1
|
Kadam I, Dalloul M, Hausser J, Vaday D, Gilboa E, Wang L, Hittelman J, Hoepner L, Fordjour L, Chitamanni P, Saxena A, Jiang X. Role of one-carbon nutrient intake and diabetes during pregnancy in children's growth and neurodevelopment: A 2-year follow-up study of a prospective cohort. Clin Nutr 2024; 43:1216-1223. [PMID: 38636347 DOI: 10.1016/j.clnu.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND & AIMS Both maternal metabolic dysregulation, e.g., gestational diabetes mellitus (GDM), and maternal supply of nutrients that participate in one-carbon (1C) metabolism, e.g., folate, choline, betaine, and vitamin B12, have been demonstrated to influence epigenetic modification such as DNA methylation, thereby exerting long-lasting impacts on growth and development of offspring. This study aimed to determine how maternal 1C nutrient intake was associated with DNA methylation and further, development of children, as well as whether maternal GDM status modified the association in a prospective cohort. METHODS In this study, women with (n = 18) and without (n = 20) GDM were recruited at 25-33 weeks gestation. Detailed dietary intake data was collected by 3-day 24-h dietary recall and nutrient levels in maternal blood were also assessed at enrollment. The maternal-child dyads were invited to participate in a 2-year follow-up during which anthropometric measurement and the Bayley Scales of Infant and Toddler Development™ Screening Test (Third Edition) were conducted on children. The association between maternal 1C nutrients and children's developmental outcomes was analyzed with a generalized linear model controlling for maternal GDM status. RESULTS We found that children born to mothers with GDM had lower scores in the language domain of the Bayley test (p = 0.049). Higher maternal food folate and choline intakes were associated with better language scores in children (p = 0.01 and 0.025, respectively). Higher maternal food folate intakes were also associated with better cognitive scores in children (p = 0.002). Higher 1C nutrient intakes during pregnancy were associated with lower body weight of children at 2 years of age (p < 0.05). However, global DNA methylation of children's buccal cells was not associated with any maternal 1C nutrients. CONCLUSIONS In conclusion, higher 1C nutrient intake during pregnancy was associated with lower body weight and better neurodevelopmental outcomes of children. This may help overcome the lower language scores seen in GDM-affected children in this cohort. Studies in larger cohorts and with a longer follow-up duration are needed to further delineate the relationship between prenatal 1C nutrient exposure, especially in GDM-affected pregnancies, and offspring health outcomes.
Collapse
Affiliation(s)
- Isma'il Kadam
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA; PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Mudar Dalloul
- Department of Obstetrics and Gynecology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Jeanette Hausser
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Doron Vaday
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Ella Gilboa
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Liang Wang
- Department of Public Health, Robbins College of Human Health and Sciences, Baylor University, Waco, TX 76711, USA
| | - Joan Hittelman
- Department of Psychology, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Lori Hoepner
- Department of Environmental and Occupational Health Sciences, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Lawrence Fordjour
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Pavani Chitamanni
- Department of Pediatrics, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Anjana Saxena
- Department of Biology, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA
| | - Xinyin Jiang
- Departments of Health and Nutrition Sciences, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA; PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY 10016, USA.
| |
Collapse
|
2
|
Hoffman MC, Hunter SJ, D'Alessandro A, Christians U, Law AJ, Freedman R. Maternal Plasma Choline during Gestation and Small for Gestational Age Infants. Am J Perinatol 2024; 41:e939-e948. [PMID: 36584689 PMCID: PMC11407527 DOI: 10.1055/s-0042-1759775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Small for gestational age (SGA) infants are at increased risk for neonatal morbidity and developmental problems in childhood. No current interventions during human pregnancy address this problem. This study investigated the possible relationship between maternal choline concentration during pregnancy and SGA infants. STUDY DESIGN Maternal plasma choline concentrations were sampled at 16 and 28 weeks' gestation from women in a public prenatal clinic. Additional factors assessed were maternal age, body mass index, infection, C-reactive protein, hair cortisol, and compliance with prenatal vitamins and folate. Infants below the 10th percentile for gestational age were classified as SGA. Binary logistic regression was used to identify significant associated factors in pregnancies resulting in SGA infants compared with pregnancies resulting in non-SGA infants. RESULTS Thirteen (8%) of 159 women had SGA infants. Maternal plasma choline concentrations were low for pregnant participants whose infants were SGA, with the 28-week concentration significantly lower compared with other participants. Plasma choline concentrations ≥7 μM at 28 weeks, consistent with a minimally adequate dietary intake of choline-containing foods, were achieved by only 2 (15%) of mothers with SGA infants, compared with 51% of mothers whose infants were not SGA. Choline concentrations <7 μM at 28 weeks' gestation were associated with an odds ratio for SGA of 16.6 (95% confidence interval: 1.5-189.2, p = 0.023). Other significant factors were female sex and maternal C-reactive protein plasma concentration during gestation. CONCLUSION This observational study suggests that higher maternal choline levels may influence the risk for SGA. Maternal plasma choline concentrations are not routinely available in clinical laboratories. However, plasma choline levels can be increased by the mothers' intake of choline or phosphatidylcholine supplements. No nutritional intervention is currently recommended to prevent SGA, but the evidence from this study suggests that further consideration of the role of maternal choline may be warranted. KEY POINTS · More females are small for gestational age.. · Low maternal choline is related to small infants.. · Maternal choline ≥7 μM at 28 weeks appears optimal..
Collapse
Affiliation(s)
- Maria C Hoffman
- Division of Maternal and Fetal Medicine, Departments of Obstetrics and Gynecology and Psychiatry, University of Colorado School of Medicine, Aurora, Colorado
| | - Sharon J Hunter
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado
| | - Uwe Christians
- Department of Anesthesiology, iC42 Clinical Research and Development, University of Colorado School of Medicine, Aurora, Colorado
| | - Amanda J Law
- Department of Psychiatry, Cell and Developmental Biology, and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Robert Freedman
- Department of Psychiatry, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
3
|
Lin Y, Wu J, Zhuo Y, Feng B, Fang Z, Xu S, Li J, Zhao H, Wu D, Hua L, Che L. Effects of maternal methyl donor intake during pregnancy on ileum methylation and function in an intrauterine growth restriction pig model. J Anim Sci Biotechnol 2024; 15:19. [PMID: 38310243 PMCID: PMC10838427 DOI: 10.1186/s40104-023-00970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/04/2023] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) affects intestinal growth, morphology, and function, which leads to poor growth performance and high mortality. The present study explored whether maternal dietary methyl donor (MET) supplementation alleviates IUGR and enhances offspring's growth performance by improving intestinal growth, function, and DNA methylation of the ileum in a porcine IUGR model. METHODS Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery. After farrowing, 8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum. RESULTS The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets. Moreover, maternal MET supplementation significantly reduced the plasma concentrations of isoleucine, cysteine, urea, and total amino acids in sows and newborn piglets. It also increased lactase and sucrase activity in the jejunum of newborn piglets. MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets. DNA methylation analysis of the ileum showed that MET supplementation increased the methylation level of DNA CpG sites in the ileum of newborn piglets. Down-regulated differentially methylated genes were enriched in folic acid binding, insulin receptor signaling pathway, and endothelial cell proliferation. In contrast, up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosynthetic process. CONCLUSIONS Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets, which may be associated with better intestinal function and methylation status.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiangnan Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Zhang J, Wang Z, Dai Y, Zhang L, Guo J, Lv S, Qi X, Lu D, Liang W, Cao Y, Wu C, Chang X, Zhou Z. Multiple mediation effects on association between prenatal triclosan exposure and birth outcomes. ENVIRONMENTAL RESEARCH 2022; 215:114226. [PMID: 36049513 DOI: 10.1016/j.envres.2022.114226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triclosan is a broad-spectrum antimicrobial, and was thought to affect intrauterine development, but the mechanism remains unclear. OBJECTIVE To explore the association between prenatal triclosan exposure and birth outcomes. METHODS Based on 726 mother-child pairs from the Sheyang Mini Birth Cohort Study (SMBCS), we used the available (published) data of triclosan in maternal urines, the hormones including thyroid-related hormones, gonadal hormones in cord blood, and adipokines, trimethylamine-N-oxide (TMAO) and its precursors in cord blood to explore possible health effects of triclosan on birth outcomes through assessing different hormones and parameters, using Bayesian mediation analysis. RESULTS Maternal triclosan exposure was associated with ponderal index (β = 0.317) and head circumference (β = -0.172) in generalized linear models. In Bayesian mediation analysis of PI model, estradiol (β = 0.806) and trimethylamine (TMA, β = 0.164) showed positive mediation effects, while total thyroxine (TT4, β = -0.302), leptin (β = -2.023) and TMAO (β = -0.110) showed negative mediation effects. As for model of head circumference, positive mediation effects were observed in free thyroxine (FT4, β = 0.493), TMA (β = 0.178), and TMAO (β = 0.683), negative mediation effects were observed in TT4 (β = -0.231), testosterone (β = -0.331), estradiol (β = -1.153), leptin (β = -2.361), choline (β = -0.169), betaine (β = -0.104), acetyl-L-carnitine (β = -0.773). CONCLUSION The results indicated triclosan can affect intrauterine growth by interfering thyroid-related hormones, gonadal hormones, adipokines, TMAO and its precursors.
Collapse
Affiliation(s)
- Jiming Zhang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zheng Wang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Yiming Dai
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Lei Zhang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Jianqiu Guo
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Shenliang Lv
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Xiaojuan Qi
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No.3399 Binsheng Road, Hangzhou, 310051, China.
| | - Dasheng Lu
- Shanghai Center for Disease Control and Prevention, No.1380 West Zhongshan Road, Shanghai, 200336, China.
| | - Weijiu Liang
- Changning Center for Disease Control and Prevention, No.39 Yunwushan Road, Shanghai, 200051, China.
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, 70182, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden.
| | - Chunhua Wu
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Xiuli Chang
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- School of Public Health / MOE Key Laboratory of Public Health Safety / NHC Key Lab of Health Technology Assessment, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
Fernandez-Osornio LF, Gomez-Diaz RA, Mondragon-Gonzalez R, Gonzalez-Carranza E, Diaz-Flores M, Sharma T, Hernández-Pineda J, Maldonado-Rodriguez R, Wacher NH, Cruz M, Valladares-Salgado A. Micronutrients of the one-carbon metabolism cycle are altered in mothers and neonates by gestational diabetes and are associated with weight, height and head circumference at birth. J Nutr Biochem 2022; 105:108996. [PMID: 35331901 DOI: 10.1016/j.jnutbio.2022.108996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/11/2021] [Accepted: 02/22/2022] [Indexed: 12/20/2022]
Abstract
While several studies have previously described the levels of one-carbon metabolism-related micronutrients in women with gestational diabetes mellitus (GDM) and their neonates, the results in these literature reports have been contradictory. We hypothesized that the concentrations of micronutrients involved in the one-carbon cycle are altered in pregnant women and their neonates by GDM, and that these changes could further modify the neonatal anthropometry. Micronutrient levels were measured in 123 pregnant women with normal glucose levels (M-ND) and their neonates (N-ND), as well as in 54 pregnant women with gestational diabetes (M-GDM) and their neonates (M-GDM). Folate and vitamin B12 levels were measured via competitive ELISA, and betaine, choline, and glycine levels were measured via ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS/MS). Vitamin B12 and Glycine were found to be higher in M-GDM compared to M-ND. N-GDM had higher levels of folic acid and vitamin B12 and lower levels of betaine and choline compared to N-ND. In general, neonates presented with high concentrations of micronutrients compared to their mothers, and the fetus/maternal ratio of micronutrients was higher among the N-ND as compared to the N-GDM. Micronutrients were also variably associated with anthropometric measurements. The association of betaine with neonatal anthropometry in N-GDM is highlighted. In summary, our results implicate a potential role of GDM in altering the levels of one-carbon metabolism-related micronutrients among pregnant women and their neonates. Likewise, our results also elucidate a potential association between the concentrations of micronutrients and the weight, height, and head circumference of neonates.
Collapse
Affiliation(s)
- Luis F Fernandez-Osornio
- Unidad de Investigación Médica en Bioquímica. Hospital de Especialidades. Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social. Mexico City, Mexico; Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rita A Gomez-Diaz
- Unidad de Investigación en Epidemiología Clínica de la UMAE, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social. Mexico City, Mexico
| | - Rafael Mondragon-Gonzalez
- Unidad de Investigación en Epidemiología Clínica de la UMAE, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social. Mexico City, Mexico
| | - Edith Gonzalez-Carranza
- Servicio de Endocrinología, UMAE Hospital de Gineco-Obstetricia 4. Luis Castelazo Ayala. Instituto Mexicano del Seguro Social. Mexico City, Mexico
| | - Margarita Diaz-Flores
- Unidad de Investigación Médica en Bioquímica. Hospital de Especialidades. Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social. Mexico City, Mexico
| | - Tanmay Sharma
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jessica Hernández-Pineda
- Laboratorio de Farmacología Experimental, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Rogelio Maldonado-Rodriguez
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Niels H Wacher
- Unidad de Investigación en Epidemiología Clínica de la UMAE, Hospital de Especialidades, Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social. Mexico City, Mexico
| | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica. Hospital de Especialidades. Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social. Mexico City, Mexico
| | - Adan Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica. Hospital de Especialidades. Centro Médico Nacional Siglo XXI. Instituto Mexicano del Seguro Social. Mexico City, Mexico.
| |
Collapse
|
6
|
Bragg MG, Prado EL, Stewart CP. Choline and docosahexaenoic acid during the first 1000 days and children's health and development in low- and middle-income countries. Nutr Rev 2021; 80:656-676. [PMID: 34338760 PMCID: PMC8907485 DOI: 10.1093/nutrit/nuab050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Choline and DHA are nutrients that, when provided during the first 1000 days from conception to age 2 years, may have beneficial effects on child neurodevelopment as well as related health factors, including birth outcomes and child growth, morbidity, and inflammation. Because these nutrients are found mainly in animal-source foods, they may be lacking in the diets of pregnant and lactating women and young children in low- and middle-income countries, potentially putting children at risk for suboptimal development and health. Prior reviews of these nutrients have mainly focused on studies from high-income countries. Here, a narrative review is presented of studies describing the pre- and postnatal roles of choline, docosahexaenoic acid, and a combination of the 2 nutrients on child neurodevelopment, birth outcomes, growth, morbidity, and inflammation in low- and middle-income countries. More studies are needed to understand the specific, long-term effects of perinatal choline and docosahexaenoic acid intake in various contexts.
Collapse
Affiliation(s)
- Megan G Bragg
- M.G. Bragg, E.L. Prado, and C.P. Stewart are with the Institute for Global Nutrition, University of California Davis, Davis, California, United States
| | - Elizabeth L Prado
- M.G. Bragg, E.L. Prado, and C.P. Stewart are with the Institute for Global Nutrition, University of California Davis, Davis, California, United States
| | - Christine P Stewart
- M.G. Bragg, E.L. Prado, and C.P. Stewart are with the Institute for Global Nutrition, University of California Davis, Davis, California, United States
| |
Collapse
|
7
|
Korsmo HW, Jiang X. One carbon metabolism and early development: a diet-dependent destiny. Trends Endocrinol Metab 2021; 32:579-593. [PMID: 34210607 PMCID: PMC8282711 DOI: 10.1016/j.tem.2021.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022]
Abstract
One carbon metabolism (OCM) is critical for early development, as it provides one carbon (1C) units for the biosynthesis of DNA, proteins, and lipids and epigenetic modification of the genome. Epigenetic marks established early in life can be maintained and exert lasting impacts on gene expression and functions later in life. Animal and human studies have increasingly demonstrated that prenatal 1C nutrient deficiencies impair fetal growth, neurodevelopment, and cardiometabolic parameters in childhood, while sufficient maternal 1C nutrient intake is protective against these detrimental outcomes. However, recent studies also highlight the potential risk of maternal 1C nutrient excess or imbalance in disrupting early development. Further studies are needed to delineate the dose-response relationship among prenatal 1C nutrient exposure, epigenetic modifications, and developmental outcomes.
Collapse
Affiliation(s)
- Hunter W Korsmo
- PhD Program in Biochemistry, The Graduate Center CUNY (City University of New York), New York, NY 10016, USA; Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA
| | - Xinyin Jiang
- PhD Program in Biochemistry, The Graduate Center CUNY (City University of New York), New York, NY 10016, USA; Department of Health and Nutrition Sciences, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| |
Collapse
|
8
|
[Quantification, dietary intake adequacy, and food sources of nutrients involved in the methionine-methylation cycle (choline, betaine, folate, vitamin B6 and vitamin B12) in pregnant women in Spain]. NUTR HOSP 2021; 38:1026-1033. [PMID: 34313134 DOI: 10.20960/nh.03684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE a quantification of dietary intakes of the micronutrients involved in the methylation-methionine cycle (choline, betaine, folate, vitamins B6 and B12) in a representative sample of pregnant women in Spain; assessment of intake adequacy to available official recommendations; and analysis of their main food sources. MATERIAL AND METHODS the median intake of each micronutrient was established using food consumption data reported in the National Dietary Survey of adults, the elderly, and pregnant women (ENALIA-2) (n = 133). For folate, vitamin B6 and vitamin B12 intake, nutritional composition data from the Spanish Food Composition Tables were used, whereas for choline and betaine, which are not included in European food composition databases, the National Nutrient Database for Standard Reference of the United States Department of Agriculture (USDA) was considered. Intake adequacy was estimated in accordance with the recommendations of the main Spanish, European, and US guidelines. RESULTS mean daily intakes observed were 271.1 mg/day of choline; 142.5 mg/day of betaine; 182.8 μg/day of folate; 1.4 mg/day of vitamin B6; and 4.5 μg/day of vitamin B12. Intake adequacy levels were insufficient for choline (< 60.2 %) and folate (< 30.5 %); close to adequacy for vitamin B6 (> 71.6 %); and fully adequate only in the case of vitamin B12 (> 101.1 %). It is not possible to draw any conclusions regarding betaine intake in the absence of established recommendations. Main food sources included foods of animal origin for choline and vitamin B12 (71.8 % and 97.4 %, respectively); cereals and derivatives for betaine (85.3 %); vegetables (27.5 %) together with cereals and derivatives (18.6 %) for folate; and meats and derivatives (26.6 %) followed by vegetables (17.9 %) for vitamin B6. CONCLUSIONS these findings are clearly indicative of the need to improve the intake and nutritional status of these components, which are of great nutritional interest for the health of pregnant women and, consequently, of their offspring. Consequent to the degree of adequacy observed, it seems necessary and urgent to employ not only dietary improvement strategies and the use of fortified foods, but also nutritional supplements with an individualized approach.
Collapse
|
9
|
Moltó-Puigmartí C, Obeid R, Mommers M, Eussen SJ, Thijs C. Maternal plasma choline and betaine in late pregnancy and child growth up to age 8 years in the KOALA Birth Cohort Study. Am J Clin Nutr 2021; 114:1438-1446. [PMID: 34113974 PMCID: PMC8488875 DOI: 10.1093/ajcn/nqab177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sufficient choline and betaine during pregnancy are needed for fetal growth and development. OBJECTIVES We aimed to investigate the associations between maternal plasma choline and betaine in the third trimester of pregnancy and child growth from birth up to 8 years of age. METHODS Concentrations of choline and betaine were measured in plasma of 1331 pregnant women from the KOALA (Kind, Ouders en gezondheid: Aandacht voor Leefstijl en Aanleg) Birth Cohort Study in the Netherlands. Child weight and height were measured at birth and at 1 (91% complete), 2 (86%), and 6-8 y (76%). Birth weight, weight gain in the first year, and z scores for weight and height at 1 and 2 y were used as continuous outcome variables. BMI z scores at 1 and 2 y were used as continuous and dichotomous outcomes, and BMI z scores at age 6-8 y were used to study overweight at that age. RESULTS Each 1-µmol/L increase of maternal plasma choline was associated with a mean 20-g (95% CI: 1.1, 38.0 g) higher weight gain in the first year of life, and a higher BMI z score (β: 0.02; 95% CI: 0.00, 0.04) and slightly higher odds of BMI z score >85th percentile (OR: 1.08; 95% CI: 1.03, 1.10) at 1-2 y. Each 1-µmol/L increase of plasma betaine was associated with a mean 12-g (95% CI: 0.8, 23.9 g) higher weight gain in the first year of life and higher odds of BMI z score >85th percentile at 1-2 y (OR: 1.03; 95% CI: 1.00, 1.07). Lastly, betaine was associated with overweight at 6-8 y (OR: 1.17; 95% CI: 1.02, 1.34), only in boys. CONCLUSIONS Third-trimester pregnancy plasma choline and betaine were positively associated with childhood anthropometric measures. In boys, some of the associations may have persisted up to 8 y of age. Further studies may investigate the validity of maternal plasma choline and betaine concentrations as markers of maternal intake and fetal transfer.
Collapse
Affiliation(s)
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, Homburg, Germany
| | - Monique Mommers
- Department of Epidemiology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Simone Jpm Eussen
- Department of Epidemiology, Maastricht University Medical Centre, Maastricht, Netherlands,Care and Public Health Research Institute, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Carel Thijs
- Department of Epidemiology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
10
|
Serum choline in extremely preterm infants declines with increasing parenteral nutrition. Eur J Nutr 2020; 60:1081-1089. [PMID: 32588218 PMCID: PMC7900091 DOI: 10.1007/s00394-020-02312-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/15/2020] [Indexed: 11/14/2022]
Abstract
Purpose Choline is an essential nutrient for fetal and infant growth and development. Parenteral nutrition used in neonatal care lack free choline but contain small amounts of lipid-bound choline in the form of phosphatidylcholine (PC). Here, we examined the longitudinal development of serum free choline and metabolically related compounds betaine and methionine in extremely preterm infants and how the concentrations were affected by the proportion of parenteral fluids the infants received during the first 28 postnatal days (PNDs).
Methods This prospective study included 87 infants born at gestational age (GA) < 28 weeks. Infant serum samples were collected PND 1, 7, 14, and 28, and at postmenstrual age (PMA) 32, 36, and 40 weeks. The serum concentrations of free choline, betaine, and methionine were determined by 1H NMR spectroscopy. Results The median (25th–75th percentile) serum concentrations of free choline, betaine, and methionine were 33.7 (26.2–41.2), 71.2 (53.2–100.8), and 25.6 (16.4–35.3) µM, respectively, at PND 1. The choline concentration decreased rapidly between PND one and PND seven [18.4 (14.1–26.4) µM], and then increased over the next 90 days, though never reaching PND one levels. There was a negative correlation between a high intake of parenteral fluids and serum-free choline.
Conclusion Circulating free choline in extremely preterm infants is negatively affected by the proportion of parenteral fluids administered. Trial registration ClinicalTrials.gov Identifier NCT02760472, April 29, 2016, retrospectively registered. Electronic supplementary material The online version of this article (10.1007/s00394-020-02312-2) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Association between Dietary Intake of One-Carbon Metabolism Nutrients in the Year before Pregnancy and Birth Anthropometry. Nutrients 2020; 12:nu12030838. [PMID: 32245126 PMCID: PMC7146458 DOI: 10.3390/nu12030838] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022] Open
Abstract
Few studies have evaluated the role of methylation-pathway nutrients involved in fetal growth (B vitamins, choline, betaine, and methionine). These one-carbon metabolism (OCM) nutrients are essential for DNA methylation in the periconception period. We aimed to characterize dietary patterns of 1638 women from the EDEN mother-child cohort in the year before pregnancy according to the contribution of OCM nutrients and to study the association of such patterns with anthropometric measurements at birth. Dietary intake before pregnancy was assessed by using a semi-quantitative food frequency questionnaire. We used the reduced-rank regression (RRR) method to identify dietary patterns using OCM nutrients as intermediate variables. We ran linear regressions models to study the association between dietary patterns scores and birth weight, length, head circumference, gestational age, and sex-specific z-scores, adjusting for maternal characteristics and vitamin supplementation before and during pregnancy. Three patterns, “varied and balanced”, “vegetarian tendency”, and “bread and starchy food” were identified, explaining 58% of the variability in OCM nutrient intake. Higher scores on the “varied and balanced” pattern tended to be associated with higher birth length and weight. In mainly well-nourished young French women, we did not find evidence that variability in OCM nutrient intake has major effects on fetal growth.
Collapse
|
12
|
Gilley SP, Weaver NE, Sticca EL, Jambal P, Palacios A, Kerns ME, Anand P, Kemp JF, Westcott JE, Figueroa L, Garcés AL, Ali SA, Pasha O, Saleem S, Hambidge KM, Hendricks AE, Krebs NF, Borengasser SJ. Longitudinal Changes of One-Carbon Metabolites and Amino Acid Concentrations during Pregnancy in the Women First Maternal Nutrition Trial. Curr Dev Nutr 2020; 4:nzz132. [PMID: 32175519 PMCID: PMC7064164 DOI: 10.1093/cdn/nzz132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/09/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Maternal dietary restriction and supplementation of one-carbon (1C) metabolites can impact offspring growth and DNA methylation. However, longitudinal research of 1C metabolite and amino acid (AA) concentrations over the reproductive cycle of human pregnancy is limited. OBJECTIVE To investigate longitudinal 1C metabolite and AA concentrations prior to and during pregnancy and the effects of a small-quantity lipid-based nutrition supplement (LNS) containing >20 micronutrients and prepregnancy BMI (ppBMI). METHODS This study was an ancillary study of the Women First Trial (NCT01883193, clinicaltrials.gov) focused on a subset of Guatemalan women (n = 134), 49% of whom entered pregnancy with a BMI ≥25 kg/m2. Ninety-five women received LNS during pregnancy (+LNS group), while the remainder did not (-LNS group). A subset of women from the Pakistan study site (n = 179) were used as a replication cohort, 124 of whom received LNS. Maternal blood was longitudinally collected on dried blood spot (DBS) cards at preconception, and at 12 and 34 wk gestation. A targeted metabolomics assay was performed on DBS samples at each time point using LC-MS/MS. Longitudinal analyses were performed using linear mixed modeling to investigate the influence of time, LNS, and ppBMI. RESULTS Concentrations of 23 of 27 metabolites, including betaine, choline, and serine, changed from preconception across gestation after application of a Bonferroni multiple testing correction (P < 0.00185). Sixteen of those metabolites showed similar changes in the replication cohort. Asymmetric and symmetric dimethylarginine were decreased by LNS in the participants from Guatemala. Only tyrosine was statistically associated with ppBMI at both study sites. CONCLUSIONS Time influenced most 1C metabolite and AA concentrations with a high degree of similarity between the 2 diverse study populations. These patterns were not significantly altered by LNS consumption or ppBMI. Future investigations will focus on 1C metabolite changes associated with infant outcomes, including DNA methylation. This trial was registered at clinicaltrials.gov as NCT01883193.
Collapse
Affiliation(s)
- Stephanie P Gilley
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas E Weaver
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
| | - Evan L Sticca
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Palacios
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mattie E Kerns
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pratibha Anand
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jennifer F Kemp
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jamie E Westcott
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lester Figueroa
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Ana Lucía Garcés
- Institute of Nutrition in Central America and Panama, Guatemala City, Guatemala
| | - Sumera A Ali
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - Omrana Pasha
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
- Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sarah Saleem
- Aga Khan University, Department of Community Health Sciences, Karachi, Pakistan
| | - K Michael Hambidge
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Audrey E Hendricks
- Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO, USA
- Human Medical Genetics and Genomics Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nancy F Krebs
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J Borengasser
- Department of Pediatrics, Section of Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|