × 4 replicated Latin square design. Cats were adapted to diet for 9 d followed by a 5-d total fecal collection. During each collection period, fresh fecal samples from each cat were collected and stored at -80 °C until analysis. Fresh fecal samples (n = 44) were analyzed by 16S rRNA gene sequencing. Raw sequences were processed through Mothur (v.1.44.1). Community diversity was evaluated in R (v4.0.3). Relative abundance was analyzed within the 50 most abundant operational taxonomic unitsusing a mixed model of SAS (v9.4, SAS Institute, Inc., Cary, NC). Diet was the fixed effect and cat and period were random effects. Results were considered significant at P < 0.05. Alpha-diversity indices (Observed, Chao1, Shannon, Simpson) and beta-diversity metric (principal coordinate analysis) were similar for all treatments. Predominant phyla were Firmicutes (66%), Bacteroidetes (25%), Actinobacteria (8%), Proteobacteria (0.64%), and Desulfobacteria (0.54%). The relative abundance of Firmicutes and Actinobacteria was lower (P < 0.05) for T3 compared to T4 and T2, respectively. On a more specific phylogenic level, 17 genera resulted in differences (P < 0.05) among dietary treatments. Overall, this data indicates that compared to traditional yeast and distillers dried grains, CFP did not alter the overall diversity of the fecal microbiome of healthy adult cats over a 14-d period.
Collapse
Affiliation(s)
| | - Tyler Doerksen
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M Palinski
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA
| | - Charles G Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
15
|
Trewin I, Kathrani A. Pre-illness dietary risk factors in dogs with chronic enteropathy. J Vet Intern Med 2023; 37:2093-2101. [PMID: 37743693 PMCID: PMC10658591 DOI: 10.1111/jvim.16872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Dietary factors have been extensively studied as potential triggers of inflammatory bowel disease in humans. Scant literature exists regarding diet as a pre-illness risk factor in dogs with chronic enteropathy (CE). HYPOTHESIS To evaluate possible pre-illness dietary risk factors in dogs with CE. ANIMALS Ninety-five client-owned dogs; 48 with CE (25 presumptive and 23 confirmed) and 47 without a history of signs of gastrointestinal disease. METHODS Retrospective case-control questionnaire-based study at a veterinary referral teaching hospital in the United Kingdom. Diet history was obtained relating to the onset of initial presenting signs for all dogs. The main diet consumed underwent ingredient analysis and caloric distribution calculation using a guaranteed analysis convertor software. Length of time the main diet was fed and adherence to the World Small Animal Veterinary Association Global Nutrition Committee guidelines was also recorded. RESULTS The frequency of the main diet containing no carbohydrate was greater for controls (5/47 dogs, 11%) vs the combined presumptive and confirmed CE dogs (0/48 dogs, 0%; P = .05). Fewer dogs with confirmed CE were fed a main diet containing red meat as the primary protein source (2/23 dogs, 9%) vs controls (15/47 dogs, 32%; P = .03). A main diet moisture percentage of ≤14% as fed was significantly associated with confirmed CE in logistic regression analysis (OR 5.71 [95% CI: 1.18-27.69]; P = .03). CONCLUSIONS AND CLINICAL IMPORTANCE The presence of dietary carbohydrate, protein source, and dietary moisture content, or factors related to moisture content such as preservatives, might play a role as potential pre-illness dietary risk factors in dogs with CE.
Collapse
Affiliation(s)
- Isla Trewin
- Royal Veterinary CollegeUniversity of LondonLondonEngland
| | - Aarti Kathrani
- Royal Veterinary CollegeUniversity of LondonLondonEngland
| |
Collapse
|
16
|
Kilburn-Kappeler LR, Doerksen T, Lu A, Palinski RM, Lu N, Aldrich CG. Comparison of the Effect of Corn-fermented Protein and Traditional Ingredients on the Fecal Microbiota of Dogs. Vet Sci 2023; 10:553. [PMID: 37756074 PMCID: PMC10536651 DOI: 10.3390/vetsci10090553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Corn-fermented protein (CFP), a co-product from the ethanol industry, is produced using post-fermentation technology to split the protein and yeast from fiber prior to drying. The objective of this study was to determine the effect of CFP compared to traditional ingredients on the fecal microbiota of dogs. The four experimental diets included a control with no yeast and diets containing either 3.5% brewer's dried yeast, 2.5% brewer's dried yeast plus 17.5% distiller's dried grains with solubles, or 17.5% CFP. The experimental diets were fed to adult dogs (n = 12) in a 4 × 4 replicated Latin square design. Fresh fecal samples (n = 48) were analyzed by 16S metagenomic sequencing. Raw sequences were processed through mothur. Community diversity was evaluated in R. Relative abundance data were analyzed within the 50 most abundant operational taxonomic units using a mixed model of SAS. Alpha and beta diversity were similar for all treatments. Predominant phyla among all samples were Firmicutes (73%), Bacteroidetes (15%), Fusobacteria (8%), and Actinobacteria (4%). There were no quantifiable (p > 0.05) shifts in the predominant phyla among the treatments. However, nine genera resulted in differences in relative abundance among the treatments. These data indicate that compared to traditional ingredients, CFP did not alter the overall diversity of the fecal microbiota of healthy adult dogs over 14 days.
Collapse
Affiliation(s)
| | - Tyler Doerksen
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
| | - Rachel M. Palinski
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (T.D.); (A.L.); (R.M.P.)
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA;
| | - Charles G. Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
17
|
Palmqvist H, Höglund K, Ringmark S, Lundh T, Dicksved J. Effects of whole-grain cereals on fecal microbiota and short-chain fatty acids in dogs: a comparison of rye, oats and wheat. Sci Rep 2023; 13:10920. [PMID: 37407634 DOI: 10.1038/s41598-023-37975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Dietary fiber in dog food is reported to promote healthy gut microbiota, but few studies have investigated the effects of whole-grain cereals, which contain a variety of fiber types and other bioactive compounds. The aim of the present study was to compare the effects of diets containing whole-grain rye (RYE), oats (OAT) and wheat (WHE) on fecal microbiota and short-chain fatty acid production. Eighteen dogs were fed three experimental diets, each for four weeks, in a cross-over design. Fecal samples were collected at the end of each diet period. Analysis of 16S rRNA gene amplicons showed that family Lachnospiraceae and genus Bacteroides were the gut microbial groups most affected by diet, with lowest relative abundance following consumption of RYE and a trend for a corresponding increase in genus Prevotella_9. Fecal acetate and propionate concentrations were higher after consumption of RYE compared with OAT. In conclusion, rye had the strongest effect on gut microbiota and short-chain fatty acids, although the implications for dog gut health are not yet elucidated.
Collapse
Affiliation(s)
- Hanna Palmqvist
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Katja Höglund
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Ringmark
- Department of Anatomy, Physiology and Biochemistry, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Torbjörn Lundh
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
18
|
Bastos TS, Souza CMM, Kaelle GCB, do Nascimento MQ, de Oliveira SG, Félix AP. Diet supplemented with Saccharomyces cerevisiae from different fermentation media modulates the faecal microbiota and the intestinal fermentative products in dogs. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 37129233 DOI: 10.1111/jpn.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
This study aimed at evaluating the coefficients of total tract apparent digestibility (CTTAD) of nutrients, metabolisable energy (ME), diet palatability, faecal fermentative products and microbiota of dogs fed yeasts from different fermentation media and its fractions. Four diets were evaluated: control, without yeast (CO); diet with 10 g/kg brewer's yeast (BY); diet with 10 g/kg brewer's yeast + corn yeast (BCY); and diet with 10 g/kg BCY + cell wall fractions (BCYF). Twelve adult dogs were distributed in a randomized block design (periods). Each of the four diets was fed to a group of three dogs per period of 20 days, totalling two periods and six repetitions per treatment. Sixteen adult dogs were used for the palatability test, which compared the CO diet versus each one of the yeast diets. Data with normal distribution were subjected to analysis of variance (p < 0.05). Means were compared by orthogonal contrasts (p < 0.05): (A) CO diet versus BY, BCY and BCYF diets; (B) BY diet versus BCY and BCYF diets; (C) BCY diet versus BCYF diet. There was no difference in the CTTAD and ME of the diets (p > 0.05). Yeast diets reduced faecal odour and indole peak area (p < 0.05). Faecal short-chain fatty acids concentration was greater in dogs fed yeast diets compared to those fed the CO (p < 0.05). Yeast diets showed a higher intake ratio compared to the CO (p < 0.05). The BCY and BCYF diets resulted in a greater abundance of Bacteroides, Faecalibacterium, Coprococcus, and Phascolarctobacterium in relation to the CO (p < 0.05). Our results suggest that dietary yeast supplementation results in beneficial changes in intestinal functionality indicators, mainly with the combination of yeasts from brewers and corn fermentation media. In addition, yeast supplementation improves diet palatability without compromising nutrient digestibility.
Collapse
Affiliation(s)
- Taís Silvino Bastos
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Ananda Portella Félix
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
19
|
Zoelzer F, Schneider S, Dierkes PW. Time series cluster analysis reveals individual assignment of microbiota in captive tiger ( Panthera tigris) and wildebeest ( Connochaetes taurinus). Ecol Evol 2023; 13:e10066. [PMID: 37168984 PMCID: PMC10166651 DOI: 10.1002/ece3.10066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Fecal microbiota variability and individuality are well studied in humans and also in farm animals (related to diet- or disease-specific influences), but very little is known for exotic zoo-housed animals. This includes a wide range of species that differ greatly in microbiota composition and variation. For example, herbivorous species show a very similar and constant fecal microbiota over time, whereas carnivorous species appear to be highly variable in fecal microbial diversity and composition. Our objective was to determine whether species-specific and individual-specific clustering patterns were observed in the fecal microbiota of wildebeest (Connochaetes taurinus) and tigers (Panthera tigris). We collected 95 fecal samples of 11 animal individuals that were each sampled over eight consecutive days and analyzed those with Illumina MiSeq sequencing of the V3-V4 region of the 16SrRNA gene. In order to identify species or individual clusters, we applied two different agglomerative hierarchical clustering algorithms - a community detection algorithm and Ward's linkage. Our results showed that both, species-specific and individual-specific clustering is possible, but more reliable results were achieved when applying dynamic time warping which finds the optimal alignment between different time series. Furthermore, the bacterial families that distinguish individuals from each other in both species included daily occurring core bacteria (e.g., Acidaminococcaceae in wildebeests or Clostridiaceae in tigers) as well as individual dependent and more fluctuating bacterial families. Our results suggest that while it is necessary to consider multiple consecutive samples per individual, it is then possible to characterize individual abundance patterns in fecal microbiota in both herbivorous and carnivorous species. This would allow establishing individual microbiota profiles of animals housed in zoos, which is a basic prerequisite to quickly detect deviations and use microbiome analysis as a non-invasive and cost-effective tool in animal welfare.
Collapse
Affiliation(s)
- Franziska Zoelzer
- Bioscience Education and Zoo BiologyGoethe University FrankfurtFrankfurt am MainGermany
| | - Sebastian Schneider
- Bioscience Education and Zoo BiologyGoethe University FrankfurtFrankfurt am MainGermany
| | - Paul Wilhelm Dierkes
- Bioscience Education and Zoo BiologyGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
20
|
Souza CMM, Bastos TS, Kaelle GCB, Bortolo M, de Oliveira SG, Félix AP. Fine cassava fibre utilization as a dietary fibre source for dogs: Effects on kibble characteristics, diet digestibility and palatability, faecal metabolites and microbiota. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 36807651 DOI: 10.1111/jpn.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/18/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
The objective was to evaluate through three experiments the effects of a fine cassava fibre (CA: 106 µm) on kibble characteristics, coefficients of total tract apparent digestibility (CTTAD) of macronutrients, diet palatability and faecal metabolites and microbiota of dogs. Dietary treatments consisted of a control diet (CO), without an added fibre source and with 4.3% total dietary fibre (TDF), and a diet with 9.6% CA (106 µm), with 8.4% TDF. Experiment I evaluated the physical characteristics of the kibbles. The palatability test was evaluated in experiment II, which compared the diets CO versus CA. In experiment III, 12 adult dogs were randomly assigned to one of the two dietary treatments for 15 days, totalling six replicates/treatment, to assess the CTTAD of macronutrients; faecal characteristics, faecal metabolites and microbiota. The expansion index, kibble size and friability of diets with CA were higher than the CO (p < 0.05). Additionally, the CA diet presented higher palatability than the CO (p < 0.05) but did not affect CTTAD except for those of fibre (p > 0.05). Moreover, a greater faecal concentration of acetate, butyrate and total short-chain fatty acids (SCFA) and a lower faecal concentration of phenol, indole and isobutyrate were observed in dogs fed the CA diet (p < 0.05). Dogs fed with the CA diet presented a greater bacterial diversity and richness and a greater abundance of genera considered to be beneficial for gut health, such as Blautia, Faecalibacterium and Fusobacterium when compared to the CO group (p < 0.05). The inclusion of 9.6% of a fine CA improves the expansion of kibbles and diet palatability without affecting most of the CTTAD of nutrients. Besides, it improves the production of some SCFA and modulates the faecal microbiota of dogs.
Collapse
Affiliation(s)
- Camilla M M Souza
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Taís S Bastos
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Gislaine C B Kaelle
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Simone G de Oliveira
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ananda P Félix
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
21
|
Vecchiato CG, Golinelli S, Pinna C, Pilla R, Suchodolski JS, Tvarijonaviciute A, Rubio CP, Dorato E, Delsante C, Stefanelli C, Pagani E, Fracassi F, Biagi G. Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Front Microbiol 2023; 13:1050474. [PMID: 36713218 PMCID: PMC9878458 DOI: 10.3389/fmicb.2022.1050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Obesity is the most common nutritional disease in dogs, and is generally managed by caloric restriction. Gut microbiota alteration could represent a predisposing factor for obesity development, which has been associated with a low-grade inflammatory condition and an impaired antioxidant status. Besides, weight loss has been shown to influence the gut microbiota composition and reduce the inflammatory response and oxidative stress. Method However, these insights in canine obesity have not been fully elucidated. The aim of this study was to assess the differences in serum and inflammatory parameters, antioxidant status, fecal microbiota and bacterial metabolites in 16 obese and 15 lean client-owned dogs and how these parameters in obese may be influenced by caloric restriction. First, for 30 days, all dogs received a high-protein, high-fiber diet in amounts to maintain their body weight; later, obese dogs were fed for 180 days the same diet in restricted amounts to promote weight loss. Results Before the introduction of the experimental diet (T0), small differences in fecal microbial populations were detected between obese and lean dogs, but bacterial diversity and main bacterial metabolites did not differ. The fecal Dysbiosis Index (DI) was within the reference range (< 0) in most of dogs of both groups. Compared to lean dogs, obese dogs showed higher serum concentrations of acute-phase proteins, total thyroxine (TT4), and antioxidant capacity. Compared to T0, dietary treatment affected the fecal microbiota of obese dogs, decreasing the abundance of Firmicutes and increasing Bacteroides spp. However, these changes did not significantly affect the DI. The caloric restriction failed to exert significative changes on a large scale on bacterial populations. Consequently, the DI, bacterial diversity indices and metabolites were unaffected in obese dogs. Caloric restriction was not associated with a reduction of inflammatory markers or an improvement of the antioxidant status, while an increase of TT4 has been observed. Discussion In summary, the present results underline that canine obesity is associated with chronic inflammation. This study highlights that changes on fecal microbiota of obese dogs induced by the characteristics of the diet should be differentiated from those that are the consequence of the reduced energy intake.
Collapse
Affiliation(s)
- Carla Giuditta Vecchiato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy,*Correspondence: Carla Giuditta Vecchiato, ✉
| | - Stefania Golinelli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Carlo Pinna
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Rachel Pilla
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, United States
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Murcia, Spain
| | - Camila Peres Rubio
- Department of Animal and Food Science, School of Veterinary Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Elisa Dorato
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Costanza Delsante
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Claudio Stefanelli
- Dipartimento di Scienze per la Qualità della Vita, University of Bologna, Rimini, Italy
| | - Elena Pagani
- Monge & C. S.p.A., Monasterolo di Savigliano, Italy
| | - Federico Fracassi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Biagi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
22
|
Koziol SA, Oba PM, Soto-Diaz K, Steelman AJ, Suchodolski JS, Eckhardt ERM, Swanson KS. Effects of a Lactobacillus fermentation product on the fecal characteristics, fecal microbial populations, immune function, and stress markers of adult dogs. J Anim Sci 2023; 101:skad160. [PMID: 37208000 PMCID: PMC10237232 DOI: 10.1093/jas/skad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023] Open
Abstract
The objective of this study was to measure the effects of a Lactobacillus fermentation product (LBFP) on fecal characteristics and microbiota, blood biomarkers, immune function, and serum oxidative stress markers of adult dogs. Thirty adult beagle dogs [23 M, 7 F; mean age = 8.47 ± 2.65 yr old; mean BW = 15.43 ± 4.17 kg] were used in a completely randomized design study. All dogs were fed a basal diet to maintain BW for 5 wk, followed by baseline blood and fecal sample collections. Dogs remained on the same diet, but then were randomly assigned to a placebo (dextrose) or LBFP supplement (Limosilactobacillus fermentum and Lactobacillus delbrueckii). Both treatments were dosed at 4 mg/kg BW via gelatin capsule for 5 wk (n = 15/treatment). Fecal and blood samples were collected at that time. Change from baseline data were analyzed using the Mixed Models procedure of SAS 9.4, with P < 0.05 being significant and P < 0.10 being trends. Most circulating metabolites and immunoglobulins (Ig) were unaltered by treatment, but LBFP-supplemented dogs had lower changes in serum corticosteroid isoenzyme of alkaline phosphatase (P < 0.05), alanine aminotransferase (P < 0.10), and IgM (P < 0.10) than controls. The change in fecal scores tended to be lower (P = 0.068) in LBFP-supplemented dogs than controls, signifying firmer feces in LBFP-supplemented dogs. Regarding the fecal microbiota, alpha diversity indicators tended to be higher (P = 0.087) in LBFP-supplemented dogs than controls. One fecal bacterial phylum (Actinobacteriota) was altered by treatments, with its relative abundance tending to have a greater (P < 0.10) increase in controls than LBFP-supplemented dogs. Fifteen bacterial genera were altered (P < 0.05 or P < 0.10) by treatments, including relative abundances of fecal Peptoclostridium, Sarcina, and Faecalitalea that had a greater (P < 0.05) increase in controls than LBFP-supplemented dogs. In contrast, relative abundances of fecal Faecalibaculum, Bifidobacterium, and uncultured Butyricicoccaceae had a greater (P ≤ 0.05) increase in LBFP-supplemented dogs than controls. After week 5, dogs underwent transport stress (45-min vehicle ride) to assess oxidative stress markers. The change in serum superoxide dismutase after transport had a greater (P < 0.0001) increase in LBFP-supplemented dogs than controls. Our data suggest that LBFP may provide benefits to dogs by stabilizing stool quality, beneficially shifting fecal microbiota, and protecting against oxidative damage when subjected to stress.
Collapse
Affiliation(s)
- Samantha A Koziol
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Katiria Soto-Diaz
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
23
|
Oba PM, Carroll MQ, Sieja KM, de Souza Nogueira JP, Yang X, Epp TY, Warzecha CM, Varney JL, Fowler JW, Coon CN, Swanson KS. Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, metabolite concentrations, and microbiota populations of dogs subjected to exercise challenge. J Anim Sci 2023; 101:skac424. [PMID: 36573478 PMCID: PMC9890449 DOI: 10.1093/jas/skac424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The objective of this study was to determine the fecal characteristics, microbiota, and metabolites of dogs fed a Saccharomyces cerevisiae fermentation product (SCFP) and subjected to exercise challenge in untrained and trained states. Thirty-six adult dogs (18 male, 18 female; mean age: 7.1 yr; mean body weight: 29.0 kg) were randomly assigned to control or SCFP-supplemented (250 mg/dog/d) diets and fed for 10 wk. After 3 wk, dogs were given an exercise challenge (6.5 km run), with fresh fecal samples collected pre- and post-challenge. Dogs were then trained by a series of distance-defined running exercise regimens over 7 wk (two 6.4 km runs/wk for 2 wk; two 9.7 km runs/wk for 2 wk; two 12.9 km runs/wk for 2 wk; two 3.2 km runs/wk). Dogs were then given exercise challenge (16 km run) in the trained state, with fresh fecal samples collected pre- and post-challenge. Fecal microbiota data were evaluated using QIIME2, while all other data were analyzed using the Mixed Models procedure of SAS. Effects of diet, exercise, and diet*exercise were tested with P < 0.05 considered significant. Exercise challenge reduced fecal pH and ammonia in both treatments, and in untrained and trained dogs. After the exercise challenge in untrained dogs, fecal indole, isobutyrate, and isovalerate were reduced, while acetate and propionate were increased. Following the exercise challenge in trained dogs, fecal scores and butyrate decreased, while isobutyrate and isovalerate increased. SCFP did not affect fecal scores, pH, dry matter, or metabolites, but fecal Clostridium was higher in controls than in SCFP-fed dogs over time. SCFP and exercise challenge had no effect on alpha or beta diversity in untrained dogs. However, the weighted principal coordinate analysis plot revealed clustering of dogs before and after exercise in trained dogs. After exercise challenge, fecal Collinsella, Slackia, Blautia, Ruminococcus, and Catenibacterium were higher and Bacteroides, Parabacteroides, Prevotella, Phascolarctobacterium, Fusobacterium, and Sutterella were lower in both untrained and trained dogs. Using qPCR, SCFP increased fecal Turicibacter, and tended to increase fecal Lactobacillus vs. controls. Exercise challenge increased fecal Turicibacter and Blautia in both untrained and trained dogs. Our findings show that exercise and SCFP may affect the fecal microbiota of dogs. Exercise was the primary cause of the shifts, however, with trained dogs having more profound changes than untrained dogs.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meredith Q Carroll
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly M Sieja
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Xiaojing Yang
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tammi Y Epp
- Cargill, Incorporated, Wayzata, MN 55391, USA
| | | | | | | | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Belchik SE, Oba PM, Wyss R, Asare PT, Vidal S, Miao Y, Adesokan Y, Suchodolski JS, Swanson KS. Effects of a milk oligosaccharide biosimilar on fecal characteristics, microbiota, and bile acid, calprotectin, and immunoglobulin concentrations of healthy adult dogs treated with metronidazole. J Anim Sci 2023; 101:skad011. [PMID: 36617268 PMCID: PMC9912710 DOI: 10.1093/jas/skad011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In recent dog and cat experiments, a novel milk oligosaccharide biosimilar (GNU100) positively modulated fecal microbiota and metabolite profiles, suggesting benefits to gastrointestinal health. The objective of this study was to investigate the effects of GNU100 on the fecal characteristics, microbiota, and bile acid (BA) concentrations of healthy adult dogs treated with antibiotics. Twelve healthy adult female dogs (mean age: 3.74 ± 2.4 yr) were used in an 8-wk crossover design study (dogs underwent both treatments). All dogs were fed a control diet during a 2-wk baseline, then randomly allotted to 1 of 2 treatments (diet only or diet + 1% GNU100) for another 6 wk. From weeks 2 to 4, dogs were orally administered metronidazole (20 mg/kg BW) twice daily. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, and 8 for measurement of pH, dry matter, microbiota populations, and BA, immunoglobulin A, and calprotectin concentrations. On weeks 0, 4, and 8, blood samples were collected for serum chemistry and hematology analysis. All data were analyzed as repeated measures using the Mixed Models procedure of SAS version 9.4, with significance considered P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools) and modified (P < 0.05) fecal microbiota and BA profiles. Using qPCR, metronidazole reduced fecal Blautia, Fusobacterium, Turicibacter, Clostridium hiranonis, and Faecalibacterium abundances, and increased fecal Streptococcus and Escherichia coli abundances. DNA sequencing analysis demonstrated that metronidazole reduced microbial alpha diversity and influenced the relative abundance of 20 bacterial genera and families. Metronidazole also increased primary BA and reduced secondary BA concentrations. Most antibiotic-induced changes returned to baseline by week 8. Fecal scores were more stable (P = 0.01) in GNU100-fed dogs than controls after antibiotic administration. GNU100 also influenced fecal microbiota and BA profiles, reducing (P < 0.05) the influence of metronidazole on microbial alpha diversity and returning some fecal microbiota and secondary BA to baseline levels at a quicker (P < 0.05) rate than controls. In conclusion, our results suggest that GNU100 supplementation provides benefits to dogs treated with antibiotics, providing more stable fecal scores, maintaining microbial diversity, and allowing for quicker recovery of microbiota and secondary BA profiles which play an essential role in gut health.
Collapse
Affiliation(s)
- Sara E Belchik
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Romain Wyss
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Paul T Asare
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Sara Vidal
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Yong Miao
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Yemi Adesokan
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Zhang Y, Wang T, Wan Z, Bai J, Xue Y, Dai R, Wang M, Peng Q. Alterations of the intestinal microbiota in age-related macular degeneration. Front Microbiol 2023; 14:1069325. [PMID: 37089564 PMCID: PMC10113553 DOI: 10.3389/fmicb.2023.1069325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Purpose Age-related macular degeneration (AMD) is the leading cause of vision loss in those over the age of 50. Recently, intestinal microbiota has been reported to be involved in the pathogenesis of ocular diseases. The purpose of this study was to discover more about the involvement of the intestinal microbiota in AMD patients. Methods Fecal samples from 30 patients with AMD (AMD group) and 17 age- and sex-matched healthy controls (control group) without any fundus disease were collected. DNA extraction, PCR amplification, and 16S rRNA gene sequencing of the samples were performed to identify intestinal microbial alterations. Further, we used BugBase for phenotypic prediction and PICRUSt2 for KEGG Orthology (KO) as well as metabolic feature prediction. Results The intestinal microbiota was found to be significantly altered in the AMD group. The AMD group had a significantly lower level of Firmicutes and relatively higher levels of Proteobacteria and Bacteroidota compared to those in the control group. At the genus level, the AMD patient group showed a considerably higher proportion of Escherichia-Shigella and lower proportions of Blautia and Anaerostipes compared with those in the control group. Phenotypic prediction revealed obvious differences in the four phenotypes between the two groups. PICRUSt2 analysis revealed KOs and pathways associated with altered intestinal microbiota. The abundance of the top eight KOs in the AMD group was higher than that in the control group. These KOs were mainly involved in lipopolysaccharide biosynthesis. Conclusion The findings of this study indicated that AMD patients had different gut microbiota compared with healthy controls, and that AMD pathophysiology might be linked to changes in gut-related metabolic pathways. Therefore, intestinal microbiota might serve as non-invasive indicators for AMD clinical diagnosis and possibly also as AMD treatment targets.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Wang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianhao Bai
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yawen Xue
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rushun Dai
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Rushun Dai,
| | - Minli Wang
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Minli Wang,
| | - Qing Peng
- Department of Ophthalmology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Qing Peng,
| |
Collapse
|
26
|
Stavroulaki EM, Suchodolski JS, Xenoulis PG. Effects of antimicrobials on the gastrointestinal microbiota of dogs and cats. Vet J 2023; 291:105929. [PMID: 36427604 DOI: 10.1016/j.tvjl.2022.105929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Among several environmental factors, exposure to antimicrobials has been in the spotlight as a cause of profound and long-term disturbance of the intestinal microbiota. Antimicrobial-induced dysbiosis is a general term and includes decreases in microbial richness and diversity, loss of beneficial bacterial groups, blooms of intestinal pathogens and alterations in the metabolic functions and end-products of the microbiota. Mounting evidence from human and experimental animal studies suggest an association between antimicrobial-induced dysbiosis and susceptibility to gastrointestinal, metabolic, endocrine, immune and neuropsychiatric diseases. These associations are commonly stronger after early life exposure to antimicrobials, a period during which maturation of the microbiota and immune system take place in parallel. In addition, these associations commonly become stronger as the number of antimicrobial courses increases. The repeatability of these findings among different studies as well as the presence of a dose-dependent relationship between antimicrobial exposure and disease development collectively require careful consideration of the need for antimicrobial use. There are limited studies are available in dogs and cats regarding the long-term effects of antimicrobials on the microbiota and subsequent susceptibility to diseases. This review discusses the effects of antimicrobials on the gastrointestinal microbiota and the most important associations between antimicrobial-induced dysbiosis and diseases in humans, dogs, and cats.
Collapse
Affiliation(s)
- Evangelia M Stavroulaki
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, Karditsa 43131, Greece.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77845, TX, USA
| | - Panagiotis G Xenoulis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, Karditsa 43131, Greece; Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77845, TX, USA
| |
Collapse
|
27
|
Lin CY, Jha AR, Oba PM, Yotis SM, Shmalberg J, Honaker RW, Swanson KS. Longitudinal fecal microbiome and metabolite data demonstrate rapid shifts and subsequent stabilization after an abrupt dietary change in healthy adult dogs. Anim Microbiome 2022; 4:46. [PMID: 35915514 PMCID: PMC9341101 DOI: 10.1186/s42523-022-00194-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Diet has a large influence on gut microbiota diversity and function. Although previous studies have investigated the effect of dietary interventions on the gut microbiome, longitudinal changes in the gut microbiome, microbial functions, and metabolite profiles post dietary interventions have been underexplored. How long these outcomes require to reach a steady-state, how they relate to one another, and their impact on host physiological changes are largely unknown. To address these unknowns, we collected longitudinal fecal samples following an abrupt dietary change in healthy adult beagles (n = 12, age: 5.16 ± 0.87 year, BW: 13.37 ± 0.68 kg) using a crossover design. All dogs were fed a kibble diet (control) from d1-14, and then fed that same diet supplemented with fiber (HFD) or a protein-rich canned diet (CD) from d15-27. Fresh fecal samples were collected on d13, 16, 20, 24, and 27 for metabolite and microbiome assessment. Fecal microbial diversity and composition, metabolite profiles, and microbial functions dramatically diverged and stabilized within a few days (2 d for metabolites; 6 d for microbiota) after dietary interventions. Fecal acetate, propionate, and total short-chain fatty acids increased after change to HFD, while fecal isobutyrate, isovalerate, total branched-chain fatty acids, phenol, and indole increased after dogs consumed CD. Relative abundance of ~ 100 bacterial species mainly belonging to the Firmicutes, Proteobacteria, and Actinobacteria phyla increased in HFD. These shifts in gut microbiome diversity and composition were accompanied by functional changes. Transition to HFD led to increases in the relative abundance of KEGG orthology (KO) terms related to starch and sucrose metabolism, fatty acid biosynthesis, and amino sugar and nucleotide sugar metabolism, while transition to CD resulted in increased relative abundance of KO terms pertaining to inositol phosphate metabolism and sulfur metabolism. Significant associations among fecal microbial taxa, KO terms, and metabolites were observed, allowing for high-accuracy prediction of diet group by random forest analysis.
Conclusions
Longitudinal sampling and a multi-modal approach to characterizing the gastrointestinal environment allowed us to demonstrate how drastically and quickly dietary changes impact the fecal microbiome and metabolite profiles of dogs following an abrupt dietary change and identify key microbe-metabolite relationships that allowed for treatment prediction.
Collapse
|
28
|
The Nexus of Diet, Gut Microbiota and Inflammatory Bowel Diseases in Dogs. Metabolites 2022; 12:metabo12121176. [PMID: 36557214 PMCID: PMC9782517 DOI: 10.3390/metabo12121176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Canine inflammatory bowel diseases (IBD) are of increasing interest in veterinary medicine. They refer to complex and debilitating conditions of dogs' gastrointestinal tract. Although little evidence for causal inferences is currently available, it is believed that IBD pathophysiology entails intricate interactions between environmental factors, the intestinal immune system, and the microbial communities that colonize the gut. To better understand the mechanisms underlying these disorders, leveraging factors associated with the development of these diseases is imperative. Of these factors, emerging evidence supports the role of dietary patterns as key players influencing the composition and function of gut microbes, with subsequent effects on health and disease. In this review, we particularly focus on addressing IBD in dogs and discuss how specific nutrients may elicit or relieve gut inflammation. Gaining mechanistic insights into such interplay and the underpinning mechanisms is key to inferring dietary recommendations, and setting up new and promising therapeutics.
Collapse
|
29
|
The Faecal Microbiome of the Wild European Badger Meles meles: A Comparison Against Other Wild Omnivorous Mammals from Across the Globe. Curr Microbiol 2022; 79:363. [PMID: 36253492 PMCID: PMC9576668 DOI: 10.1007/s00284-022-03064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Here we investigate the faecal microbiome of wild European badgers Meles meles using samples collected at post-mortem as part of the All Wales Badger Found Dead study. This is the first published characterisation of the badger microbiome. We initially undertook a sex-matched age comparison between the adult and cub microbiomes, based on sequencing the V3–V4 region of the 16S rRNA gene. Analysis used the QIIME 2 pipeline utilising DADA2 and the Silva database for taxonomy assignment. Fusobacteria appeared to be more abundant in the microbiomes of the cubs than the adults although no significant difference was seen in alpha or beta diversity between the adult and cub badger microbiomes. Comparisons were also made against other wild, omnivorous, mammals’ faecal microbiomes using publicly available data. Significant differences were seen in both alpha and beta diversity between the microbiomes from different species. As a wildlife species of interest to the disease bovine tuberculosis, knowledge of the faecal microbiome could assist in identification of infected badgers. Our work here suggests that, if comparisons were made between the faeces of bTB infected and non-infected badgers, age may not have a significant impact on the microbiome.
Collapse
|
30
|
Choi SY, Choi BH, Cha JH, Lim YJ, Sheet S, Song MJ, Ko MJ, Kim NY, Kim JS, Lee SJ, Oh SI, Park WC. Insight into the Fecal Microbiota Signature Associated with Growth Specificity in Korean Jindo Dogs Using 16S rRNA Sequencing. Animals (Basel) 2022; 12:ani12192499. [PMID: 36230243 PMCID: PMC9558516 DOI: 10.3390/ani12192499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Gut microbiomes are well recognized to serve a variety of roles in health and disease, even though their functions are not yet completely understood. Previous studies have demonstrated that the microbiomes of juvenile and adult dogs have significantly different compositions and characteristics. However, there is still a scarcity of basic microbiome research in dogs. In this study, we aimed to advance our understanding by confirming the difference in fecal microbiome between young and adult dogs by analyzing the feces of 4-month and 16-month-old Jindo dogs, a domestic Korean breed. Microbiome data were generated and examined for the two age groups using 16S rRNA analysis. Comparison results revealed that the 16-month-old group presented a relatively high distribution of Bacteroides, whereas the 4-month-old group presented a comparatively high distribution of the Lactobacillus genus. Microbial function prediction analyses confirmed the relative abundance of lipid metabolism in 4-month-old dogs. In 16-month-old dogs, glucose metabolism was determined using microbial function prediction analyses. This implies that the functional microbiome changes similarly to the latter in adults compared with childhood. Overall, we discovered compositional and functional variations between genes of the gut microbial population in juveniles and adults. These microbial community profiles can be used as references for future research on the microbiome associated with health and development in the canine population.
Collapse
Affiliation(s)
- So-Young Choi
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Korea
| | - Bong-Hwan Choi
- Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hamyang 50000, Korea
| | - Ji-Hye Cha
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Korea
| | - Yeong-Jo Lim
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Korea
| | - Sunirmal Sheet
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Korea
| | - Min-Ji Song
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Korea
| | - Min-Jeong Ko
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Korea
| | - Na-Yeon Kim
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Korea
| | - Jong-Seok Kim
- Korean Jindo and Domestic Animals Center, Jindo-gun 58915, Korea
| | - Seung-Jin Lee
- Korean Jindo and Domestic Animals Center, Jindo-gun 58915, Korea
| | - Seok-Il Oh
- Korean Jindo and Domestic Animals Center, Jindo-gun 58915, Korea
| | - Won-Cheoul Park
- Animal Genome and Bioinformatics, National Institute of Animal Science, Rural Development Administration, Iseo-myeon, Wanju-gun 55365, Korea
- Correspondence: ; Tel.: +82-63-238-7317
| |
Collapse
|
31
|
Hydrolyzed chicken liver used as single source of animal protein in diet and its effect on cytokines, immunoglobulins, and fecal microbiota profile of adult dogs. PLoS One 2022; 17:e0271932. [PMID: 35867776 PMCID: PMC9307193 DOI: 10.1371/journal.pone.0271932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
Dogs with food allergies and enteropathies may require hydrolyzed diets to prevent or reduce clinical signs, therefore the protein sources used in these diets must be previously characterized and evaluated in healthy dogs. This study aimed to investigate the effects of a hydrolyzed chicken liver powder-based diet (HCLP) versus a poultry by-product meal and bovine meat and bone meal-based diet (Control), on complete blood count (CBC), cytokine, immunoglobulins responses (assessed on days 0, 15, 30 and 45), and fecal microbiota (assessed on day 45) in healthy adult dogs. The CBC did not differ between diets (P>0.05), remaining within reference range. Total plasma IL-4 concentrations were decreased over time independent of the dietary treatment (P<0.001). Total plasma IgA decreased on day 30 compared to days 0 and 45 in dogs fed the control diet (P<0.001). Total plasma IgE concentrations were reduced on days 30 and 45 in dogs fed the control diet, and on days 15 vs 30 and 15 vs 45 in dogs fed HCLP diet (P = 0.001). The 16S rRNA gene sequencing showed similar species richness and abundances of phyla and genera between diets (P>0.05). β-diversity principal coordinate analysis plots demonstrated that HCLP group had a higher similarity than control. Based on our results, healthy adult dogs fed a HCLP based diet maintained normal values for hematological and immunological characteristics, and fecal microbiota after 45 days of feeding.
Collapse
|
32
|
Singh A, Schnürer A. AcetoBase Version 2: a database update and re-analysis of formyltetrahydrofolate synthetase amplicon sequencing data from anaerobic digesters. Database (Oxford) 2022; 2022:6609150. [PMID: 35708586 PMCID: PMC9216588 DOI: 10.1093/database/baac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022]
Abstract
AcetoBase is a public repository and database of formyltetrahydrofolate synthetase (FTHFS) sequences. It is the first systematic collection of bacterial FTHFS nucleotide and protein sequences from genomes and metagenome-assembled genomes and of sequences generated by clone library sequencing. At its publication in 2019, AcetoBase (Version 1) was also the first database to establish connections between the FTHFS gene, the Wood–Ljungdahl pathway and 16S ribosomal RNA genes. Since the publication of AcetoBase, there have been significant improvements in the taxonomy of many bacterial lineages and accessibility/availability of public genomics and metagenomics data. The update to the AcetoBase reference database described here (Version 2) provides new sequence data and taxonomy, along with improvements in web functionality and user interface. The evaluation of this latest update by re-analysis of publicly accessible FTHFS amplicon sequencing data previously analysed with AcetoBase Version 1 revealed significant improvements in the taxonomic assignment of FTHFS sequences. Database URL: https://acetobase.molbio.slu.se
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| |
Collapse
|
33
|
Glucosylceramide Changes Bacterial Metabolism and Increases Gram-Positive Bacteria through Tolerance to Secondary Bile Acids In Vitro. Int J Mol Sci 2022; 23:ijms23105300. [PMID: 35628110 PMCID: PMC9141989 DOI: 10.3390/ijms23105300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Glucosylceramide is present in many foods, such as crops and fermented foods. Most glucosylceramides are not degraded or absorbed in the small intestine and pass through the large intestine. Glucosylceramide exerts versatile effects on colon tumorigenesis, skin moisture, cholesterol metabolism and improvement of intestinal microbes in vivo. However, the mechanism of action has not yet been fully elucidated. To gain insight into the effect of glucosylceramide on intestinal microbes, glucosylceramide was anaerobically incubated with the dominant intestinal microbe, Blautia coccoides, and model intestinal microbes. The metabolites of the cultured broth supplemented with glucosylceramide were significantly different from those of broth not treated with glucosylceramide. The number of Gram-positive bacteria was significantly increased upon the addition of glucosylceramide compared to that in the control. Glucosylceramide endows intestinal microbes with tolerance to secondary bile acid. These results first demonstrated that glucosylceramide plays a role in the modification of intestinal microbes.
Collapse
|
34
|
Lee GI, Skou Hedemann M, Borg Jensen B, Bach Knudsen KE. Influence of infection with Brachyspira hyodysenteriae on clinical expression, growth performance, and digestibility in growing pigs fed diets varying in type and level of fiber. J Anim Sci 2022; 100:6543948. [PMID: 35255495 PMCID: PMC9109007 DOI: 10.1093/jas/skac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Research on the effects of different fiber types and levels on infection with Brachyspira hyodysenteriae on growth performance and nutrients digestibility in pigs is scarce. The objective of the current study was to investigate the effects of infection with B. hyodysenteriae when feeding diets varying in soluble and insoluble dietary fiber (DF) on the expression of swine dysentery, growth performance, and digestibility of organic matter (OM) nutrients. A total of 96 growing pigs (26.9 ± 2.5 kg) were used for the experiment and divided into six blocks. The growing pigs were fed one of four diets for 12 wk: low fiber (LF), high fiber (HF), high soluble fiber (HS), and high insoluble fiber (HI). After 2 wk, half of the pigs were inoculated with B. hyodysenteriae. Half of the pigs in each group were euthanized at week 6 for the measurement of the apparent digestibility at the ileum, cecum, colon, and total tract. The remaining pigs were maintained to observe and analyze the clinical expression of fecal score and excretion of B. hyodysenteriae, growth performance, and total tract digestibility up to 12 wk. In the current study, the experimental diets did not influence the expression of infection in the pigs. The body weight and average daily gain (ADG) were in line with the results of clinical expression from week 4 to 6. However, the ADG of the infected pigs started to recover from week 6 (P < 0.05) and then recovered from week 8 to 12 (P < 0.05). The infection with B. hyodysenteriae did not impair apparent ileal digestibility (AID; P > 0.05), whereas the apparent digestibility of OM, total non-starch polysaccharide, non-cellulosic polysaccharide, and cellulose in the cecum of the infected pigs was higher than non-infected pigs (P < 0.05). The apparent colonic digestibility of ash and nitrogen was higher in non-infected pigs than in infected pigs (P < 0.05). The pigs fed the LF diet had a higher digestibility in all segments of the intestinal tract, whereas the HS diet had the lowest AID but higher or similar to the LF diet in the cecum, colon, and the total tract (P < 0.05). The pigs fed the HF and HI diets, with a high proportion of insoluble fiber, had a lower digestibility in the hindgut than the other two diets (P < 0.05). In conclusion, the infection with B. hyodysenteriae negatively influenced clinical signs of swine dysentery and growth performance but did not impair AID, and neither soluble nor insoluble DF influenced the expression of the infection.
Collapse
Affiliation(s)
- Geon Il Lee
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | | | - Bent Borg Jensen
- Department of Animal Science, Aarhus University, 8830 Tjele, Denmark
| | | |
Collapse
|
35
|
Feeding Fiber-Bound Polyphenol Ingredients at Different Levels Modulates Colonic Postbiotics to Improve Gut Health in Dogs. Animals (Basel) 2022; 12:ani12050627. [PMID: 35268196 PMCID: PMC8909809 DOI: 10.3390/ani12050627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Microbes present in the large intestine of humans and companion animals produce bioactive metabolites from host-ingested food. These bioactive metabolites can influence host health. A prior study in dogs that were healthy or had chronic enteritis/gastroenteritis showed that stool quality improved when they ate food containing a fiber bundle made from fibers of pecan shells, flax seed, cranberry, citrus, and beet. In addition, eating food containing the fiber bundle resulted in the gut bacteria shifting from digesting mainly protein to digesting mainly carbohydrates. The present study tested the impact of the fiber bundle at a lower range of concentrations in dogs. Fecal levels of several bioactive metabolites with beneficial antioxidant or anti-inflammatory properties increased after dogs consumed food with the fiber bundle, though no changes in the bacteria or their functional pathways were observed. Stool quality remained in the acceptable range. These results suggest that the gut bacteria were able to digest the fiber bundle to produce beneficial bioactive metabolites to improve host health. Abstract This study assessed changes in canine fecal metabolites and microbiota with the consumption of foods with increasing concentrations of a fiber bundle including pecan shells, flax seed, and powders of cranberry, citrus, and beet that was previously shown (at 14% w/w) to improve stool quality, shift fecal bacterial metabolism from proteolysis to saccharolysis, increase abundance of saccharolytic bacteria, and decrease abundance of proteolytic bacteria. In this study, 48 healthy adult dogs were split evenly to consume different inclusion levels (0%, 1%, 2%, and 4%) of the fiber bundle for a 31-day period following a 28-day pre-feed period. Increases from baseline in the fecal short-chain fatty acids butyric acid, valeric acid, and hexanoic acid were observed only in the dogs that consumed the food with the 4% fiber bundle. With addition of any level of the fiber bundle, increases were seen in the polyphenols hesperidin, hesperetin, ponciretin, secoisolariciresinol diglucoside, secoisolariciresinol, and enterodiol. However, fecal microbiota and their metabolism, and stool scores were largely unaffected by the fiber bundle. Overall, addition of the fiber bundle appeared to increase bioactive metabolites of increased antioxidant and anti-inflammatory potency for beneficial to health and, at levels ≥4%, shifted gut bacterial metabolism toward saccharolysis.
Collapse
|
36
|
Lappin MR, Zug A, Hovenga C, Gagne J, Cross E. Efficacy of feeding a diet containing a high concentration of mixed fiber sources for management of acute large bowel diarrhea in dogs in shelters. J Vet Intern Med 2022; 36:488-492. [PMID: 35174561 PMCID: PMC8965269 DOI: 10.1111/jvim.16360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Background Use of diets with increased concentrations of dietary fiber is thought to be beneficial in the management of dogs with large bowel diarrhea. Objective To determine whether feeding a diet with high concentrations of soluble and insoluble fiber to dogs with acute colitis would be superior to feeding a diet with typical fiber levels. Animals A total of 52 dogs with acute signs of large bowel diarrhea housed in an animal shelter were entered into the study; 11 dogs per diet completed the protocol. Methods In this randomized, prospective study, dogs with a fecal score of 4, 5, 6, or 7 and signs of acute colitis were fed a high fiber diet (4.54% soluble; 15.16% insoluble fiber) or a standard diet (0.6% soluble; 5.33% insoluble fiber) and fecal scores compared over the course of the study with significance defined as P < .05. Results All dogs fed the high fiber diet (11/11; 100%) had a fecal score <5 on the day of adoption or day 9, which was statistically different (P < .04) than dogs fed the standard diet (6/11 dogs; 55%; 95% CI: 23‐83). The proportions of stools with a fecal score >4 were greater (P = .0001) in the dogs fed the standard diet (29/48 samples; 60%; 95% CI: 45‐74) compared to the high fiber diet (8/50 samples; 16%; 95% CI: 7‐29). Conclusions and Clinical Importance The results support feeding the high fiber diet described herein to dogs with acute large bowel diarrhea.
Collapse
Affiliation(s)
- Michael R Lappin
- Department of Clinical Sciences, Center for Companion Animal Studies, Colorado State University, Fort Collins, Colorado, USA
| | - Amy Zug
- Department of Clinical Sciences, Center for Companion Animal Studies, Colorado State University, Fort Collins, Colorado, USA
| | - Claire Hovenga
- Department of Clinical Sciences, Center for Companion Animal Studies, Colorado State University, Fort Collins, Colorado, USA
| | - Jason Gagne
- Nestle Purina PetCare, St. Louis, Missouri, USA
| | - Emily Cross
- Nestle Purina PetCare, St. Louis, Missouri, USA
| |
Collapse
|
37
|
Isidori M, Corbee RJ, Trabalza-Marinucci M. Nonpharmacological Treatment Strategies for the Management of Canine Chronic Inflammatory Enteropathy—A Narrative Review. Vet Sci 2022; 9:vetsci9020037. [PMID: 35202290 PMCID: PMC8878421 DOI: 10.3390/vetsci9020037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammatory enteropathy (CIE) refers to a heterogeneous group of idiopathic diseases of the dog characterised by persistent gastrointestinal (GI) clinical signs. If conventional dietary treatment alone would be unsuccessful, management of CIE is traditionally attained by the use of pharmaceuticals, such as antibiotics and immunosuppressive drugs. While being rather effective, however, these drugs are endowed with side effects, which may impact negatively on the animal’s quality of life. Therefore, novel, safe and effective therapies for CIE are highly sought after. As gut microbiota imbalances are often associated with GI disorders, a compelling rationale exists for the use of nonpharmacological methods of microbial manipulation in CIE, such as faecal microbiota transplantation and administration of pre-, pro-, syn- and postbiotics. In addition to providing direct health benefits to the host via a gentle modulation of the intestinal microbiota composition and function, these treatments may also possess immunomodulatory and epithelial barrier-enhancing actions. Likewise, intestinal barrier integrity, along with mucosal inflammation, are deemed to be two chief therapeutic targets of mesenchymal stem cells and selected vegetable-derived bioactive compounds. Although pioneering studies have revealed encouraging findings regarding the use of novel treatment agents in CIE, a larger body of research is needed to address fully their mode of action, efficacy and safety.
Collapse
Affiliation(s)
- Marco Isidori
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy;
- Correspondence:
| | - Ronald Jan Corbee
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Yalelaan 108, 3584 CM Utrecht, The Netherlands;
| | | |
Collapse
|
38
|
Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes 2022; 13:1-21. [PMID: 33525961 PMCID: PMC7872077 DOI: 10.1080/19490976.2021.1875796] [Citation(s) in RCA: 702] [Impact Index Per Article: 234.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blautia is a genus of anaerobic bacteria with probiotic characteristics that occur widely in the feces and intestines of mammals. Based on phenotypic and phylogenetic analyses, some species in the genera Clostridium and Ruminococcus have been reclassified as Blautia, so to date, there are 20 new species with valid published names in this genus. An extensive body of research has recently focused on the probiotic effects of this genus, such as biological transformation and its ability to regulate host health and alleviate metabolic syndrome. This article reviews the origin and biological characteristics of Blautia and the factors that affect its abundance and discusses its role in host health, thus laying a theoretical foundation for the development of new functional microorganisms with probiotic properties.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,CONTACT Bingyong Mao
| | - Jiayu Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiaying Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,Shumao Cui School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi214122, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
39
|
Panasevich MR, Daristotle L, Quesnell R, Reinhart GA, Frantz NZ. Altered fecal microbiota, IgA, and fermentative end-products in adult dogs fed prebiotics and a nonviable Lactobacillus acidophilus. J Anim Sci 2021; 99:6433770. [PMID: 34962977 DOI: 10.1093/jas/skab347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/19/2021] [Indexed: 12/30/2022] Open
Abstract
A study investigating the use of a nonviable Lactobacillus acidophilus (NVL: Culbac; TransAgra, Storm Lake, IA) and a mixed prebiotic (MP) blend (beet pulp, fructooligosaccharide (FOS), mannanoligosaccharide (MOS), inulin, and kelp) was done to evaluate changes in fecal microbiota, fermentative end products, and gut immune health in healthy female and male adult Beagle dogs (n = 24; 5.74 ± 2.18 yr; 9.30 ± 1.32 kg). The study protocol was first approved by the facility's Institutional Animal Care and Use Committee (Summit Ridge Farms; Susquehanna, PA) and followed throughout. Each of four test diets (control, NVL, MP, and MP + NVL [formulated to crude protein 25%, crude fat 14%, crude fiber 10% as-fed]) was fed once daily to maintain body weight for 21 d in a randomized-crossover design (four treatment periods and four washout periods). Fecal samples were collected on days 0 and 21 only for immunoglobulin A (IgA) and microbiota evaluation (16S rRNA V4 region and qPCR for Escherichia coli and Bifidobacterium), and fecal fermentative end-products and fecal pH were assessed only on day 21. Over the test periods, apparent total tract nutrient digestibility and stool quality were assessed. Data were analyzed by ANOVA (SAS v9.4, Cary, NC) or Kruskal-Wallis for between-diet effects, and paired t-test or Wilcoxon for time effects. Statistical significance was set at P ≤ 0.05. Apparent total tract nutrient digestibility revealed feeding MP-containing diets resulted in lower (P < 0.05) crude protein and fat digestibility vs. control and NVL diets. When dogs were fed MP, they had lower (P < 0.05) fecal pH compared with control and NVL diets, whereas fecal pH was lower in (P < 0.05) MP + NVL- vs. NVL-fed dogs. Fecal E. coli was (P < 0.05) lower at day 21 vs. day 0 when dogs were fed MP. Fecal Fusobacterium spp. was lower (P < 0.05) in both MP diets vs. control. Fecal Lactobacillus spp. increased (P < 0.05) from baseline with MP. Both diets with MP elicited greater (P < 0.05) fecal acetate and propionate concentration vs. control diet. At day 21, fecal IgA was greater (P < 0.05) in MP and MP + NVL compared with NVL diet. Only when dogs were fed MP did they have increased (P < 0.05) fecal IgA from day 21 vs. day 0. The MP + NVL diet decreased (P < 0.05) fecal isovalerate, isobutyrate, phenol, and indole vs. control. Overall, the MP elicited the most changes on microbiota, fermentative end-products, and IgA. Further investigation into NVL's gut health benefits is warranted.
Collapse
|
40
|
Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Anim Microbiome 2021; 3:77. [PMID: 34736528 PMCID: PMC8567652 DOI: 10.1186/s42523-021-00141-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Through the rapid development in DNA sequencing methods and tools, microbiome studies on a various number of species were performed during the last decade. This advance makes it possible to analyze hundreds of samples from different species at the same time in order to obtain a general overview of the microbiota. However, there is still uncertainty on the variability of the microbiota of different animal orders and on whether certain bacteria within a species are subject to greater fluctuations than others. This is largely due to the fact that the analysis in most extensive comparative studies is based on only a few samples per species or per study site. In our study, we aim to close this knowledge gap by analyzing multiple individual samples per species including two carnivore suborders Canoidea and Feloidea as well as the orders of herbivore Perissodactyla and Artiodactyla held in different zoos. To assess microbial diversity, 621 fecal samples from 31 species were characterized by sequencing the V3-V4 region of the 16S rRNA gene using Illumina MiSeq. RESULTS We found significant differences in the consistency of microbiota composition and in fecal microbial diversity between carnivore and herbivore species. Whereas the microbiota of Carnivora is highly variable and inconsistent within and between species, Perissodactyla and Ruminantia show fewer differences across species boundaries. Furthermore, low-abundance bacterial families show higher fluctuations in the fecal microbiota than high-abundance ones. CONCLUSIONS Our data suggest that microbial diversity is significantly higher in herbivores than in carnivores, whereas the microbiota in carnivores, unlike in herbivores, varies widely even within species. This high variability has methodological implications and underlines the need to analyze a minimum amount of about 10 samples per species. In our study, we found considerable differences in the occurrence of different bacterial families when looking at just three and six samples. However, from a sample number of 10 onwards, these within-species fluctuations balanced out in most cases and led to constant and more reliable results.
Collapse
Affiliation(s)
- Franziska Zoelzer
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Anna Lena Burger
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Paul Wilhelm Dierkes
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
41
|
Souza CMM, Bastos TS, Kaelle GCB, Bortolo M, Vasconcellos RS, De Oliveira SG, Félix AP. Comparison of cassava fiber with conventional fiber sources on diet digestibility, fecal characteristics, intestinal fermentation products, and fecal microbiota of dogs. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
de Brito CBM, Menezes Souza CM, Bastos TS, Mesa D, Oliveira SG, Félix AP. Effect of dietary inclusion of dried apple pomace on faecal butyrate concentration and modulation of gut microbiota in dogs. Arch Anim Nutr 2021; 75:48-63. [PMID: 33475008 DOI: 10.1080/1745039x.2020.1867463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This research aimed to evaluate the apparent total tract digestibility (ATTD) of nutrients, metabolisable energy (ME) and palatability of the diet, as well as products of intestinal fermentation and faecal microbiota of dogs fed with dried apple. For this purpose, three experiments were performed. In Experiment I, digestibility and ME of four diets containing 0%, 3%, 6% and 9% dried apple were evaluated, in addition to the faecal characteristics of the dogs. The diets were offered to eight adult dogs, distributed in double Latin square (4 × 4), totalling eight repetitions per treatment. In Experiment II, products of intestinal fermentation and faecal microbiota from 16 adult dogs fed diets containing 0% and 9% dried apple for 30 d (n = 8) were evaluated. Finally, Experiment III compared the dietary preference of 0 vs. 9% dried apple using 15 adult dogs. The inclusion of dried apple in the diet (p < 0.05) showed a linear reduction in the ATTD of dry matter (DM), crude protein (CP), and acid hydrolysed ether extract (EEA), and a linear increase in the ATTD of total dietary fibre (TDF). Consumption of 9% of dried apple increased faecal butyrate and reduced propionate and ammonia (p < 0.05). With this diet, there was also an increase (p < 0.05) in the faecal concentration of Faecalibacterium, Erysipelatoclostridium, Blautia, and Bacteroides. No differences were found in the palatability of the diets. The inclusion of up to 9% of dried apple in the diet reduces the digestibility of nutrients and does not influence the dogs' food preference; however, it improves some indicators of dogs' intestinal functionality.
Collapse
Affiliation(s)
| | | | - Taís Silvino Bastos
- Department of Animal Sciences, Federal University of Paraná , Curitiba, Brazil
| | - Dany Mesa
- Department of Animal Sciences, Federal University of Paraná , Curitiba, Brazil
| | | | | |
Collapse
|
43
|
Paßlack N, Galliou F, Manios T, Lasaridi K, Tsiplakou E, Vahjen W, Zentek J. Impact of the dietary inclusion of dried food residues on the apparent nutrient digestibility and the intestinal microbiota of dogs. Arch Anim Nutr 2021; 75:311-327. [PMID: 34253098 DOI: 10.1080/1745039x.2021.1949229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The use of food residues for animal nutrition might imply ecological and economic advantages; however, their effects as a potential ingredient have not yet been evaluated in dogs. In the present study, four diets with 0, 5, 10 and 15% dried food residues (DFR), derived from hotel catering, were fed to 10 healthy adult dogs. At the end of each three-week feeding period, faeces and blood were collected. The apparent nutrient digestibility was calculated by the dietary inclusion of titanium dioxide as an inert marker. The results demonstrated that the apparent crude protein digestibility and ether extract digestibility decreased with increasing amounts of DFR in the diets (p < 0.05). In addition, an increase of the faecal concentrations of acetic acid, propionic acid, n-butyric acid and total short-chain fatty acids (SCFA) was observed (p < 0.05). Faecal ammonium and lactate concentrations, as well as plasma phenol and indole concentrations, were not linearly affected by the dietary inclusion of DFR. The relative abundance of Fusobacteria in the faeces of the dogs decreased, and the relative abundance of Actinobacteria and Bacteroidetes increased with increasing amounts of DFR in the diets (p < 0.05). In conclusion, the DFR seemed to be intensively fermented by the intestinal microbiota of the dogs, as indicated by the increased faecal SCFA concentrations and the shifts in the composition of the faecal microbiota. Dietary inclusion levels of up to 5% can be recommended based on our results, as the observed lower apparent crude protein and ether extract digestibility might limit the use of food residues for dogs at higher amounts.
Collapse
Affiliation(s)
- Nadine Paßlack
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Small Animal Clinic, Faculty of Veterinary Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Fenia Galliou
- Department of Agriculture, Hellenic Mediterranean University, Heraklion, Greece
| | | | - Katia Lasaridi
- Department of Geography, Harokopio University, Athens, Greece
| | - Eleni Tsiplakou
- Department of Animal Science, Laboratory of Nutritional Physiology and Feeding, School of Animal Biosciences, Agricultural University of Athens, Athens, Greece
| | - Wilfried Vahjen
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Zentek
- Institute of Animal Nutrition, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
44
|
Tanprasertsuk J, Shmalberg J, Maughan H, Tate DE, Perry LM, Jha AR, Honaker RW. Heterogeneity of gut microbial responses in healthy household dogs transitioning from an extruded to a mildly cooked diet. PeerJ 2021; 9:e11648. [PMID: 34249503 PMCID: PMC8254476 DOI: 10.7717/peerj.11648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background The gut microbiota (GM) is associated with canine health and can be impacted by diet. Dog owners in the U.S. have increasingly shown an interest in feeding their dogs a mildly cooked (MC) diet. However, its impact on canine GM and health remains largely unknown. Methods Healthy household dogs were tracked upon switching from various brands of extruded to MC diets for four weeks. A health assessment was completed and stool samples were collected by each owner before (day 0) and after the diet transition (day 28). Shotgun metagenomic sequencing was performed at both time points to characterize the GM. Results Dogs completed the study by either completing the health assessments (n = 31) or providing stool samples at both time points (n = 28). All owners reported either better or no change in overall health at the end of the study (61% and 39%, respectively), and none reported worse overall health. Defecation frequency was also reported to be lower (58%) or about the same (35%). Principal coordinate (PCo) analysis showed a significant shift (p = 0.004) in the β-diversity of the GM upon diet transition (34.2% and 10.3% explained by the first two axes). The abundances of 70 species increased after the diet change (adjusted p < 0.05), 67% and 24% of which belonged to the Lactobacillales and the Enterobacterales orders respectively. The abundances of 28 species decreased (adjusted p < 0.05), 46%, 18%, and 11% of which belonged to the Clostridiales, Bacillales, and Bacteroidales orders, respectively. Lower Lactobacillales and Enterobacterales, and higher Bacteroidales at baseline were associated with a greater shift along the PCo1 axis. Protein content of the baseline diet was correlated with the shift along the PCo1 axis (ρ = 0.67, p = 0.006). Conclusion Owners reported either improvement or no change in health in dogs transitioning from extruded kibble to MC diets for 4 weeks, but this report of health perception requires further exploration in a controlled trial. Diet change also led to a significant shift in the GM profile of healthy dogs. The magnitude of shift was associated with baseline GM and dietary protein, and warrants further examination of individualized responses and personalized nutrition in companion dogs. These results also support future investigation of the impact of a MC diet on health maintenance given its increasing popularity.
Collapse
Affiliation(s)
| | - Justin Shmalberg
- NomNomNow, Inc., Nashville, Tennessee, United States of America.,Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States
| | - Heather Maughan
- NomNomNow, Inc., Nashville, Tennessee, United States of America.,Ronin Institute, Montclair, New Jersey, United States of America
| | - Devon E Tate
- NomNomNow, Inc., Nashville, Tennessee, United States of America
| | - LeeAnn M Perry
- NomNomNow, Inc., Nashville, Tennessee, United States of America
| | - Aashish R Jha
- NomNomNow, Inc., Nashville, Tennessee, United States of America.,Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ryan W Honaker
- NomNomNow, Inc., Nashville, Tennessee, United States of America
| |
Collapse
|
45
|
Hashimoto-Hill S, Alenghat T. Inflammation-Associated Microbiota Composition Across Domestic Animals. Front Genet 2021; 12:649599. [PMID: 34239536 PMCID: PMC8257562 DOI: 10.3389/fgene.2021.649599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Domestic animals represent important resources for understanding shared mechanisms underlying complex natural diseases that arise due to both genetic and environmental factors. Intestinal inflammation, particularly inflammatory bowel disease (IBD), is a significant health challenge in humans and domestic animals. While the etiology of IBD is multifactorial, imbalance of symbiotic gut microbiota has been hypothesized to play a central role in disease pathophysiology. Advances in genomic sequencing and analytical pipelines have enabled researchers to decipher the composition of the intestinal microbiota during health and in the context of naturally occurring diseases. This review compiles microbiome genomic data across domestic species and highlights a common occurrence of gut microbiome dysbiosis during idiopathic intestinal inflammation in multiple species, including dogs, cats, horses, cows, and pigs. Current microbiome data obtained from animals with intestinal inflammation are mostly limited to taxonomical analyses in association with broad clinical phenotype. In general, a pathogen or pathosymbiont were not detected. Rather, functional potential of the altered microbiota has been suggested to be one of the key etiologic factors. Among the domestic species studied, canine analyses are currently the most advanced with incorporation of functional profiling of microbiota. Canine IBD parallels features of the disease in humans, thus canines represent a strong natural model for human IBD. While deeper analyses of metagenomic data, coupled with host molecular analyses are needed, comparative studies across domestic species can reveal shared microbial alterations and regulatory mechanisms that will improve our understanding of intestinal inflammation in both animals and humans.
Collapse
Affiliation(s)
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
46
|
Volpe LM, Putarov TC, Ikuma CT, Eugênio DA, Ribeiro PM, Theodoro S, Scarpim LB, Pacheco PDG, Carciofi AC. Orange fibre effects on nutrient digestibility, fermentation products in faeces and digesta mean retention time in dogs. Arch Anim Nutr 2021; 75:222-236. [PMID: 34148447 DOI: 10.1080/1745039x.2021.1925041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Fermentable fibres are used in commercial dog food to promote intestinal health by providing substrates for better metabolic activity of the gut microbiota. Brazil is the world's largest producer of oranges, from which it is possible to obtain fibre with a relevant soluble fraction. The present study compared the effects of two inclusions of orange fibre (1% and 3%, on as fed basis) with a negative control (without addition of fibre source) and two positive controls, beet pulp (3%) and purified inulin (1%), totalling five extruded diets for dogs. The experiment followed a randomised block design with 4 blocks of 10 dogs, 2 dogs per food in each block, totalling 8 dogs per diet. The apparent total tract nutrient digestibility was determined by total faecal collection. Faecal pH and fermentation product content were also measured. The digesta mean retention time (DMRT) was evaluated using plastic markers. The inclusion of a 3% fibre source in diets with 3% orange fibre and beet pulp reduced DM, OM, and energy digestibility (p < 0.05). Diets with 3% orange fibre, beet pulp and 1% inulin presented lower crude protein digestibility than the control (p < 0.05). Dietary fibre digestibility was higher for orange fibre-supplemented diets than inulin (p < 0.05). Beet pulp and 3% orange fibre inclusions resulted in increased moisture content in the faeces of dogs (p < 0.05) but did not alter DMRT. Total short-chain fatty acids were higher than the control in the faeces of dogs fed both orange fibre levels and the beet pulp-supplemented diet (p < 0.05), and the inulin diet-fed dogs presented intermediate values. Butyrate was higher in the faeces of dogs fed the diets supplemented with 1% and 3% orange fibre (p < 0.05), and similar values to the control were observed for beet pulp- and inulin-fed animals. Thus, it was concluded that orange fibre presented higher apparent total tract dietary fibre digestibility than beet pulp and had a fermentation profile in the colon that promoted the generation of butyrate, an effect not observed for inulin and beet pulp.
Collapse
Affiliation(s)
- Lara Mantovani Volpe
- Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista "Júlio De Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Thaila Cristina Putarov
- Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista "Júlio De Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Caroline Tiemi Ikuma
- Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista "Júlio De Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Débora Alberici Eugênio
- Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista "Júlio De Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Priscila Martins Ribeiro
- Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista "Júlio De Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Stephanie Theodoro
- Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista "Júlio De Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Lucas Bassi Scarpim
- Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista "Júlio De Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Peterson Dante Gavasso Pacheco
- Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista "Júlio De Mesquita Filho", Jaboticabal, São Paulo, Brazil
| | - Aulus Cavalieri Carciofi
- Faculdade De Ciências Agrárias E Veterinárias, Universidade Estadual Paulista "Júlio De Mesquita Filho", Jaboticabal, São Paulo, Brazil
| |
Collapse
|
47
|
Martínez-López LM, Pepper A, Pilla R, Woodward AP, Suchodolski JS, Mansfield C. Effect of sequentially fed high protein, hydrolyzed protein, and high fiber diets on the fecal microbiota of healthy dogs: a cross-over study. Anim Microbiome 2021; 3:42. [PMID: 34116725 PMCID: PMC8194187 DOI: 10.1186/s42523-021-00101-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/20/2021] [Indexed: 02/01/2023] Open
Abstract
Background Dietary content and environmental factors can shape the gut microbiota, and consequently, the way the gut microbiota metabolizes fats, carbohydrates, and proteins, affecting overall health of the host. We evaluated the impact of 3 diets (all meat [raw], high-insoluble fiber dry extruded diet and hydrolyzed protein dry extruded diet) on the gut microbiota of healthy dogs in a cross-over sequential study. Results We showed that diet can have an effect on the gut microbiome in dogs, which was influenced by the order of feeding. High-protein (all meat) diets were characterized by an increase in bacteria belonging to the Fusobacteria and Bacteroidetes phyla, whereas a high-insoluble fiber commercial diet correlated with increases in Firmicutes and Actinobacteria phyla. However, the individual dog’s baseline microbiota had the most impact on the magnitude and nature of the changes in response to dietary intervention. Conclusion Our results suggest that the dog fecal microbiota is driven by protein and fiber composition to different degrees in individual animals, and targeted modification of these patterns could be useful in the modulation of the gut microbiota in different diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00101-8.
Collapse
Affiliation(s)
- Lina María Martínez-López
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Amy Pepper
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, 3030, Australia.,Veterinary Specialists of Sydney, Miranda, NSW, 2228, Australia
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Andrew P Woodward
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, 3030, Australia
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Caroline Mansfield
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, The University of Melbourne, Werribee, VIC, 3030, Australia.
| |
Collapse
|
48
|
Atzler JJ, Sahin AW, Gallagher E, Zannini E, Arendt EK. Characteristics and properties of fibres suitable for a low FODMAP diet- an overview. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Barszcz M, Taciak M, Tuśnio A, Święch E, Skomiał J, Čobanová K, Grešáková Ľ. The effect of organic and inorganic zinc source, used with lignocellulose or potato fiber, on microbiota composition, fermentation, and activity of enzymes involved in dietary fiber breakdown in the large intestine of pigs. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Pilla R, Suchodolski JS. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet Clin North Am Small Anim Pract 2021; 51:605-621. [PMID: 33653538 DOI: 10.1016/j.cvsm.2021.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome is a functional organ, and responds metabolically to the nutrient composition within the diet. Fiber, starch, and protein content have strong effects on the microbiome composition, and changes in these nutrient profiles can induce rapid shifts. Due to functional redundancy of bacteria within microbial communities, important metabolites for health can be produced by different bacteria. Microbiome alterations associated with disease are of greater magnitude than those seen in healthy dogs on different diets. Dietary changes, addition of prebiotics, and probiotics, can be beneficial to improve microbial diversity and to normalize metabolite production in diseased dogs.
Collapse
Affiliation(s)
- Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA.
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, Texas A&M College of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843-4474, USA
| |
Collapse
|