1
|
Mwachaka PM, Gichangi P, Abdelmalek A, Odula P, Ogeng’o J. Maternal dietary folate imbalance alters cerebellar astrocyte morphology and density in offspring. IBRO Neurosci Rep 2025; 18:78-87. [PMID: 39844943 PMCID: PMC11751541 DOI: 10.1016/j.ibneur.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Maternal folate usage is essential for neurodevelopment, but its effects on cerebellar structure are unclear. Cerebellum undergoes a protracted period of development, making it sensitive to maternal nutritional imbalances. Astrocytes are necessary for cerebellar cortex structure and function. This study examined the impact of varying maternal dietary folate levels on the morphology and density of cerebellar astrocytes in rat offspring. Materials and methods Twelve adult female rats (Rattus norvegicus) were randomly allocated to one of four premixed food groups: standard (2 mg/kg), folate-deficient (0 mg/kg), folate-supplemented (8 mg/kg), or folate supra-supplemented (40 mg/kg). The rats began their diets 14 days before mating and continued throughout pregnancy and lactation. On postnatal day 35, five pups from each group were sacrificed and their cerebellums were processed for immunohistochemical examination. The cerebellar astrocytes were labelled with an antibody against Glial Fibrillary Acid Protein (GFAP). Results The offspring of the folate-deficient diet group exhibited few Bergmann and granule layer astrocytes. The Bergmann radial glial processes in this group were thinner, discontinuous, poorly organised, and had unclear end feet compared to controls. Conversely, the folate-supplemented group showed a predominance of well-organized Bergmann glia astrocytes with distinct, thicker, and densely packed processes, ending in clear conical pial foot processes. In the supra-supplemented group, there was evidence of astrogliosis in the form of large granule layer astrocytes with extended cytoplasmic projections. The Bergmann glia in this group were fewer and more varied in distribution and morphology. Some locations had many astrocytic processes, whereas others had none. Some processes were discontinuous and tortuous. The proportion of cerebellar cortical GFAP immunoreactive cells in folate-deficient diet, controls, folate-supplemented, and folate supra-supplemented groups were 2.09 ± 0.06 %, 4.69 ± 0.12 %, 10.14 ± 0.67 %, and 23.12 ± 3.48 %, respectively (p < 0.001). Conclusions These findings imply that both folate deficiency and excess supplementation in pregnancy can impair normal cerebellar astrocyte development, highlighting the importance of balanced folate levels during pregnancy for optimal neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Philip Maseghe Mwachaka
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Peter Gichangi
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Adel Abdelmalek
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Paul Odula
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Julius Ogeng’o
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| |
Collapse
|
2
|
Mwachaka PM, Gichangi P, Abdelmalek A, Odula P, Ogeng'o J. Maternal usage of varying levels of dietary folate affects the postnatal development of cerebellar folia and cortical layer volumes. Nutr Neurosci 2024; 27:1174-1184. [PMID: 38367228 DOI: 10.1080/1028415x.2024.2312304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
OBJECTIVE The cerebellum has a long, protracted developmental period; therefore, it is more sensitive to intrauterine and postnatal insults like nutritional deficiencies. Folate is an essential nutrient in fetal and postnatal brain development, and its supplementation during pregnancy is widely recommended. This study aimed to describe the effects of maternal folate intake on postnatal cerebellum development. METHODS Twelve adult female Rattus norwegicus (6-8 weeks old) rats were randomly assigned to one of four groups and given one of four premixed diets: a standard diet (2 mg/kg), a folate-deficient (folate 0 mg/kg), folate-supplemented (8 mg/kg), or folate supra-supplemented (40 mg/kg). The rats began consuming their specific diets 14 days before mating and were maintained on them throughout pregnancy and lactation. Five pups from each group were sacrificed, and their brains processed for light microscopic examination on postnatal days 1, 7, 21, and 35. The data gathered included the morphology of the cerebellar folia and an estimate of the volume of the cerebellar cortical layer using the Cavalieri method. RESULTS Folia of the folate-supplemented and supra-supplemented groups were thicker and showed extensive branching with sub-lobule formation. The folate-deficient diet group's folia were smaller, had more inter-folial spaces, or fused. When compared to the folate-deficient group, the volumes of the cerebellum and individual cerebellar cortical layers were significantly larger in the folate-supplemented and supra-supplemented groups (p<0.05). CONCLUSION Folate supplementation during pregnancy and lactation improves the degree and complexity of the cerebellar folia and the volumes of individual cerebellar cortical layers.
Collapse
Affiliation(s)
- Philip Maseghe Mwachaka
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Peter Gichangi
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Adel Abdelmalek
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Paul Odula
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Julius Ogeng'o
- Department of Human Anatomy and Medical Physiology, Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
3
|
Mwachaka PM, Gichangi P, Abdelmalek A, Odula P, Ogeng'o J. Impact of varying maternal dietary folate intake on cerebellar cortex histomorphology and cell density in offspring rats. Int J Dev Neurosci 2024; 84:406-422. [PMID: 38773676 DOI: 10.1002/jdn.10337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
The cerebellum has a long, protracted developmental period that spans from the embryonic to postnatal periods; as a result, it is more sensitive to intrauterine and postnatal insults like nutritional deficiencies. Folate is crucial for foetal and early postnatal brain development; however, its effects on cerebellar growth and development are unknown. The aim of this study was to examine the effects of maternal folate intake on the histomorphology and cell density of the developing cerebellum. Twelve adult female rats (rattus norvegicus) were randomly assigned to one of four premixed diet groups: standard (2 mg/kg), folate-deficient (0 mg/kg), folate-supplemented (8 mg/kg) or folate supra-supplemented (40 mg/kg). The rats started their diets 14 days before mating and consumed them throughout pregnancy and lactation. On postnatal days 1, 7, 21 and 35, five pups from each group were sacrificed, and their brains were processed for light microscopic analysis. Histomorphology and cell density of the external granule, molecular, Purkinje and internal granule layers were obtained. The folate-deficient diet group had smaller, dysmorphic cells and significantly lower densities of external granule, molecular, Purkinje and internal granule cells. Although the folate-enriched groups had greater cell densities than the controls, the folate-supplemented group had considerably higher cell densities than the supra-supplemented group. The folate supra-supplemented group had ectopic Purkinje cells in the internal granule cell layer. These findings imply that a folate-deficient diet impairs cellular growth and reduces cell density in the cerebellar cortex. On the other hand, folate supplementation increases cell densities, but there appears to be an optimal dose of supplementation since excessive folate levels may be detrimental.
Collapse
Affiliation(s)
| | - Peter Gichangi
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Adel Abdelmalek
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Paul Odula
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| | - Julius Ogeng'o
- Faculty of Health Sciences, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
4
|
Marinina KS, Bezprozvanny IB, Egorova PA. A chlorzoxazone-folic acid combination improves cognitive affective decline in SCA2-58Q mice. Sci Rep 2023; 13:12588. [PMID: 37537226 PMCID: PMC10400576 DOI: 10.1038/s41598-023-39331-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a polyglutamine disorder caused by a pathological expansion of CAG repeats in ATXN2 gene. SCA2 is accompanied by cerebellar degeneration and progressive motor decline. Cerebellar Purkinje cells (PCs) seem to be primarily affected in this disorder. The majority of the ataxia research is focused on the motor decline observed in ataxic patients and animal models of the disease. However, recent evidence from patients and ataxic mice suggests that SCA2 can also share the symptoms of the cerebellar cognitive affective syndrome. We previously reported that SCA2-58Q PC-specific transgenic mice exhibit anxiolytic behavior, decline in spatial memory, and a depressive-like state. Here we studied the effect of the activation of the small conductance calcium-activated potassium channels (SK channels) by chlorzoxazone (CHZ) combined with the folic acid (FA) on the PC firing and also motor, cognitive and affective symptoms in SCA2-58Q mice. We realized that CHZ-FA combination improved motor and cognitive decline as well as ameliorated mood alterations in SCA2-58Q mice without affecting the firing rate of their cerebellar PCs. Our results support the idea of the combination therapy for both ataxia and non-motor symptoms in ataxic mice without affecting the firing frequency of PCs.
Collapse
Affiliation(s)
- Ksenia S Marinina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia.
| |
Collapse
|
5
|
Cosín-Tomás M, Luan Y, Leclerc D, Malysheva OV, Lauzon N, Bahous RH, Christensen KE, Caudill MA, Rozen R. Moderate Folic Acid Supplementation in Pregnant Mice Results in Behavioral Alterations in Offspring with Sex-Specific Changes in Methyl Metabolism. Nutrients 2020; 12:nu12061716. [PMID: 32521649 PMCID: PMC7352339 DOI: 10.3390/nu12061716] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Fifteen to 20% of pregnant women may exceed the recommended intake of folic acid (FA) by more than four-fold. This excess could compromise neurocognitive and motor development in offspring. Here, we explored the impact of an FA-supplemented diet (5× FASD, containing five-fold higher FA than recommended) during pregnancy on brain function in murine offspring, and elucidated mechanistic changes. We placed female C57BL/6 mice for one month on control diets or 5× FASD before mating. Diets were maintained throughout pregnancy and lactation. Behavioural tests were conducted on 3-week-old pups. Pups and mothers were sacrificed at weaning. Brains and livers were collected to examine choline/methyl metabolites and immunoreactive methylenetetrahydrofolate reductase (MTHFR). 5× FASD led to hyperactivity-like behavior and memory impairment in 3-week-old pups of both sexes. Reduced MTHFR protein in the livers of FASD mothers and male pups resulted in choline/methyl metabolite disruptions in offspring liver (decreased betaine) and brain (decreased glycerophosphocholine and sphingomyelin in male pups, and decreased phosphatidylcholine in both sexes). These results indicate that moderate folate supplementation downregulates MTHFR and alters choline/methyl metabolism, contributing to neurobehavioral alterations. Our findings support the negative impact of high FA on brain development, and may lead to improved guidelines on optimal folate levels during pregnancy.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.-T.); (Y.L.); (D.L.); (R.H.B.); (K.E.C.)
| | - Yan Luan
- Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.-T.); (Y.L.); (D.L.); (R.H.B.); (K.E.C.)
| | - Daniel Leclerc
- Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.-T.); (Y.L.); (D.L.); (R.H.B.); (K.E.C.)
| | - Olga V. Malysheva
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY 14853, USA; (O.V.M.); (M.A.C.)
| | - Nidia Lauzon
- Drug Discovery Platform, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Renata H. Bahous
- Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.-T.); (Y.L.); (D.L.); (R.H.B.); (K.E.C.)
| | - Karen E. Christensen
- Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.-T.); (Y.L.); (D.L.); (R.H.B.); (K.E.C.)
| | - Marie A. Caudill
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY 14853, USA; (O.V.M.); (M.A.C.)
| | - Rima Rozen
- Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Center, McGill University, Montreal, QC H4A 3J1, Canada; (M.C.-T.); (Y.L.); (D.L.); (R.H.B.); (K.E.C.)
- Correspondence: ; Tel.: +15-14934-1934 (ext. 23839)
| |
Collapse
|
6
|
Oliveira-Ferreira AI, Major S, Przesdzing I, Kang EJ, Dreier JP. Spreading depolarizations in the rat endothelin-1 model of focal cerebellar ischemia. J Cereb Blood Flow Metab 2020; 40:1274-1289. [PMID: 31280632 PMCID: PMC7232780 DOI: 10.1177/0271678x19861604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Focal brain ischemia is best studied in neocortex and striatum. Both show highly vulnerable neurons and high susceptibility to spreading depolarization (SD). Therefore, it has been hypothesized that these two variables generally correlate. However, this hypothesis is contradicted by findings in cerebellar cortex, which contains highly vulnerable neurons to ischemia, the Purkinje cells, but is said to be less susceptible to SD. Here, we found in the rat cerebellar cortex that elevated K+ induced a long-lasting depolarizing event superimposed with SDs. Cerebellar SDs resembled those in neocortex, but negative direct current (DC) shifts and regional blood flow responses were usually smaller. The K+ threshold for SD was higher in cerebellum than in previous studies in neocortex. We then topically applied endothelin-1 (ET-1) to the cerebellum, which is assumed to cause SD via vasoconstriction-induced focal ischemia. Although the blood flow decrease was similar to that in previous studies in neocortex, the ET-1 threshold for SD was higher. Quantitative cell counting found that the proportion of necrotic Purkinje cells was significantly higher in ET-1-treated rats than sham controls even if ET-1 had not caused SDs. Our results suggest that ischemic death of Purkinje cells does not require the occurrence of SD.
Collapse
Affiliation(s)
- Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingo Przesdzing
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
7
|
Murray LK, Smith MJ, Jadavji NM. Maternal oversupplementation with folic acid and its impact on neurodevelopment of offspring. Nutr Rev 2019; 76:708-721. [PMID: 30010929 DOI: 10.1093/nutrit/nuy025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Folic acid, a B vitamin, is vital for early neurodevelopment and is well known for its protective effect against neural tube defects. Various national health agencies worldwide recommend that women of childbearing age take approximately 0.4 to 1 mg of supplemental folic acid daily to reduce the risk of neural tube defects in offspring. Several countries have tried to promote folic acid intake through mandatory fortification programs to reduce neural tube defects. Supplementation combined with mandatory fortification of foods has led to high levels of folic acid and related metabolites in women of childbearing age. Recent studies have reported that oversupplementation, defined as exceeding either the recommended dietary allowance or the upper limit of the daily reference intake of folic acid, may have negative effects on human health. This review examines whether maternal oversupplementation with folic acid affects the neurodevelopment of offspring. Data from animal studies suggest there are behavioral, morphological, and molecular changes in the brain of offspring. Additional studies are required to determine both the dosage of folic acid and the timing of folic acid intake needed for optimal neurodevelopment in humans.
Collapse
Affiliation(s)
- Lauren K Murray
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | - Mark J Smith
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | | |
Collapse
|
8
|
Mutavdzin S, Gopcevic K, Stankovic S, Jakovljevic Uzelac J, Labudovic Borovic M, Djuric D. The effect of folic acid administration on cardiac tissue matrix metalloproteinase activity and hepatorenal biomarkers in diabetic rats 1. Can J Physiol Pharmacol 2019; 97:893-901. [PMID: 31295411 DOI: 10.1139/cjpp-2019-0027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes severe complications. Thus, the aims of this study were to investigate the influence of DM and folic acid treatment on liver and renal biomarkers, and heart remodeling through evaluation of cardiac matrix metalloproteinase (MMP) activity. There were 4 groups: control (physiological saline 1 mL/kg, i.p., 28 days), DM (streptozotocin [STZ] 100 mg/kg in physiological saline, i.p., 1 day), folic acid (FA; 5 mg/kg, i.p., 28 days), and DM+FA (STZ 100 mg/kg, i.p., 1 day and folic acid 5 mg/kg, i.p., 28 days). Our results demonstrated increased aminotransferase and alkaline phosphatase activity, urea and creatinine concentration, and decreased albumin and fibrinogen concentration in the DM group. MMP-2 relative activity was elevated in the DM and FA groups; MMP-9 was decreased in the DM and increased in the FA group. The folic acid treatment of diabetic rats did not change aminotransferase activity; it alleviated the increase in alkaline phosphatase and the decrease in albumin and fibrinogen concentration, and reduced MMP-2 activity; however, it increased urea and creatinine concentration. In conclusion, folic acid treatment of diabetic rats has cardio- and hepato-protective effects. However, its dosing should be carefully considered because of possible renal damage.
Collapse
Affiliation(s)
- Slavica Mutavdzin
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Kristina Gopcevic
- Institute of Chemistry in Medicine "Prof. Dr. Petar Matavulj", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Stankovic
- Centre of Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - Jovana Jakovljevic Uzelac
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Labudovic Borovic
- Institute of Histology and Embryology "Aleksandar Dj. Kostic", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragan Djuric
- Institute of Medical Physiology "Richard Burian", Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Shao Y, Tan B, Shi J, Zhou Q. Methotrexate induces astrocyte apoptosis by disrupting folate metabolism in the mouse juvenile central nervous system. Toxicol Lett 2019; 301:146-156. [DOI: 10.1016/j.toxlet.2018.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 01/23/2023]
|
10
|
Yang NV, Pannia E, Chatterjee D, Kubant R, Ho M, Hammoud R, Pausova Z, Anderson GH. Gestational folic acid content alters the development and function of hypothalamic food intake regulating neurons in Wistar rat offspring post-weaning. Nutr Neurosci 2018; 23:149-160. [PMID: 29848222 DOI: 10.1080/1028415x.2018.1479628] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Folic acid plays an important role in early brain development of offspring, including proliferation and differentiation of neural stem cells known to impact the function of food intake regulatory pathways. Excess (10-fold) intakes of folic acid in the gestational diet have been linked to increased food intake and obesity in male rat offspring post-weaning.Objective: The present study examined the effects of folic acid content in gestational diets on the development and function of two hypothalamic neuronal populations, neuropeptide Y (NPY) and pro-opiomelanocortin (POMC), within food intake regulatory pathways of male Wistar rat offspring at birth and post-weaning.Results: Folic acid fed at 5.0-fold above recommended levels (5RF) to Wistar dams during pregnancy increased the number of mature NPY-positive neurons in the hypothalamus of male offspring, compared to control (RF), 0RF, 2.5RF, and 10RF at birth. Folic acid content had no effect on expression and maturation of POMC-positive neurons. Body weight and food intake were higher in all treatment groups (2.5-, 5.0-, and 10.0-fold folic acid) from birth to 9 weeks post-weaning compared to control. Increased body weight and food intake at 9-weeks post-weaning were accompanied by a reduced activation of POMC neurons in the arcuate nucleus (ARC).Conclusion: Gestational folic acid content modulates expression of mature hypothalamic NPY-positive neurons at birth and activation of POMC-positive neurons at 9-weeks post-weaning in the ARC of male Wistar rat offspring which may contribute to higher body weight and food intake later in life.
Collapse
Affiliation(s)
- Neil Victor Yang
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Emanuela Pannia
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Diptendu Chatterjee
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Mandy Ho
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Rola Hammoud
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Hospital for Sick Children, Toronto, ON, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|