1
|
Yau-Qiu ZX, Galmés S, Castillo P, Picó C, Palou A, Rodríguez AM. Maternal choline supplementation mitigates premature foetal weight gain induced by an obesogenic diet, potentially linked to increased amniotic fluid leptin levels in rats. Sci Rep 2024; 14:11366. [PMID: 38762543 PMCID: PMC11102553 DOI: 10.1038/s41598-024-62229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
Placental leptin may impact foetal development. Maternal overnutrition has been linked to increased plasma leptin levels and adverse effects on offspring, whereas choline, an essential nutrient for foetal development, has shown promise in mitigating some negative impacts of maternal obesity. Here, we investigate whether a maternal obesogenic diet alters foetal growth and leptin levels in the foetal stomach, amniotic fluid (AF), and placenta in late gestation and explore the potential modulating effects of maternal choline supplementation. Female rats were fed a control (CD) or a western diet (WD) four weeks before mating and during gestation, half of them supplemented with choline (pregnancy days 11-17). Leptin levels (in foetal stomach, AF, and placenta) and leptin gene expression (in placenta) were assessed on gestation days 20 and 21. At day 20, maternal WD feeding resulted in greater leptin levels in foetal stomach, placenta, and AF. The increased AF leptin levels were associated with a premature increase in foetal weight in both sexes. Maternal choline supplementation partially prevented these alterations, but effects differed in CD dams, causing increased AF leptin levels and greater weight in male foetuses at day 20. Maternal choline supplementation effectively mitigates premature foetal overgrowth induced by an obesogenic diet, potentially linked to increased AF leptin levels. Further research is needed to explore the sex-specific effects.
Collapse
Affiliation(s)
- Zhi Xin Yau-Qiu
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sebastià Galmés
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain.
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain.
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana María Rodríguez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation-NuBE), University of the Balearic Islands (UIB), Cra. Valldemossa Km 7.5, 07122, Palma, Balearic Islands, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
2
|
Saint C, Gittings W, Bunda J, Giles C, Sacco SM, Vandenboom R, Ward WE, LeBlanc PJ. Maternal folic acid supplementation does not impact skeletal muscle function and metabolism in male and female CD-1 mouse offspring. Appl Physiol Nutr Metab 2024; 49:306-318. [PMID: 37913528 DOI: 10.1139/apnm-2023-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Folic acid fortification of all white flour, enriched pasta, and cornmeal products became mandatory in Canada to reduce risk of neural tube defects at birth. Furthermore, Health Canada and the Society of Obstetricians and Gynaecologists of Canada recommend women take daily prenatal folic acid supplements in addition to folic acid fortified foods during pregnancy. However, the influence of maternal folic acid supplementation on offspring development, specifically the highly abundant and metabolically active skeletal muscle, is currently unknown. Thus, the purpose of this study was to determine the effect of supplemental folic acid (four times higher than normal dietary consumption), in utero and throughout suckling on muscle size, function, and metabolism in male and female CD-1 mouse offspring. The major findings were that maternal exposure to supplemental folic acid (i) had no impact on postpartum growth rates or muscle mass in female and male offspring, (ii) had no impact on skeletal muscle contractile kinetics in females and male offspring, and (iii) increased maximal phosphofructokinase activity in extensor digitorum longus of female and male offspring. These findings suggest that exposure to folic acid supplementation in utero and throughout suckling at levels four times higher than recommended had minimal effect on skeletal muscle size, function, and metabolism regardless of sex. Future research is needed explore the underlying biological pathways and mechanisms affected by folic acid supplementation during pregnancy and lactation on offspring skeletal muscle tissue, specifically in humans.
Collapse
Affiliation(s)
- Caitlin Saint
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - William Gittings
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Jordan Bunda
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Cameron Giles
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sandra M Sacco
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Rene Vandenboom
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Wendy E Ward
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Paul J LeBlanc
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
3
|
Zhang H, Wang Y, Zhang X, Zhang L, Zhao X, Xu Y, Wang P, Liang X, Xue M, Liang H. Maternal Folic Acid Supplementation during Pregnancy Prevents Hepatic Steatosis in Male Offspring of Rat Dams Fed High-Fat Diet, Which Is Associated with the Regulation of Gut Microbiota. Nutrients 2023; 15:4726. [PMID: 38004120 PMCID: PMC10675082 DOI: 10.3390/nu15224726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Maternal dietary patterns during pregnancy have been demonstrated to impact the structure of the gut microbiota in offspring, altering their susceptibility to diseases. This study is designed to elucidate whether the impact of folic acid supplementation during pregnancy on hepatic steatosis in male offspring of rat dams exposed to a high-fat diet (HFD) is related to gut-liver axis homeostasis. In this study, female rats were administered a HFD and simultaneously supplemented with 5 mg/kg folic acid throughout their pregnancy. Histopathological examination showed that folic acid supplementation effectively ameliorated hepatic lipid accumulation and inflammatory infiltrate in male offspring subjected to a maternal HFD. Maternal folic acid supplementation reduced the abundance of Desulfobacterota and the Firmicutes/Bacteroidota (F/B) ratio in male offspring. The expression of tight junction proteins in the colon was significantly upregulated, and the serum LPS level was significantly reduced. Furthermore, there was a notable reduction in the hepatic expression of the TLR4/NF-κB signaling pathway and subsequent inflammatory mediators. Spearman's correlation analysis revealed significant associations between hepatic inflammation-related indices and several gut microbiota, particularly Desulfobacterota and Lactobacillus. With a reduction in hepatic inflammation, the expression of PPAR-α was upregulated, and the expression of SREBP-1c and its downstream lipid metabolism-related genes was downregulated. In summary, folic acid supplementation during pregnancy modulates gut microbiota and enhances intestinal barrier integrity in male offspring of HFD dams. This helps reduce the LPS leakage and suppress the expression of TLR4/NF-κB pathway in the liver, thereby improving lipid metabolism disorders, and alleviating hepatic steatosis.
Collapse
Affiliation(s)
- Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Yutong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Xinyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Xuenuo Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Yan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Xi Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| | - Meilan Xue
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao 266071, China;
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao 266071, China; (H.Z.); (Y.W.); (X.Z.); (L.Z.); (X.Z.); (Y.X.); (P.W.); (X.L.)
| |
Collapse
|
4
|
Yang X, Hu R, Wang Z, Hou Y, Song G. Associations Between Serum Folate Level and HOMA-IR in Chinese Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:1481-1491. [PMID: 37229352 PMCID: PMC10204713 DOI: 10.2147/dmso.s409291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Background Adequate intake of folic acid (FA) has been proven essential for metabolism, cellular homeostasis, and antioxidant effects in diabetic patients. Our aim was to evaluate the association between serum folate levels and the risk of insulin resistance in patients with type 2 diabetes mellitus (T2DM) and to provide new ideas and approaches for reducing the risk of T2DM. Methods This was a case-control study involving 412 participants (206 with T2DM). Anthropometric parameters, islet function, biochemical parameters and body composition of T2DM group and control group were determined. Correlation analysis and logistic regression were used to evaluate the risk factors associated with the onset of insulin resistance in T2DM. Results The folate levels in type 2 diabetic patients with insulin resistance were significantly lower than those in patients without insulin resistance. Logistic regression showed that FA and high-density lipoprotein were independent influencing factors for insulin resistance in diabetic patients (P < 0.05). After adjusting for confounding factors, the degree of insulin resistance in diabetic patients was in a significant inverse relationship with folate levels (P< 0.05). We also found that below the serum FA threshold of 7.09 ng/mL insulin resistance was significantly more elevated. Conclusion Our findings suggest that the risk of insulin resistance increases with the decrease in serum FA levels in T2DM patients. Monitoring folate levels in these patients and FA supplementation are warranted preventive measures.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Rui Hu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Zhen Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Yilin Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, 050017, People’s Republic of China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, 050051, People’s Republic of China
| |
Collapse
|
5
|
High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022; 14:nu14193930. [PMID: 36235580 PMCID: PMC9573299 DOI: 10.3390/nu14193930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Folate is a dietary micronutrient essential to one-carbon metabolism. The World Health Organisation recommends folic acid (FA) supplementation pre-conception and in early pregnancy to reduce the risk of fetal neural tube defects (NTDs). Subsequently, many countries (~92) have mandatory FA fortification policies, as well as recommendations for periconceptional FA supplementation. Mandatory fortification initiatives have been largely successful in reducing the incidence of NTDs. However, humans have limited capacity to incorporate FA into the one-carbon metabolic pathway, resulting in the increasingly ubiquitous presence of circulating unmetabolised folic acid (uFA). Excess FA intake has emerged as a risk factor in gestational diabetes mellitus (GDM). Several other one-carbon metabolism components (vitamin B12, homocysteine and choline-derived betaine) are also closely entwined with GDM risk, suggesting a role for one-carbon metabolism in GDM pathogenesis. There is growing evidence from in vitro and animal studies suggesting a role for excess FA in dysregulation of one-carbon metabolism. Specifically, high levels of FA reduce methylenetetrahydrofolate reductase (MTHFR) activity, dysregulate the balance of thymidylate synthase (TS) and methionine synthase (MTR) activity, and elevate homocysteine. High homocysteine is associated with increased oxidative stress and trophoblast apoptosis and reduced human chorionic gonadotrophin (hCG) secretion and pancreatic β-cell function. While the relationship between high FA, perturbed one-carbon metabolism and GDM pathogenesis is not yet fully understood, here we summarise the current state of knowledge. Given rising rates of GDM, now estimated to be 14% globally, and widespread FA food fortification, further research is urgently needed to elucidate the mechanisms which underpin GDM pathogenesis.
Collapse
|
6
|
Zhang P, Liu Y, Zhu D, Chen X, Zhang Y, Zhou X, Huang Q, Li M, Chen Y, Sun M. Sirt3 negatively regulates Glut4 in skeletal muscle insulin resistance in old male offspring rats fed with maternal high fat diet. J Nutr Biochem 2022; 104:108970. [DOI: 10.1016/j.jnutbio.2022.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
|
7
|
Zhao R, An Z, Sun Y, Xia L, Qiu L, Yao A, Liu Y, Liu L. Metabolic profiling in early pregnancy and associated factors of folate supplementation: A cross-sectional study. Clin Nutr 2021; 40:5053-5061. [PMID: 34455263 DOI: 10.1016/j.clnu.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pregnancy generally alters the balance of maternal metabolism, but the molecular profiles in early pregnancy and associated factors of folate supplementation in pregnant women remains incompletely understood. METHODS Untargeted metabonomics based on high-performance liquid chromatography-high-resolution mass spectrometry integrated with multivariate metabolic pathway analysis were applied to characterize metabolite profiles and associated factors of folate supplements in early pregnancy. The metabolic baseline of early pregnancy was determined by metabolic analysis of 510 serum samples from 131 non-pregnant and 379 pregnant healthy Chinese women. The pathophysiology of adaptive reactions and metabolic challenges induced by folate supplementation in early pregnancy was further compared between pregnant women with (n = 168) and without (n = 184) folate supplements. RESULTS Compared with non-pregnant participants, 106 metabolites, majority of which are related to amino acids and lysophosphatidylcholine/phosphatidylcholine, and 13 metabolic pathways were significantly changed in early pregnancy. The supplementation of folate in early pregnancy induced marked changes in N-acyl ethanolamine 22:0, N-acyl taurine 18:2, glycerophosphoserine 44:1 and 8,11,14-eicosatrienoate, proline, and aminoimidazole ribotide levels. CONCLUSIONS During early pregnancy, the metabolism of amino acids significantly changes to meet the physiological requirements of pregnant women. Folate intake may change glucose and lipid metabolism. These findings provide a comprehensive landscape for understanding the basic characteristics and gestational metabolic networks of early pregnancy and folate supplementation. This study provides a basis for further research into the relationship between metabolic markers and pregnancy diseases. TRIAL REGISTRATION This study protocol was registered on www.ClinicalTrials.gov, NCT03651934, on August 29, 2018 (prior to recruitment).
Collapse
Affiliation(s)
- Rui Zhao
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China
| | - Zhuoling An
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China
| | - Yuan Sun
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China
| | - Liangyu Xia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Ling Qiu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Aimin Yao
- Department of Gynaecology and Obstetrics, Shunyi District Maternal and Child Health Hospital, Beijing, China
| | - Yanping Liu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, 100730, PR China.
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China.
| |
Collapse
|
8
|
Disruption of O-Linked N-Acetylglucosamine Signaling in Placenta Induces Insulin Sensitivity in Female Offspring. Int J Mol Sci 2021; 22:ijms22136918. [PMID: 34203166 PMCID: PMC8267851 DOI: 10.3390/ijms22136918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Placental dysfunction can lead to fetal growth restriction which is associated with perinatal morbidity and mortality. Fetal growth restriction increases the risk of obesity and diabetes later in life. Placental O-GlcNAc transferase (OGT) has been identified as a marker and a mediator of placental insufficiency in the setting of prenatal stress, however, its role in the fetal programming of metabolism and glucose homeostasis remains unknown. We aim to determine the long-term metabolic outcomes of offspring with a reduction in placental OGT. Mice with a partial reduction and a full knockout of placenta-specific OGT were generated utilizing the Cre-Lox system. Glucose homeostasis and metabolic parameters were assessed on a normal chow and a high-fat diet in both male and female adult offspring. A reduction in placental OGT did not demonstrate differences in the metabolic parameters or glucose homeostasis compared to the controls on a standard chow. The high-fat diet provided a metabolic challenge that revealed a decrease in body weight gain (p = 0.02) and an improved insulin tolerance (p = 0.03) for offspring with a partially reduced placental OGT but not when OGT was fully knocked out. Changes in body weight were not associated with changes in energy homeostasis. Offspring with a partial reduction in placental OGT demonstrated increased hepatic Akt phosphorylation in response to insulin treatment (p = 0.02). A partial reduction in placental OGT was protective from weight gain and insulin intolerance when faced with the metabolic challenge of a high-fat diet. This appears to be, in part, due to increased hepatic insulin signaling. The findings of this study contribute to the greater understanding of fetal metabolic programming and the effect of placental OGT on peripheral insulin sensitivity and provides a target for future investigation and clinical applications.
Collapse
|
9
|
Zhu J, Chen C, Lu L, Yang K, Reis J, He K. Intakes of Folate, Vitamin B 6, and Vitamin B 12 in Relation to Diabetes Incidence Among American Young Adults: A 30-Year Follow-up Study. Diabetes Care 2020; 43:2426-2434. [PMID: 32737139 PMCID: PMC7510025 DOI: 10.2337/dc20-0828] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To prospectively examine intakes of folate, vitamin B6, and vitamin B12 in relation to diabetes incidence in a large U.S. cohort. RESEARCH DESIGN AND METHODS A total of 4,704 American adults aged 18-30 years and without diabetes were enrolled in 1985-1986 and monitored until 2015-2016 in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Dietary assessment was conducted by a validated dietary history questionnaire at baseline, in 1992-1993, and in 2005-2006. The cumulative average intakes of folate, vitamin B6, and vitamin B12 were used in the analyses. Incident diabetes was ascertained by plasma glucose levels, oral glucose tolerance tests, hemoglobin A1c concentrations, and/or antidiabetic medications. RESULTS During 30 years (mean 20.5 ± 8.9) of follow-up, 655 incident cases of diabetes occurred. Intake of folate, but not vitamin B6 or vitamin B12, was inversely associated with diabetes incidence after adjustment for potential confounders. Compared with the lowest quintile of total folate intake, the multivariable-adjusted hazard ratios (95% CI) in quintiles 2-5 were 0.85 (0.67-1.08), 0.78 (0.60-1.02), 0.82 (0.62-1.09), and 0.70 (0.51-0.97; P trend = 0.02). Higher folate intake was also associated with lower plasma homocysteine (P trend < 0.01) and insulin (P trend < 0.01). Among supplement users, folate intake was inversely associated with serum C-reactive protein levels (P trend < 0.01). CONCLUSIONS Intake of folate in young adulthood was inversely associated with diabetes incidence in midlife among Americans. The observed association may be partially explained by mechanisms related to homocysteine level, insulin sensitivity, and systemic inflammation.
Collapse
Affiliation(s)
- Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, TX
| | - Cheng Chen
- Department of Obstetrics and Gynecology and Department of Epidemiology, Columbia University Irving Medical Center, New York, NY
| | - Liping Lu
- Department of Obstetrics and Gynecology and Department of Epidemiology, Columbia University Irving Medical Center, New York, NY
| | - Kefeng Yang
- Department of Clinical Nutrition, Xin Hua Hospital, and Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jared Reis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Ka He
- Department of Obstetrics and Gynecology and Department of Epidemiology, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
10
|
Xin FZ, Zhao ZH, Zhang RN, Pan Q, Gong ZZ, Sun C, Fan JG. Folic acid attenuates high-fat diet-induced steatohepatitis via deacetylase SIRT1-dependent restoration of PPARα. World J Gastroenterol 2020; 26:2203-2220. [PMID: 32476787 PMCID: PMC7235203 DOI: 10.3748/wjg.v26.i18.2203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/27/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Folic acid has been shown to improve non-alcoholic steatohepatitis (NASH), but its roles in hepatic lipid metabolism, hepatic one-carbon metabolism, and gut microbiota are still unknown.
AIM To demonstrate the role of folic acid in lipid metabolism and gut microbiota in NASH.
METHODS Twenty-four Sprague-Dawley rats were assigned into three groups: Chow diet, high-fat diet (HFD), and HFD with folic acid administration. At the end of 16 wk, the liver histology, the expression of hepatic genes related to lipid metabolism, one-carbon metabolism, and gut microbiota structure analysis of fecal samples based on 16S rRNA sequencing were measured to evaluate the effect of folic acid. Palmitic acid-exposed Huh7 cell line was used to evaluate the role of folic acid in hepatic lipid metabolism.
RESULTS Folic acid treatment attenuated steatosis, lobular inflammation, and hepatocellular ballooning in rats with HFD-induced steatohepatitis. Genes related to lipid de novo lipogenesis, β-oxidation, and lipid uptake were improved in HFD-fed folic acid-treated rats. Furthermore, peroxisome proliferator-activated receptor alpha (PPARα) and silence information regulation factor 1 (SIRT1) were restored by folic acid in HFD-fed rats and palmitic acid-exposed Huh7 cell line. The restoration of PPARα by folic acid was blocked after transfection with SIRT1 siRNA in the Huh7 cell line. Additionally, folic acid administration ameliorated depleted hepatic one-carbon metabolism and restored the diversity of the gut microbiota in rats with HFD-induced steatohepatitis.
CONCLUSION Folic acid improves hepatic lipid metabolism by upregulating PPARα levels via a SIRT1-dependent mechanism and restores hepatic one-carbon metabolism and diversity of gut microbiota, thereby attenuating HFD-induced NASH in rats.
Collapse
Affiliation(s)
- Feng-Zhi Xin
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ze-Hua Zhao
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui-Nan Zhang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qin Pan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zi-Zhen Gong
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Chao Sun
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
11
|
Gu W, Yang M, Bi Q, Zeng LX, Wang X, Dong JC, Li FJ, Yang XX, Li JP, Yu J. Water extract from processed Polygonum multiflorum modulate gut microbiota and glucose metabolism on insulin resistant rats. BMC Complement Med Ther 2020; 20:107. [PMID: 32248799 PMCID: PMC7132990 DOI: 10.1186/s12906-020-02897-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022] Open
Abstract
Background The incidence of insulin resistance (IR) has rapidly increased worldwide over the last 20 years, no perfect solution has yet been identified. Finding new therapeutic drugs will help improve this situation. As a traditional Chinese medicine, PPM (processed Polygonum multiflorum) has widely been used in the clinic. Recently, other clinical functions of PPM have been widely analyzed. Results Administration of the water extract from PPM decreased the level of FBG, TC, and TG, and increased the level of FGC, thereby reducing the IR index and improving IR. Furthermore, Western blot analysis revealed that PPM significantly increased GPR43 and AMPK expression when compared with the MOD group, and GPR43, AMPK were known as glucose metabolism-related proteins. In addition, treatment with PPM can restore the balance of gut microbiota by adjusting the relative abundance of bacteria both at the phylum and genus level, and these changes have been reported to be related to IR. Methods Sprague Dawley (SD) rats were fed a high-fat diet and were gavaged daily with either normal saline solution or PPM for 12 weeks. Major biochemical indexes, such as fasting blood glucose (FBG), fasting glucagon (FGC), total cholesterol (TC), and triglyceride (TG) were measured. Then the protein expression of adenosine 5′-monophosphate -activated protein kinase (AMPK) and G protein-coupled receptor 43 (GPR43) was evaluated by using Western blot analysis. Moreover, the composition of gut microbiota was assessed by analyzing 16S rRNA sequences. Conclusions Our findings showed that PPM reversed the increasing of FBG and the decreasing of IRI, PPM accelerated the expression of glucose metabolism-related proteins and regulated the intestinal microecological balance. Therefore, we hold the opinion that PPM may be an effective option for treating IR.
Collapse
Affiliation(s)
- Wen Gu
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Min Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Qian Bi
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Lin-Xi Zeng
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Xi Wang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Jin-Cai Dong
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Feng-Jiao Li
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Xing-Xin Yang
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Jing-Ping Li
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China
| | - Jie Yu
- College of Pharmaceutical Science, Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, People's Republic of China.
| |
Collapse
|
12
|
Zhou L, Xiao X, Zhang Q, Zheng J, Li M, Wang X, Deng M, Zhai X, Liu J. Gut microbiota might be a crucial factor in deciphering the metabolic benefits of perinatal genistein consumption in dams and adult female offspring. Food Funct 2019; 10:4505-4521. [PMID: 31348478 DOI: 10.1039/c9fo01046g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Adverse early-life exposures program an increased risk of chronic metabolic diseases in adulthood. However, the effects of genistein consumption in early life on metabolic health are unclear. Our objective was to investigate whether perinatal genistein intake could mitigate the deleterious effects of a high-fat diet (HF) on metabolism in dams and female offspring and to explore the role of the gut microbiota in mediating the transgenerational effects. C57BL/6 female mice were fed a HF, HF with genistein (0.6 g kg-1 diet) or normal control diet for 3 weeks before mating and throughout pregnancy and lactation. The offspring had free access to normal diet from weaning to 24 weeks of age. A glucose tolerance test was performed and the levels of serum insulin and lipid were measured. The cecal contents were collected for 16s rDNA sequencing. The results showed that perinatal genistein intake could not only significantly reduce blood glucose levels, insulin and free fatty acids (FFA) in dams, but also improve glucose tolerance, insulin sensitivity and serum lipid profiles in adult female offspring. Significant enrichment of short-chain fatty acid (mainly butyrate)-producing bacteria might play crucial roles in deciphering the metabolic benefits of perinatal genistein intake in dams. The obvious decrease in harmful microorganisms and increase in Erysipelotrichaceae_incertae_sedis were associated with the protective effects of maternal genistein intake on female offspring. In addition, Bifidobacterium might be an important factor for deciphering the metabolic improvement in both dams and female offspring by dietary genistein. Overall, perinatal genistein intake attenuated the harmful effects of HF on metabolism in both dams and female offspring, and the protective effects were associated with the alterations in the gut microbiota, which provides new evidence and targets for mitigating the poor effects of adverse early-life exposures on metabolic health in later life.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhou L, Xiao X, Zhang Q, Zheng J, Deng M. Maternal Genistein Intake Mitigates the Deleterious Effects of High-Fat Diet on Glucose and Lipid Metabolism and Modulates Gut Microbiota in Adult Life of Male Mice. Front Physiol 2019; 10:985. [PMID: 31417434 PMCID: PMC6682633 DOI: 10.3389/fphys.2019.00985] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Adverse early-life exposures program increased risk of chronic metabolic diseases in adulthood. However, the effects of genistein supplementation in early life on metabolic health in later life are largely unclear. Our objective was to investigate whether maternal genistein intake could mitigate the deleterious influence of a maternal high-fat diet on glucose and lipid metabolism in offspring and to explore the role of gut microbiota in mediating the transgenerational effects. C57BL/6 female mice were fed either a high-fat diet (HF), high-fat diet with genistein (0.6 g/kg diet) (HFG) or normal control diet (C) for 3 weeks before pregnancy and throughout pregnancy and lactation. The male offspring had ad libitum access to normal chow diet from weaning to 24 weeks of age. Then the content of inguinal subcutaneous adipose tissue (SAT) and epididymal visceral adipose tissue (VAT) were weighed. Glucose tolerance test (GTT), the level of serum insulin and lipid profiles were analyzed. The caecal contents were collected for 16S rDNA sequencing. The results showed that maternal genistein intake could significantly reduce blood glucose levels during GTT, fasting insulin levels, VAT mass and serum triglyceride levels as well as increase high-density lipoprotein cholesterol in adult male offspring. Significant decrease of germs from the Tenericutes phylum and enrichment of Rikenella as well as SCFA (short-chain fatty acid)-producing bacteria, including Alloprevotella, Odoribacter, and Clostridium XlVa, in offspring of genistein fed dams might play crucial roles in the improvement of glucose and lipid metabolism. Overall, early-life genistein intake attenuated the harmful effects of maternal HF on metabolism in adult offspring and the protective effects were associated with the alterations in gut microbiota, which provides new evidence and targets for mitigate the poor effects of adverse early-life exposures on metabolic health in later life.
Collapse
Affiliation(s)
- Liyuan Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jia Zheng
- Department of Endocrinology, Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingqun Deng
- Department of Endocrinology, Key Laboratory of Endocrinology, Translational Medicine Center, Ministry of Health, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Protein expression in submandibular glands of young rats is modified by a high-fat/high-sugar maternal diet. Arch Oral Biol 2018; 96:87-95. [PMID: 30205238 DOI: 10.1016/j.archoralbio.2018.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Maternal diet has consequences on many organs of the offspring, but salivary glands have received little attention despite the importance of the saliva secretory function in oral health and control of food intake. The objective of this work was therefore to document in rats the impact of maternal high-fat/high-sugar diet (Western Diet) on submandibular glands of the progeny. DESIGN Sprague-Dawley rat dams were fed either a Western diet or control diet during gestation and lactation and their pups were sacrificed 25 days after birth. The pups' submandibular gland protein content was characterized by means of 2D-electrophoresis followed by LC-MS/MS. Data were further analyzed by Gene Ontology enrichment analysis and protein-protein interactions mapping. The expression of two specific proteins was also evaluated using immunohistochemistry. RESULTS Combining both male and female pups (n = 18), proteome analysis revealed that proteins involved in protein quality control (e.g. heat shock proteins, proteasome sub-units) and microtubule proteins were over-expressed in Western diet conditions, which may translate intense metabolic activity. A cluster of proteins controlling oxidative stress (e.g. Glutathione peroxidases, peroxiredoxin) and enhancement of the antioxidant activity molecular function were also characteristic of maternal Western diet as well as under-expression of annexin A5. The down-regulating effect of maternal Western diet on Annexin A5 expression was significant only for males (p < 0.05). CONCLUSIONS A maternal Western diet modifies the protein composition of the offspring's salivary glands, which may have consequences on the salivary function.
Collapse
|