1
|
Hazlewood KJ, Zumbaugh CA, Jones CK, Atkinson EM, Tingler HLR, Inhuber VK, Brouk MJ, Antony RM, Titgemeyer EC. Effect of Guanidinoacetic Acid Supplementation on the Performance of Calves Fed Milk Replacer. Animals (Basel) 2024; 14:2757. [PMID: 39409706 PMCID: PMC11476500 DOI: 10.3390/ani14192757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Guanidinoacetic acid (GAA) is the direct precursor to creatine, which serves as an energy reserve mechanism in the body. We evaluated the effects of GAA supplementation on the growth performance of calves fed milk replacer. Forty-five Holstein-Angus steer calves (40.9 kg, approximately 1 week old) were assigned to 1 of 3 treatments to assess growth performance and data from 41 calves were analyzed. Treatments were provided in the milk replacer for 42 d and included 0, 1, or 2 g GAA/d. Calves were fed 2.84 L milk replacer twice daily with ad libitum access to starter feed and water. Treatments ended on day 42 prior to a 17-day weaning period. Supplementation of GAA increased (p < 0.01) plasma concentrations of GAA (0.42, 0.51, and 0.67 mg/L for 0, 1, and 2 g GAA/d, respectively) and creatine (18.7, 22.1, and 24.4 mg/L for 0, 1, and 2 g GAA/d, respectively). Bodyweight tended to linearly increase (p = 0.09) with increasing GAA on d 59 (91.2, 98.3, and 98.6 kg for 0, 1, and 2 g GAA/d, respectively). Daily gains from day 0 to 59 tended to increase with GAA provision (p = 0.09; 0.86, 0.97, and 0.98 kg/d for 0, 1, and 2 g GAA/d, respectively). Starter feed dry matter intake tended to linearly increase (p = 0.06) with GAA supplementation (0.201, 0.278, and 0.286 kg/d for 0, 1, and 2 g GAA/d, respectively). Treatments providing 1 and 2 g GAA/d affected performance similarly. No differences among treatments were observed for health (respiratory and fecal) scores during the application of treatments or during the subsequent weaning period. The inclusion of GAA in milk replacer tended to increase the gain of calves, and this was associated with elevated starter feed intake.
Collapse
Affiliation(s)
- Kathryn J. Hazlewood
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Charles A. Zumbaugh
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Cassandra K. Jones
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Emily M. Atkinson
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Hannah L. R. Tingler
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | | | - Micheal J. Brouk
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Reshma M. Antony
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Evan C. Titgemeyer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
2
|
Jin H, Du Z, Fan X, Qin L, Liu W, Zhang Y, Ren J, Ye C, Liu Q. Effect of Guanidinoacetic Acid on Production Performance, Serum Biochemistry, Meat Quality and Rumen Fermentation in Hu Sheep. Animals (Basel) 2024; 14:2052. [PMID: 39061514 PMCID: PMC11273408 DOI: 10.3390/ani14142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Guanidinoacetic acid (GAA) can effectively improve the metabolism of energy and proteins by stimulating creatine biosynthesis. We present a study exploring the impact of GAA on production performance, serum biochemistry, meat quality and rumen fermentation in Hu sheep. A total of 144 weaned male Hu sheep (body weight 16.91 ± 3.1 kg) were randomly assigned to four groups with three replicates of twelve sheep in each group. The diets were supplemented with 0 (CON), 500 (GAA-1), 750 (GAA-2) and 1000 mg/kg (GAA-3) of GAA (weight of feed), respectively. After a comprehensive 90-day experimental period, we discovered that the supplementation of GAA had a remarkable impact on various muscle parameters. Specifically, it significantly enhanced the average daily growth (ADG) of the animals and improved the shear force and fiber diameter of the muscle, while also reducing the drip loss and muscle fiber density. Furthermore, the addition of GAA to the feed notably elevated the serum concentrations of high-density lipoprotein cholesterol (HDL-C), total protein (TP) and globulin (GLB), as well as the enzyme activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Concurrently, there was a decrease in the levels of triglycerides (TG) and malondialdehyde (MDA) in the serum. In addition, GAA decreased the pH and the acetate-to-propionate ratio and increased the total volatile fatty acids (TVFA) and ammoniacal nitrogen (NH3-N) levels of rumen fluid. Additionally, GAA upregulated acetyl-CoA carboxylase (ACC) gene expression in the Hu sheep's muscles. In conclusion, our findings suggest that GAA supplementation not only enhances muscle quality but also positively affects serum biochemistry and ruminal metabolism, making it a potential candidate for improving the overall health and performance of Hu sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changchuan Ye
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Z.D.); (X.F.); (L.Q.); (W.L.); (Y.Z.); (J.R.)
| | - Qinghua Liu
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Z.D.); (X.F.); (L.Q.); (W.L.); (Y.Z.); (J.R.)
| |
Collapse
|
3
|
Ma C, Yimamu M, Zhang S, Shah AM, Yang H, Cai W, Li C, Lu X, Li F, Yang K. Effects of guanidino acetic acid and betaine supplementation on growth, dietary nutrient digestion and intestinal creatine metabolism in sheep. Vet Med Sci 2024; 10:e1470. [PMID: 38923734 PMCID: PMC11196381 DOI: 10.1002/vms3.1470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The intestine of young ruminants is in the developmental stage and has weaker resistance to the changes of external environment. Improving intestinal health is vital to promoting growth of young ruminants. This study investigated effects of guanidino acetic acid (GAA) and rumen-protected betaine (RPB) supplementation on growth, dietary nutrient digestion and GAA metabolism in the small intestine of sheep. METHODS Eighteen healthy Kazakh rams (27.46 ± 0.10 kg of body weight and 3-month old) were categorized into control, test group I and test group II, which were fed a basal diet, 1500 mg/kg GAA and 1500 mg/kg GAA + 600 mg/kg RPB, respectively. RESULTS Compared with control group, test group II had increased (p < 0.05) average daily gain, plasma creatine level, ether extract (EE) and phosphorus digestibility on day 30. On day 60, the EE apparent digestibility, jugular venous plasma GAA, GAA content in the duodenal mucosa and GAA content in the jejunal and ileal mucosa of test group II were higher (p < 0.05) than other groups. Transcriptome analysis revealed that the differentially expressed genes (DEGs) involved in the duodenal pathways of oxidative phosphorylation and non-alcoholic fatty liver disease were significantly altered in test group II versus test group I (p < 0.05). Moreover, in the jejunum, the MAPK signalling pathway, complement and coagulation cascade and B-cell receptor signalling pathway were significantly enriched, with ATPase, solute carrier transporter protein, DHFR, SI, GCK, ACACA and FASN being the significantly DEGs (p < 0.05). CONCLUSION Dietary supplementation of RPB on top of GAA in sheep diets may promote sheep growth and development by improving the body's energy, amino acid, glucose and lipid metabolism capacity.
Collapse
Affiliation(s)
- Chen Ma
- College of Animal ScienceXinjiang Agricultural UniversityUrumchiChina
| | - Mireguli Yimamu
- College of Animal ScienceXinjiang Agricultural UniversityUrumchiChina
| | - Shiqi Zhang
- College of Animal ScienceXinjiang Agricultural UniversityUrumchiChina
| | - Ali Mujtaba Shah
- Key Laboratory of Animal GeneticsBreeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityXianyangChina
| | - Hao Yang
- College of Animal ScienceXinjiang Agricultural UniversityUrumchiChina
| | - Wenjie Cai
- College of Animal ScienceXinjiang Agricultural UniversityUrumchiChina
| | - Chaonan Li
- College of Animal ScienceXinjiang Agricultural UniversityUrumchiChina
| | - Xuejie Lu
- College of Animal ScienceXinjiang Agricultural UniversityUrumchiChina
| | - Fengming Li
- College of Animal ScienceXinjiang Agricultural UniversityUrumchiChina
| | - Kailun Yang
- College of Animal ScienceXinjiang Agricultural UniversityUrumchiChina
| |
Collapse
|
4
|
Yi S, Hu S, Wang J, Abudukelimu A, Wang Y, Li X, Wu H, Meng Q, Zhou Z. Effect of Guanidinoacetic Acid Supplementation on Growth Performance, Rumen Fermentation, Blood Indices, Nutrient Digestion, and Nitrogen Metabolism in Angus Steers. Animals (Basel) 2024; 14:401. [PMID: 38338043 PMCID: PMC10854538 DOI: 10.3390/ani14030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Guanidinoacetic acid (GAA) functions as a precursor for creatine synthesis in the animal body, and maintaining ample creatine reserves is essential for fostering rapid growth. This study aimed to explore the impact of GAA supplementation on growth performance, rumen fermentation, blood indices, nutrient digestion, and nitrogen metabolism in Angus steers through two experiments: a feeding experiment (Experiment 1) and a digestive metabolism experiment (Experiment 2). In Experiment 1, thirty-six Angus steers (485.64 ± 39.41 kg of BW) at 16 months of age were randomly assigned to three groups: control (CON), a conventional dose of GAA (CGAA, 0.8 g/kg), and a high dose of GAA (HGAA, 1.6 g/kg), each with twelve steers. The adaptation period lasted 14 days, and the test period was 130 days. Weighing occurred before morning feeding on days 0, 65, and 130, with rumen fluid and blood collected before morning feeding on day 130. Experiment 2 involved fifteen 18-month-old Angus steers (575.60 ± 7.78 kg of BW) randomly assigned to the same three groups as in Experiment 1, with a 7-day adaptation period and a 3-day test period. Fecal and urine samples were collected from all steers during this period. Results showed a significantly higher average daily gain (ADG) in the CGAA and HGAA groups compared to the CON group (p = 0.043). Additionally, the feed conversion efficiency (FCE) was significantly higher in the CGAA and HGAA groups than in the CON group (p = 0.018). The concentrations of acetate and the acetate:propionate ratio were significantly lower in the CGAA and HGAA groups, while propionate concentration was significantly higher (p < 0.01). Serum concentration of urea (UREA), blood ammonia (BA), GAA, creatine, and catalase (CAT) in the CGAA and HGAA groups were significantly higher than in the CON group, whereas malondialdehyde (MDA) concentrations were significantly lower (p < 0.05). Digestibility of dry matter (DM) and crude protein (CP) and the nitrogen retention ratio were significantly higher in the CGAA and HGAA groups than in the CON group (p < 0.05). In conclusion, dietary addition of both 0.8 g/kg and 1.6 g/kg of GAA increased growth performance, regulated rumen fermentation and blood indices, and improved digestibility and nitrogen metabolism in Angus steers. However, higher doses of GAA did not demonstrate a linear stacking effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Y.)
| |
Collapse
|
5
|
Dong C, Wei M, Ju J, Du L, Zhang R, Xiao M, Zheng Y, Bao H, Bao M. Effects of guanidinoacetic acid on in vitro rumen fermentation and microflora structure and predicted gene function. Front Microbiol 2024; 14:1285466. [PMID: 38264478 PMCID: PMC10803542 DOI: 10.3389/fmicb.2023.1285466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
The fermentation substrate was supplemented with 0% guanidinoacetic acid (GAA) (control group, CON), 0.2% GAA (GAA02), 0.4% GAA (GAA04), 0.6% GAA (GAA06) and 0.8% GAA (GAA08) for 48 h of in vitro fermentation. Gas production was recorded at 2, 4, 6, 8, 12, 24, 36, and 48 h of fermentation. The gas was collected, and the proportions (%, v/v) of H2, CH4 and CO2 were determined. The rumen fermentation parameters, including pH, ammonia nitrogen (NH3-N), microbial protein (MCP) and volatile fatty acids (VFAs), were also determined. Furthermore, the bacterial community structure was analyzed through 16S rRNA high-throughput sequencing. The gene functions were predicted using PICRUSt1 according to the Kyoto Encyclopedia of Genes and Genomes (KEGG). The results showed that with the increase in GAA supplementation levels, the MCP and the concentration of rumen propionate were significantly increased, while the concentration of isovalerate was significantly decreased (p < 0.05). The results of microbial diversity and composition showed that the Shannon index was significantly decreased by supplementation with GAA at different levels (p < 0.05), but the relative abundance of norank_f_F082 and Papillibacter in the GAA06 group was significantly increased (p < 0.05). Especially in group GAA08, the relative abundances of Bacteroidota, Prevotella and Prevotellaceae_UCG-001 were significantly increased (p < 0.05). The results of gene function prediction showed that the relative abundances of the functions of flagellar assembly, bacterial chemotaxis, plant-pathogen interaction, mismatch repair and nucleotide excision repair were significantly decreased (p < 0.05), but the relative abundances of bile secretion and protein digestion and absorption were significantly increased (p < 0.05). In conclusion, supplementation with 0.8% GAA enhanced in vitro rumen fermentation parameters, increased the relative abundance of Prevotella and Prevotellaceae_UCG-001 in the rumen, and increased the metabolic pathways of bile secretion and protein digestion and absorption.
Collapse
Affiliation(s)
- Chenyang Dong
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Manlin Wei
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Ji Ju
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Liu Du
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Runze Zhang
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Ming Xiao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Yongjie Zheng
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Hailin Bao
- Horqin Left Wing Rear Banner Ethnic Vocational and Technical School, Tongliao, China
| | - Meili Bao
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| |
Collapse
|
6
|
Eckhardt EP, Kim W, Jaborek J, Garmyn AJ, Kang D, Kim J. Evaluation of guanidinoacetic acid supplementation on finishing beef steer growth performance, skeletal muscle cellular response, and carcass characteristics. J Anim Sci 2024; 102:skae337. [PMID: 39487675 PMCID: PMC11633455 DOI: 10.1093/jas/skae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/01/2024] [Indexed: 11/04/2024] Open
Abstract
This study elucidated the effects of dosage-dependent guanidinoacetic acid (GAA) supplementation on growth performance, muscle responses, and carcass characteristics in finishing beef steers. Thirty crossbred Red Angus beef steers (395 ± 28.09 kg) were randomly assigned one of three treatments during a 146-d feedlot study: basal diet without GAA supplementation (CONTROL), 1g of GAA per 100 kg of body weight (BW) daily (LOWGAA), and 2 g of GAA per 100 kg of BW daily (HIGHGAA). Individual feed intake was monitored daily, growth performance parameters were collected every 28 d, and longissimus muscle (LM) biopsies occurred every 56 d. In biopsied LM, greater (P = 0.048) mRNA expression of IGF-1 was observed in LOWGAA steers on day 112 compared to the CONTROL group. LOWGAA steers also exhibited greater expression of myosin heavy chain (MHC) I compared to CONTROL steers (P < 0.05) and MHC IIA compared to both CONTROL and HIGHGAA treatment groups (P < 0.01) on day 112. GAA supplementation resulted in no change in carcass characteristics, serum and LM tissue metabolites, LM composition, and Warner-Bratzler shear force values (P > 0.05). Data collected from this study demonstrate the influence of GAA supplementation on the gene expression of MHC isoforms and their role in skeletal muscle growth, differentiation, and muscle fiber-typing.
Collapse
Affiliation(s)
- Erika P Eckhardt
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Wonseob Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jerad Jaborek
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Andrea J Garmyn
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Donghun Kang
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Jongkyoo Kim
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Ostojic SM, Jorga J. Guanidinoacetic acid in human nutrition: Beyond creatine synthesis. Food Sci Nutr 2023; 11:1606-1611. [PMID: 37051340 PMCID: PMC10084987 DOI: 10.1002/fsn3.3201] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Guanidinoacetic acid (GAA) is a nutrient that has been used in human nutrition since the early 1950s. Recommended for its role in creatine biosynthesis, GAA demonstrated beneficial energy-boosting effects in various clinical conditions. Dietary GAA has also been suggested to trigger several creatine-independent mechanisms. Besides acting as a direct precursor of high-energy phosphagen creatine, dietary GAA is suggested to reduce blood glucose concentration by acting as an insulinotropic food compound, spare amino acid arginine for other metabolic purposes (including protein synthesis), modulate taste, and perhaps alter methylation and fat deposition in various organs including the liver. GAA as a food component can have several important metabolic roles beyond creatine biosynthesis; future studies are highly warranted to address GAA overall role in human nutrition.
Collapse
Affiliation(s)
- Sergej M. Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and Physical EducationUniversity of Novi SadNovi SadSerbia
- Department of Nutrition and Public HealthUniversity of AgderKristiansandNorway
- Faculty of Health SciencesUniversity of PécsPécsHungary
| | - Jagoda Jorga
- Department of Hygiene and Medical Ecology, School of MedicineUniversity of BelgradeBeogradSerbia
| |
Collapse
|
8
|
Double-Fermented Soybean Meal Totally Replaces Soybean Meal in Broiler Rations with Favorable Impact on Performance, Digestibility, Amino Acids Transporters and Meat Nutritional Value. Animals (Basel) 2023; 13:ani13061030. [PMID: 36978571 PMCID: PMC10044553 DOI: 10.3390/ani13061030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Inclusion of microbial fermented soybean meal in broiler feed has induced advantageous outcomes for their performance and gastrointestinal health via exhibiting probiotic effects. In this study, soybean meal (SBM) was subjected to double-stage microbial fermentation utilizing functional metabolites of fungi and bacteria. In broiler diet, DFSBM replaced SBM by 0, 25, 50 and 100%. DFSBM was reported to have higher protein content and total essential, nonessential and free amino acids (increased by 3.67%, 12.81%, 10.10% and 5.88-fold, respectively, compared to SBM). Notably, phytase activity and lactic acid bacteria increased, while fiber, lipid and trypsin inhibitor contents were decreased by 14.05%, 38.24% and 72.80%, respectively, in a diet containing 100% DFSBM, compared to SBM. Improved growth performance and apparent nutrient digestibility, including phosphorus and calcium, and pancreatic digestive enzyme activities were observed in groups fed higher DFSBM levels. In addition, higher inclusion levels of DFSBM increased blood immune response (IgG, IgM, nitric oxide and lysozyme levels) and liver antioxidant status. Jejunal amino acids- and peptide transporter-encoding genes (LAT1, CAT-1, CAT-2, PepT-1 and PepT-2) were upregulated with increasing levels of DFSBM in the ration. Breast muscle crude protein, calcium and phosphorus retention were increased, especially at higher inclusion levels of DFSBM. Coliform bacteria load was significantly reduced, while lactic acid bacteria count in broiler intestines was increased with higher dietary levels of DFSBM. In conclusion, replacement of SBM with DFSBM positively impacted broiler chicken feed utilization and boosted chickens’ amino acid transportation, in addition to improving the nutritional value of their breast meat.
Collapse
|
9
|
Li WJ, Jiang YW, Cui ZY, Wu QC, Zhang F, Chen HW, Wang YL, Wang WK, Lv LK, Xiong FL, Liu YY, Aisikaer A, Li SL, Bo YK, Yang HJ. Dietary Guanidine Acetic Acid Addition Improved Carcass Quality with Less Back-Fat Thickness and Remarkably Increased Meat Protein Deposition in Rapid-Growing Lambs Fed Different Forage Types. Foods 2023; 12:foods12030641. [PMID: 36766172 PMCID: PMC9914891 DOI: 10.3390/foods12030641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to investigate whether guanidine acetic acid (GAA) yields a response in rapid-growing lambs depending on forage type. In this study, seventy-two small-tailed Han lambs (initial body weights = 12 ± 1.6 kg) were used in a 120-d feeding experiment after a 7-d adaptation period. A 2 × 3 factorial experimental feeding design was applied to the lambs, which were fed a total mixed ration with two forage types (OH: oaten hay; OHWS: oaten hay plus wheat silage) and three forms of additional GAA (GAA: 0 g/kg; UGAA: Uncoated GAA, 1 g/kg; CGAA: Coated GAA, 1 g/kg). The OH diet had a greater dry matter intake, average daily gain, and hot carcass weight than the OHWS diet. The GAA supplementation increased the final body weight, hot carcass weight, dressing percentage, and ribeye area in the longissimus lumborum. Meanwhile, it decreased backfat thickness and serum triglycerides. Dietary GAA decreased the acidity of the meat and elevated the water-holding capacity in mutton. In addition, the crude protein content in mutton increased with GAA addition. Dietary GAA (UGAA or CGAA) might be an effective additive in lamb fed by different forage types, as it has potential to improve growth performance and meat quality.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao-Wen Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhao-Yang Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qi-Chao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - He-Wei Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yan-Lu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei-Kang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liang-Kang Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Feng-Liang Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying-Yi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ailiyasi Aisikaer
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sheng-Li Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu-Kun Bo
- Zhangjiakou Animal Husbandry Technology Promotion Institution, Zhangjiakou 075000, China
| | - Hong-Jian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-139-1188-8062
| |
Collapse
|
10
|
Effects of coated folic acid and coated methionine on growth performance, nutrient digestibility and rumen fermentation in Simmental bulls. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Liu Y, Zhang J, Wang C, Guo G, Huo W, Xia C, Chen L, Zhang Y, Pei C, Liu Q. Effects of guanidinoacetic acid supplementation on lactation performance, nutrient digestion and rumen fermentation in Holstein dairy cows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1522-1529. [PMID: 36184578 DOI: 10.1002/jsfa.12249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 08/27/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Considering the high energy demand of lactation and the potential of guanidinoacetic acid (GAA) addition on the increase in creatine supply for cows, the present study investigated the effects of 0, 0.3, 0.6 and 0.9 g kg-1 dry matter (DM) of GAA supplementation on lactation performance, nutrient digestion and ruminal fermentation in dairy cows. The study used 40 mid-lactation multiparous Holstein cows and the study duration was 100 days. RESULTS DM intake was not affected, but milk and milk component yields and feed efficiency increased linearly with increasing GAA addition. The total-tract digestibility of DM, organic matter, neutral detergent fibre, acid detergent fibre and non-fibre carbohydrates increased linearly and that of crude protein increased quadratically with increasing GAA addition. When the addition level of GAA increased, ruminal pH, molar percentages of butyrate, isobutyrate and isovalerate and the acetate-to-propionate ratio decreased linearly, and the total volatile fatty acids concentration and propionate molar percentage also increased linearly, whereas the acetate molar percentage and ammonia-N concentration were unaltered. The activities of fibrolytic enzymes, α-amylase and protease increased linearly. The populations of total bacteria, fungi, Ruminococcus albus, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminobacter amylophilus and Prevotella ruminicola increased linearly, whereas protozoa and methanogens decreased linearly with increasing GAA addition. As for the blood metabolites, concentrations of glucose, urea nitrogen and methionine were unchanged, total protein, albumin, creatine and homocysteine increased linearly, and folate decreased linearly with increasing GAA supply. CONCLUSION The results of the present study indicate that supplementation of GAA improved milk performance and rumen fermentation in lactating dairy cows. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongjia Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Jing Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Cong Wang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Gang Guo
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Wenjie Huo
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Chengqiang Xia
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Lei Chen
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Yawei Zhang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Caixia Pei
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| | - Qiang Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
12
|
Wang C, Zhang J, Guo G, Huo W, Xia CQ, Chen L, Zhang Y, Pei C, Liu Q. Effects of folic acid and riboflavin on growth performance, nutrient digestion and rumen fermentation in Angus bulls. Br J Nutr 2023; 129:1-9. [PMID: 35225178 DOI: 10.1017/s0007114522000630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study examined the influences of coated folic acid (CFA) and coated riboflavin (CRF) on bull performance, nutrients digestion and ruminal fermentation. Forty-eight Angus bulls based on a randomised block and 2 × 2 factorial design were assigned to four treatments. The CFA of 0 or 6 mg of folic acid/kg DM was supplemented in diets with CRF 0 or 60 mg riboflavin (RF)/kg DM. Supplementation of CRF in diets with CFA had greater increase in daily weight gain and feed efficiency than in diets without CFA. Supplementation with CFA or CRF enhanced digestibility of DM, organic matter, crude protein, neutral-detergent fibre and non-fibre carbohydrate. Ruminal pH and ammonia N content decreased and total volatile fatty acids concentration and acetate to propionate ratio elevated for CFA or CRF addition. Supplement of CFA or CRF increased the activities of fibrolytic enzymes and the numbers of total bacteria, protozoa, fungi, dominant fibrolytic bacteria and Prevotella ruminicola. The activities of α-amylase, protease and pectinase and the numbers of Butyrivibrio fibrisolvens and Ruminobacter amylophilus were increased by CFA but were unaffected by CRF. Blood concentration of folate elevated and homocysteine decreased for CFA addition. The CRF supplementation elevated blood concentrations of folate and RF. These findings suggested that CFA or CRF inclusion had facilitating effects on performance and ruminal fermentation, and combined addition of CFA and CRF had greater increase in performance than CFA or CRF addition alone in bulls.
Collapse
Affiliation(s)
- Cong Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Jing Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Gang Guo
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Wenjie Huo
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Cheng Qiang Xia
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Lei Chen
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Yawei Zhang
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Caixia Pei
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| | - Qiang Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, P. R. People's Republic of China
| |
Collapse
|
13
|
Ren G, Hao X, Zhang X, Liu S, Zhang J. Effects of guanidinoacetic acid and betaine on growth performance, energy and nitrogen metabolism, and rumen microbial protein synthesis in lambs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Wang B, Li H, Li Z, Wang B, Zhang H, Zhang B, Luo H. Integrative network analysis revealed the molecular function of folic acid on immunological enhancement in a sheep model. Front Immunol 2022; 13:913854. [PMID: 36032143 PMCID: PMC9412826 DOI: 10.3389/fimmu.2022.913854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
We previously observed the beneficial role of folic acid supplemented from maternal or offspring diet on lamb growth performance and immunity. Twenty-four Hu lambs from four groups (mother received folic acid or not, offspring received folic acid or not) were used in the current study, which was conducted consecutively to elucidate the molecular regulatory mechanisms of folic acid in lambs by analyzing blood metabolome, liver transcriptome, and muscle transcriptome. Serum metabolomics analysis showed that L-homocitrulline, hyodeoxycholic acid, 9-Hpode, palmitaldehyde, N-oleoyl glycine, hexadecanedioic acid, xylose, 1,7-dimethylxanthine, nicotinamide, acetyl-N-formyl-5-methoxykynurenamine, N6-succinyl adenosine, 11-cis-retinol, 18-hydroxycorticosterone, and 2-acetylfuran were down-regulated and methylisobutyrate was up-regulated by the feeding of folic acid from maternal and/or offspring diets. Meanwhile, folic acid increased the abundances of S100A12 and IRF6 but decreased TMEM25 in the liver. In the muscle, RBBP9, CALCR, PPP1R3D, UCP3, FBXL4, CMBL, and MTFR2 were up-regulated, CYP26B1 and MYH9 were down-regulated by the feeding of folic acid. The pathways of bile secretion, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, and herpes simplex virus 1 infection were changed by folic acid in blood, liver, or muscle. Further integrated analysis revealed potential interactions among the liver, blood, and muscle, and the circulating metabolites, hub gene, and pathways, which might be the predominant acting targets of folic acid in animals. These findings provide fundamental information on the beneficial function of folic acid no matter from maternal or offspring, in regulating animal lipid metabolism and immune enhancement, providing a theoretical basis for the use of folic acid from the view of animal health care.
Collapse
|
15
|
Li WJ, Wu QC, Cui ZY, Jiang YW, Aisikaer A, Zhang F, Chen HW, Wang WK, Wang YL, Lv LK, Xiong FL, Liu YY, Li SL, Yang HJ. Guanidine acetic acid exhibited greater growth performance in younger (13–30 kg) than in older (30–50 kg) lambs under high-concentrate feedlotting pattern. Front Vet Sci 2022; 9:954675. [PMID: 35990281 PMCID: PMC9386046 DOI: 10.3389/fvets.2022.954675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Guanidine acetic acid (GAA) is increasingly considered as a nutritional growth promoter in monogastric animals. Whether or not such response would exist in rapid-growing lambs is unclear yet. The objective of this study was to investigate whether dietary supplementation with uncoated GAA (UGAA) and coated GAA (CGAA) could alter growth performance, nutrient digestion, serum metabolites, and antioxidant capacity in lambs. Seventy-two small-tailed Han lambs initially weighed 12 ± 1.6 kg were randomly allocated into six groups in a 2 × 3 factorial experimental design including two forage-type rations [Oaten hay (OH) vs. its combination with wheat silage (OHWS)] and three GAA treatment per ration: no GAA, 1 g UGAA, and 1 g CGAA per kg dry matter. The whole experiment was completed in two consecutive growing stages (stage 1, 13–30 kg; stage 2, 30–50 kg). Under high-concentrate feeding pattern (Stage 1, 25: 75; Stage 2, 20: 80), UGAA or CGAA supplementation in young lambs presented greater dry matter intake (DMI) in stage 1 and average daily gain (ADG) in the whole experimental period; lambs in OH group had higher ADG and DMI than that in OHWS group in stage 1 and whole experimental period, but this phenomenon was not observed in stage 2. Both UCGA and CGAA addition increased dietary DM, organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestion in both stages. In blood metabolism, UCGA and CGAA addition resulted in a greater total protein (TP) and insulin-like growth factor 1(IGF-1) levels, as well as antioxidant capacity; at the same time, UCGA and CGAA addition increased GAA metabolism-creatine kinase and decreased guanidinoacetate N-methyltransferase (GAMT) and L-Arginine glycine amidine transferase catalyzes (AGAT) activity. In a brief, the results obtained in the present study suggested that GAA (UGAA and CGAA; 1 g/kg DM) could be applied to improve growth performance in younger (13–30 kg) instead of older (30–50 kg) lambs in high-concentrate feedlotting practice.
Collapse
|
16
|
Li Z, Liang H, Xin J, Xu L, Li M, Yu H, Zhang W, Ge Y, Li Y, Qu M. Effects of Dietary Guanidinoacetic Acid on the Feed Efficiency, Blood Measures, and Meat Quality of Jinjiang Bulls. Front Vet Sci 2021; 8:684295. [PMID: 34307526 PMCID: PMC8299751 DOI: 10.3389/fvets.2021.684295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/15/2021] [Indexed: 02/03/2023] Open
Abstract
An experiment was conducted to determine the effects of supplementing the diet of Jinjiang bulls with guanidinoacetic acid (GAA) on their feed efficiency [feed efficiency were evaluated with feedlot average daily gain (ADG), average daily feed intake (ADFI), and feed-to-gain ratio (F:G)], blood measures, and meat quality. Forty-five Jinjiang bulls (24 ± 3 months old and 350.15 ± 30.39 kg by weight) were randomly distributed among five experimental groups (each n = 9) and each group was randomly fed with one of five diets (concentrate: roughage ratio of 60:40): (1) control; (2) 0.05% GAA; (3) 0.1% GAA; (4) 0.2% GAA; and (5) 0.4% GAA, respectively. After a 52-days feeding trial, five bulls from the control group and five bulls from the optimal GAA supplementing group were randomly selected and slaughtered for collection of the longissimus thoracis (LT) and semitendinosus (SM) muscles to determine meat quality. The results showed that dietary GAA improved the ADG, decreased the value of F:G, and affected blood measures and antioxidant variables. Supplementing 0.2% GAA into the diet was optimal for feeding efficiency and most of the measured blood measures. Supplementing 0.2% GAA into the diet increased the a* (redness) values, and b* (yellowness) values, and the amount of creatine kinase (CK), muscle glycogen, creatinine (CRE), and laminin (LN) in LT muscles. However, it decreased the drip loss, L* (lightness) value, and lactate dehydrogenase (LDH) content of LT muscles. Drip loss and shear force decreased in SM muscles, as did the amount of type IV collagen (CV-IV). In conclusion, supplementing 0.2% GAA into the diet could enhance feed efficiency to improve beef growth and meat quality.
Collapse
Affiliation(s)
- Zengmin Li
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China.,Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Huan Liang
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Junping Xin
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Lanjiao Xu
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Meifa Li
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Hanjing Yu
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Wenjing Zhang
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Yu Ge
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Yanjiao Li
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Key Laboratory of Animal Nutrition in Jiangxi Province, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
17
|
Ardalan M, Miesner MD, Reinhardt CD, Thomson DU, Armendariz CK, Smith JS, Titgemeyer EC. Effects of guanidinoacetic acid supplementation on nitrogen retention and methionine flux in cattle. J Anim Sci 2021; 99:6308973. [PMID: 34165572 DOI: 10.1093/jas/skab172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Creatine stores high-energy phosphate bonds in muscle and is synthesized in the liver through methylation of guanidinoacetic acid (GAA). Supplementation of GAA may therefore increase methyl group requirements, and this may affect methyl group utilization. Our experiment evaluated the metabolic responses of growing cattle to postruminal supplementation of GAA, in a model where methionine (Met) was deficient, with and without Met supplementation. Seven ruminally cannulated Holstein steers (161 kg initial body weight [BW]) were limit-fed a soybean hull-based diet (2.7 kg/d dry matter) and received continuous abomasal infusions of an essential amino acid (AA) mixture devoid of Met to ensure that no AA besides Met limited animal performance. To provide energy without increasing the microbial protein supply, all steers received ruminal infusions of 200 g/d acetic acid, 200 g/d propionic acid, and 50 g/d butyric acid, as well as abomasal infusions of 300 g/d glucose. Treatments, provided abomasally, were arranged as a 2 × 3 factorial in a split-plot design, and included 0 or 6 g/d of l-Met and 0, 7.5, and 15 g/d of GAA. The experiment included six 10-d periods. Whole body Met flux was measured using continuous jugular infusion of 1-13C-l-Met and methyl-2H3-l-Met. Nitrogen retention was elevated by Met supplementation (P < 0.01). Supplementation with GAA tended to increase N retention when it was supplemented along with Met, but not when it was supplemented without Met. Supplementing GAA linearly increased plasma concentrations of GAA and creatine (P < 0.001), but treatments did not affect urinary excretion of GAA, creatine, or creatinine. Supplementation with Met decreased plasma homocysteine (P < 0.01). Supplementation of GAA tended (P = 0.10) to increase plasma homocysteine when no Met was supplemented, but not when 6 g/d Met was provided. Protein synthesis and protein degradation were both increased by GAA supplementation when no Met was supplemented, but decreased by GAA supplementation when 6 g/d Met were provided. Loss of Met through transsulfuration was increased by Met supplementation, whereas synthesis of Met from remethylation of homocysteine was decreased by Met supplementation. No differences in transmethylation, transsulfuration, or remethylation reactions were observed in response to GAA supplementation. The administration of GAA, when methyl groups are not limiting, has the potential to improve lean tissue deposition and cattle growth.
Collapse
Affiliation(s)
- Mehrnaz Ardalan
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Matt D Miesner
- Department of Clinical Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Christopher D Reinhardt
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Daniel U Thomson
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA
| | - Cheryl K Armendariz
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - J Scott Smith
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Evan C Titgemeyer
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|