1
|
Alrifai MT, Alrumayyan Y, Baarmah D, Alrumayyan A, Altuwaijri W, AlMuqbil M, Eyaid W, Swaid A, Almutairi F, Alfadhel M. Genetic Microcephaly in a Saudi Population: Unique Spectrum of Affected Genes Including a Novel One. J Child Neurol 2024; 39:209-217. [PMID: 38847106 DOI: 10.1177/08830738241252848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Background: Genetic microcephaly is linked to an increased risk of developmental disabilities, epilepsy, and motor impairment. The aim of this study is to describe the spectrum of identifiable genetic etiologies, clinical characteristics, and radiologic features of genetic microcephaly in patients referred to a tertiary center in Saudi Arabia. Method: This is a retrospective chart review study of all patients with identifiable genetic microcephaly presenting to a tertiary center in Saudi Arabia. The patients' demographics, clinical, laboratory, radiologic, and molecular findings were collected. Results: Of the total 128 cases referred, 52 cases (40%) had identifiable genetic causes. Monogenic disorders were found in 48 cases (92%), whereas chromosomal disorders were found in only 4 cases (8%). Developmental disability was observed in 40 cases (84%), whereas only 8 cases (16%) had borderline IQ or mild developmental delay. Epilepsy was seen in 29 cases (56%), and motor impairment was seen in 26 cases (50%). Brain magnetic resonance imaging (MRI) revealed abnormalities in 26 (50%) of the cohort. Hereditary neurometabolic disorders were seen in 7 (15%) of the 48 cases with monogenic disorders. The most common gene defect was ASPM, which is responsible for primary microcephaly type 5 and was seen in 10 cases (19%). A novel PLK1 gene pathogenic mutation was seen in 3 cases (6%). Conclusion: Single gene defect is common in this Saudi population, with the ASPM gene being the most common. Hereditary neurometabolic disorders are a common cause of genetic microcephaly. Furthermore, we propose the PKL1 gene mutation as a possible novel cause of genetic microcephaly.
Collapse
Affiliation(s)
- Muhammad Talal Alrifai
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Yousof Alrumayyan
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Duaa Baarmah
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Ahmed Alrumayyan
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Waleed Altuwaijri
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Mohammed AlMuqbil
- Neurology Division, Pediatric Department, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Wafaa Eyaid
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Abdulrahman Swaid
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Fuad Almutairi
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| | - Majid Alfadhel
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences(KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
- Genetics and Precision Medicine department (GPM), King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Fishburn AT, Florio CJ, Lopez NJ, Link NL, Shah PS. Molecular functions of ANKLE2 and its implications in human disease. Dis Model Mech 2024; 17:dmm050554. [PMID: 38691001 PMCID: PMC11103583 DOI: 10.1242/dmm.050554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
Ankyrin repeat and LEM domain-containing 2 (ANKLE2) is a scaffolding protein with established roles in cell division and development, the dysfunction of which is increasingly implicated in human disease. ANKLE2 regulates nuclear envelope disassembly at the onset of mitosis and its reassembly after chromosome segregation. ANKLE2 dysfunction is associated with abnormal nuclear morphology and cell division. It regulates the nuclear envelope by mediating protein-protein interactions with barrier to autointegration factor (BANF1; also known as BAF) and with the kinase and phosphatase that modulate the phosphorylation state of BAF. In brain development, ANKLE2 is crucial for proper asymmetric division of neural progenitor cells. In humans, pathogenic loss-of-function mutations in ANKLE2 are associated with primary congenital microcephaly, a condition in which the brain is not properly developed at birth. ANKLE2 is also linked to other disease pathologies, including congenital Zika syndrome, cancer and tauopathy. Here, we review the molecular roles of ANKLE2 and the recent literature on human diseases caused by its dysfunction.
Collapse
Affiliation(s)
- Adam T. Fishburn
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Cole J. Florio
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nick J. Lopez
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Nichole L. Link
- Department of Neurobiology, University of Utah, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Chemical Engineering, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
3
|
Liu J, Liu Q, Zhao J, Lin S, Zhou Y. Prenatal evaluation of genetic variants in fetuses with small head circumference: A single-center retrospective study. Eur J Obstet Gynecol Reprod Biol 2024; 293:57-66. [PMID: 38113582 DOI: 10.1016/j.ejogrb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/31/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVES To comprehensively evaluate the contributions of numerical chromosomal abnormality, copy number variant (CNV), and sequence variant (SV) to fetuses with small head circumference in a Chinese cohort using chromosome microarray analysis and whole exome sequencing. METHODS A total of 157 fetuses with small heads defined as head circumference < - 2 standard deviation (SD) were recruited between October 2014 and March 2023. We used the ultrasonic measurement parameter Z-score to define small head as possible microcephaly (3 < Z ≤ -2), microcephaly (-5 < Z ≤ -3), or pathologic microcephaly (Z ≤ -5). Ultrasound findings and genetic results were analyzed. RESULTS The overall diagnostic yield of chromosomal abnormalities by microarray analysis was 13 %. Whole exome sequencing revealed eight novel variants and two interesting candidate genes and provided a 25.4 % incremental yield compared with microarray analysis. Of the detected SVs, 56 % were de novo and the most common inheritance pattern was autosomal dominant inheritance presented in 11/16 fetuses. Compared with isolated small heads, non-isolated small heads had a significantly higher detection rate of chromosomal abnormalities (16 % vs. 3.0 %, P = 0.049) but not SVs (24 % vs. 5.5 %, P = 0.126). Subgroup analysis showed that intracranial anomalies had a similar high detection rate of SVs in fetuses with all small heads subgroups while no chromosomal abnormalities and causative SVs were found in fetuses with isolated possible microcephaly. CONCLUSIONS Ultrasound findings of small fetal head circumference < 3 SD below the mean, especially those with intracranial structural abnormalities, indicate the need for genetic counseling. Genetic variants, mainly copy number variants and SV, may be responsible for the substantial proportion of small fetal head circumference, while most are de novo. Whole exome sequencing and microarray analysis are effective diagnostic approaches for this population.
Collapse
Affiliation(s)
- Jingyu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Quanrui Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jingya Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Yi Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
4
|
Tokunaga M, Imamura T. Emerging concepts involving inhibitory and activating RNA functionalization towards the understanding of microcephaly phenotypes and brain diseases in humans. Front Cell Dev Biol 2023; 11:1168072. [PMID: 37408531 PMCID: PMC10318543 DOI: 10.3389/fcell.2023.1168072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Microcephaly is characterized as a small head circumference, and is often accompanied by developmental disorders. Several candidate risk genes for this disease have been described, and mutations in non-coding regions are occasionally found in patients with microcephaly. Various non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component (TERC), and promoter-associated lncRNAs (pancRNAs) are now being characterized. These ncRNAs regulate gene expression, enzyme activity, telomere length, and chromatin structure through RNA binding proteins (RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein coordination in microcephaly pathogenesis might contribute to its prevention or recovery. Here, we introduce several syndromes whose clinical features include microcephaly. In particular, we focus on syndromes for which ncRNAs or genes that interact with ncRNAs may play roles. We discuss the possibility that the huge ncRNA field will provide possible new therapeutic approaches for microcephaly and also reveal clues about the factors enabling the evolutionary acquisition of the human-specific "large brain."
Collapse
|
5
|
Pallavicini G, Iegiani G, Parolisi R, Ferraro A, Garello F, Bitonto V, Terreno E, Gai M, Di Cunto F. Lestaurtinib inhibits Citron kinase activity and medulloblastoma growth through induction of DNA damage, apoptosis and cytokinesis failure. Front Oncol 2023; 13:1202585. [PMID: 37404750 PMCID: PMC10315473 DOI: 10.3389/fonc.2023.1202585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction Medulloblastoma (MB), the most common malignant pediatric brain tumor, is currently treated with surgery followed by radiation and chemotherapy, which is accompanied by severe side effects, raising the need for innovative therapies. Disruption of the microcephaly-related gene Citron kinase (CITK) impairs the expansion of xenograft models as well as spontaneous MB arising in transgenic mice. No specific CITK inhibitors are available. Methods Lestaurtinib, a Staurosporine derivative also known as CEP-701, inhibits CITK with IC50 of 90 nM. We therefore tested the biological effects of this molecule on different MB cell lines, as well as in vivo, injecting the drug in MBs arising in SmoA1 transgenic mice. Results Similar to CITK knockdown, treatment of MB cells with 100 nM Lestaurtinib reduces phospho-INCENP levels at the midbody and leads to late cytokinesis failure. Moreover, Lestaurtinib impairs cell proliferation through CITK-sensitive mechanisms. These phenotypes are accompanied by accumulation of DNA double strand breaks, cell cycle block and TP53 superfamily activation in vitro and in vivo. Lestaurtinib treatment reduces tumor growth and increases mice survival. Discussion Our data indicate that Lestaurtinib produces in MB cells poly-pharmacological effects extending beyond the inhibition of its validated targets, supporting the possibility of repositioning this drug for MB treatment.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
| | - Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
| | - Alessia Ferraro
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
| | - Francesca Garello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Valeria Bitonto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Enzo Terreno
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience ‘Rita Levi Montalcini’, University of Turin, Turin, Italy
| |
Collapse
|
6
|
He Z, Zhao Y, Sun J. The Role of Major Facilitator Superfamily Domain-Containing 2a in the Central Nervous System. Cell Mol Neurobiol 2023; 43:639-647. [PMID: 35438385 DOI: 10.1007/s10571-022-01222-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/26/2022] [Indexed: 02/06/2023]
Abstract
Major facilitator superfamily-domain containing 2a (Mfsd2a) is selectively expressed in vascular endotheliocytes and plays a crucial role in maintaining the integrity of the blood‒brain barrier and the transport of docosahexaenoic acid. It is currently recognized as the only molecule that inhibits endocytosis mediated by caveolae in brain endothelial cells. Mfsd2a gene knockout leads to an increase in the permeability of the blood-brain barrier from embryonic stages to adulthood while maintaining the normal pattern of the vascular network. In Mfsd2a knockout mice, the docosahexaenoic acid content is significantly reduced and associated with neuron loss, resulting in microcephaly and cognitive impairment. Based on the role of Mfsd2a in the central nervous system, it has been preliminarily suggested as a potential therapeutic target for drug delivery to the central nervous system. This paper reviews the current progress in Mfsd2a research and summarizes the physiological functions of Mfsd2a in the central nervous system and its role in the occurrence and development of a variety of neurological diseases.
Collapse
Affiliation(s)
- Zhidong He
- China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130031, Jilin, China
| | - Yanan Zhao
- China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130031, Jilin, China
| | - Jing Sun
- China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130031, Jilin, China.
| |
Collapse
|
7
|
Ocasio JK. Proliferation Analysis of Cerebellar Granule Neuron Progenitors for Microcephaly Research, Using Immunofluorescent Staining and Flow Cytometry. Methods Mol Biol 2023; 2583:13-23. [PMID: 36418722 DOI: 10.1007/978-1-0716-2752-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell cycle progression is a vital aspect of neural development. Repeated cell division in neural progenitor populations amplifies the numbers of specific cell types and is required to prevent growth failure that manifests as microcephaly. Regulated cycling is also required for cell fate specification. Analysis of cell cycle states is a valuable tool to understand the mechanisms underlying brain growth. Here we describe the preparation of cells for immunofluorescent-stained samples and flow cytometry and how to analyze cell cycle progression and cell cycle exit in progenitors. We describe methods as applied to analysis of cerebellar granule neuron progenitors (CGNPs), but similar methods in brain sections can also be applied to other brain neural progenitor populations, such as the hippocampus and subventricular zone.
Collapse
|
8
|
Chen H, Jin X, Li T, Ye Z. Brain organoids: Establishment and application. Front Cell Dev Biol 2022; 10:1029873. [PMID: 36506083 PMCID: PMC9726712 DOI: 10.3389/fcell.2022.1029873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Brain organoids are produced by the differentiation of pluripotent stem cells under three-dimensional culture conditions by adding neurodevelopment-related regulatory signals. They are similar to the cell composition and anatomical structure of the brain, and can reflect the developmental process of the brain, as well as their physiology, pathology, and pharmacology. Brain organoids are good models to study human brain development and brain-related diseases in vitro. Here, we mainly focus on the construction of brain organoids and review the application of brain organoids in disease modelingand drug screening.
Collapse
Affiliation(s)
- Hao Chen
- Department of Neurovascular Surgery, First Hospital, Jilin University, Changchun, China
| | - Xin Jin
- Department of Oncology and Hematology, Second Hospital, Jilin University, Changchun, China
| | - Tie Li
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China
| | - Zhuang Ye
- Department of Rheumatology, First Hospital, Jilin University, Changchun, China,*Correspondence: Zhuang Ye,
| |
Collapse
|
9
|
ASPM promotes ATR-CHK1 activation and stabilizes stalled replication forks in response to replication stress. Proc Natl Acad Sci U S A 2022; 119:e2203783119. [PMID: 36161901 PMCID: PMC9546549 DOI: 10.1073/pnas.2203783119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
ASPM (encoded by MCPH5) is a frequently mutated protein, and such mutations occur in >40% of cases of primary microcephaly (MCPH). Here, we characterize a function of ASPM in DNA replication and the replication stress response. ASPM serves as a scaffold to load stimulators required for ATR-CHK1 checkpoint signaling upon replication stress, which protects stalled replication forks from degradation. ASPM deficiency leads to genomic instability and the sensitization of cancer cells to replication stressors. ASPM is a protein encoded by primary microcephaly 5 (MCPH5) and is responsible for ensuring spindle position during mitosis and the symmetrical division of neural stem cells. We recently reported that ASPM promotes homologous recombination (HR) repair of DNA double strand breaks. However, its potential role in DNA replication and replication stress response remains elusive. Interestingly, we found that ASPM is dispensable for DNA replication under unperturbed conditions. However, ASPM is enriched at stalled replication forks in a RAD17-dependent manner in response to replication stress and promotes RAD9 and TopBP1 loading onto chromatin, facilitating ATR-CHK1 activation. ASPM depletion results in failed fork restart and nuclease MRE11-mediated nascent DNA degradation at the stalled replication fork. The overall consequence is chromosome instability and the sensitization of cancer cells to replication stressors. These data support a role for ASPM in loading RAD17-RAD9/TopBP1 onto chromatin to activate the ATR-CHK1 checkpoint and ultimately ensure genome stability.
Collapse
|
10
|
Mikdache A, Boueid MJ, Lesport E, Delespierre B, Loisel-Duwattez J, Degerny C, Tawk M. Timely Schwann cell division drives peripheral myelination in vivo via the laminin/cAMP pathway. Development 2022; 149:276236. [DOI: 10.1242/dev.200640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Schwann cells (SCs) migrate along peripheral axons and divide intensively to generate the right number of cells prior to axonal ensheathment; however, little is known regarding the temporal and molecular control of their division and its impact on myelination. We report that Sil, a spindle pole protein associated with autosomal recessive primary microcephaly, is required for temporal mitotic exit of SCs. In sil-deficient cassiopeia (csp−/−) mutants, SCs fail to radially sort and myelinate peripheral axons. Elevation of cAMP, but not Rac1 activity, in csp−/− restores myelin ensheathment. Most importantly, we show a significant decrease in laminin expression within csp−/− posterior lateral line nerve and that forcing Laminin 2 expression in csp−/− fully restores the ability of SCs to myelinate. Thus, we demonstrate an essential role for timely SC division in mediating laminin expression to orchestrate radial sorting and peripheral myelination in vivo.
Collapse
Affiliation(s)
- Aya Mikdache
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marie-José Boueid
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Emilie Lesport
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | | | | | - Cindy Degerny
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| | - Marcel Tawk
- U1195, Inserm, University Paris-Saclay , 94276 Le Kremlin Bicêtre , France
| |
Collapse
|
11
|
Transmission ratio distortion of mutations in the master regulator of centriole biogenesis PLK4. Hum Genet 2022; 141:1785-1794. [PMID: 35536377 PMCID: PMC9556372 DOI: 10.1007/s00439-022-02461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Abstract
The evolutionary conserved Polo-like kinase 4 (PLK4) is essential for centriole duplication, spindle assembly, and de novo centriole formation. In man, homozygous mutations in PLK4 lead to primary microcephaly, altered PLK4 expression is associated with aneuploidy in human embryos. Here, we report on a consanguineous four-generation family with 8 affected individuals compound heterozygous for a novel missense variant, c.881 T > G, and a deletion of the PLK4 gene. The clinical phenotype of the adult patients is mild compared to individuals with previously described PLK4 mutations. One individual was homozygous for the variant c.881G and phenotypically unaffected. The deletion was inherited by 14 of 16 offspring and thus exhibits transmission ratio distortion (TRD). Moreover, based on the already published families with PLK4 mutations, it could be shown that due to the preferential transmission of the mutant alleles, the number of affected offspring is significantly increased. It is assumed that reduced expression of PLK4 decreases the intrinsically high error rate of the first cell divisions after fertilization, increases the number of viable embryos and thus leads to preferential transmission of the deleted/mutated alleles.
Collapse
|
12
|
Iyer J, Gentry LK, Bergwell M, Smith A, Guagliardo S, Kropp PA, Sankaralingam P, Liu Y, Spooner E, Bowerman B, O’Connell KF. The chromatin remodeling protein CHD-1 and the EFL-1/DPL-1 transcription factor cooperatively down regulate CDK-2 to control SAS-6 levels and centriole number. PLoS Genet 2022; 18:e1009799. [PMID: 35377871 PMCID: PMC9009770 DOI: 10.1371/journal.pgen.1009799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 04/14/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022] Open
Abstract
Centrioles are submicron-scale, barrel-shaped organelles typically found in pairs, and play important roles in ciliogenesis and bipolar spindle assembly. In general, successful execution of centriole-dependent processes is highly reliant on the ability of the cell to stringently control centriole number. This in turn is mainly achieved through the precise duplication of centrioles during each S phase. Aberrations in centriole duplication disrupt spindle assembly and cilia-based signaling and have been linked to cancer, primary microcephaly and a variety of growth disorders. Studies aimed at understanding how centriole duplication is controlled have mainly focused on the post-translational regulation of two key components of this pathway: the master regulatory kinase ZYG-1/Plk4 and the scaffold component SAS-6. In contrast, how transcriptional control mechanisms might contribute to this process have not been well explored. Here we show that the chromatin remodeling protein CHD-1 contributes to the regulation of centriole duplication in the C. elegans embryo. Specifically, we find that loss of CHD-1 or inactivation of its ATPase activity can restore embryonic viability and centriole duplication to a strain expressing insufficient ZYG-1 activity. Interestingly, loss of CHD-1 is associated with increases in the levels of two ZYG-1-binding partners: SPD-2, the centriole receptor for ZYG-1 and SAS-6. Finally, we explore transcriptional regulatory networks governing centriole duplication and find that CHD-1 and a second transcription factor, EFL-1/DPL-1 cooperate to down regulate expression of CDK-2, which in turn promotes SAS-6 protein levels. Disruption of this regulatory network results in the overexpression of SAS-6 and the production of extra centrioles. Centrioles are cellular constituents that play an important role in cell reproduction, signaling and movement. To properly function, centrioles must be present in the cell at precise numbers. Errors in maintaining centriole number result in cell division defects and diseases such as cancer and microcephaly. How the cell maintains proper centriole copy number is not entirely understood. Here we show that two transcription factors, EFL-1/DPL-1 and CHD-1 cooperate to reduce expression of CDK-2, a master regulator of the cell cycle. We find that CDK-2 in turn promotes expression of SAS-6, a major building block of centrioles. When EFL-1/DPL-1 and CHD-1 are inhibited, CDK-2 is overexpressed. This leads to increased levels of SAS-6 and excess centrioles. Our work thus demonstrates a novel mechanism for controlling centriole number and is thus relevant to those human diseases caused by defects in centriole copy number control.
Collapse
Affiliation(s)
- Jyoti Iyer
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, Oklahoma, United States of America
- * E-mail: (JI); (KFO)
| | - Lindsey K. Gentry
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Mary Bergwell
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, Oklahoma, United States of America
| | - Amy Smith
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, Oklahoma, United States of America
| | - Sarah Guagliardo
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Peter A. Kropp
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Prabhu Sankaralingam
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Yan Liu
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Eric Spooner
- Proteomics Core Facility, Whitehead Institute for Biomedical Research, Cambridge Massachusetts, United States of America
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Kevin F. O’Connell
- Laboratory of Biochemistry and Genetics, National Institutes of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
- * E-mail: (JI); (KFO)
| |
Collapse
|
13
|
Identification of Pathogenic Mutations in Primary Microcephaly- (MCPH-) Related Three Genes CENPJ, CASK, and MCPH1 in Consanguineous Pakistani Families. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3769948. [PMID: 35281599 PMCID: PMC8913137 DOI: 10.1155/2022/3769948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Microcephaly (MCPH) is a developmental anomaly of the brain known by reduced cerebral cortex and underdeveloped intellectual disability without additional clinical symptoms. It is a genetically and clinically heterogenous disorder. Twenty-five genes (involved in spindle positioning, Wnt signaling, centriole biogenesis, DNA repair, microtubule dynamics, cell cycle checkpoints, and transcriptional regulation) causing MCPH have been identified so far. Pakistani population has contributed in the identification of many MCPH genes. WES of three large consanguineous families revealed three pathogenic variants of MCPH1, CENPJ, and CASK. One novel (c.1254delT) deletion variant of MCPH1 and one known (c.18delC) deletion variant of CENPJ were identified in family 1 and 2, respectively. In addition to this, we also identified a missense variant (c.1289G>A) of CASK in males individuals in family 3. Missense mutation in the CASK gene is frequent in the boys with intellectual disability and autistic traits which are the common features that are associated with FG Syndrome 4. The study reports novel and reported mutant alleles disrupting the working of genes vital for normal brain functioning. The findings of this study enhance our understanding about the genetic architecture of primary microcephaly in our local pedigrees and add to the allelic heterogeneity of 3 known MCPH genes. The data generated will help to develop specific strategies to reduce the high incidence rate of MCPH in Pakistani population.
Collapse
|
14
|
Schmidt JK, Jones KM, Van Vleck T, Emborg ME. Modeling genetic diseases in nonhuman primates through embryonic and germline modification: Considerations and challenges. Sci Transl Med 2022; 14:eabf4879. [PMID: 35235338 PMCID: PMC9373237 DOI: 10.1126/scitranslmed.abf4879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Genetic modification of the embryo or germ line of nonhuman primates is envisioned as a method to develop improved models of human disease, yet the promise of such animal models remains unfulfilled. Here, we discuss current methods and their limitations for producing nonhuman primate genetic models that faithfully genocopy and phenocopy human disease. We reflect on how to ethically maximize the translational relevance of such models in the search for new therapeutic strategies to treat human disease.
Collapse
Affiliation(s)
- Jenna K. Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathryn M. Jones
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Trevor Van Vleck
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Marina E. Emborg
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Türkyılmaz A, Sager SG. Two New Cases of Primary Microcephaly with Neuronal Migration Defect Caused by Truncating Mutations in the ASPM Gene. Mol Syndromol 2022; 13:56-63. [PMID: 35221876 PMCID: PMC8832193 DOI: 10.1159/000516201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 08/22/2023] Open
Abstract
Autosomal recessive primary microcephaly (MCPH) is a uncommon disorder due to congenital deficiency in the development of the cerebral cortex, characterized by a head circumference below 2 SD. MCPH is a group of diseases with genetic heterogeneity and has been reported by the Online Mendelian Inheritance In Man® (OMIM) database and associated with 25 different genes. It is known that MCPH cases are most frequently associated with abnormal spindle-like, microcephaly-associated (ASPM) gene mutations. The ASPM protein consists of an N-terminal 81 IQ (isoleucine-glutamine) domain, a calponin-homology domain, and a C-terminal domain. It interacts with calmodulin and calmodulin-related proteins via the IQ domain and acts as a part in mitotic spindle function. The basic characteristics of cases with ASPM gene mutations are microcephaly (below -3 SD) present before 1 year of age, intellectual disability, and the absence of other congenital anomalies. Macroscopic organization of the brain is preserved in cases with ASPM mutation, and a decrease in brain volume, particularly gray matter volume loss and a simplified gyral pattern are observed. Cortical migration defects are a very rare finding in patients with ASPM mutations. In the present study, we aimed to discuss the clinical and genetic findings in 2 cases with cortical dysplasia in which truncated variants in the ASPM gene were detected, particularly in terms of genotype-phenotype correlation in comparison with the literature.
Collapse
Affiliation(s)
- Ayberk Türkyılmaz
- Department of Medical Genetics, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Safiye Gunes Sager
- Department of Pediatric Neurology, Dr. Lutfi Kirdar City Hospital, İstanbul, Turkey
| |
Collapse
|
16
|
Meneses Iack P, Rayêe D, Lent R, Ribeiro-Resende VT, Garcez PP. Microcephaly gene Cenpj regulates axonal growth in cortical neurons through microtubule destabilization. J Neurochem 2021; 161:320-334. [PMID: 34940974 DOI: 10.1111/jnc.15568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/25/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Abstract
Neocortex development comprises of a complex series of time- and space-specific processes to generate the typical interconnected six-layered architecture of adult mammals. Axon growth is required for the proper establishment of cortical circuits. Malformations in axonal growth and pathfinding might lead to severe neuropathologies, such as the Corpus Callosum dysgenesis. Cenpj, a microcephaly gene, encodes a scaffold protein that regulates centrosome biogenesis and microtubule stabilization. During cortical development, Cenpj regulates progenitor division and neuronal migration during corticogenesis. Since microtubule stabilization is crucial for axon extension, we investigated the role of Cenpj in axon extension during cortical development in a mouse model. Using performed loss- and gain-of-function assays ex vivo and in utero, we quantified callosal axonal length, branching and growth cone size compared to controls. We observed that silencing Cenpj results in an increased axonal length. Ex vivo, we assessed the number of branches, the area of growth cones and the stability of microtubules. In silenced Cenpj axons, there were more branches, larger growth cone area and more stable microtubules. Rescue experiments confirmed that neurons present axonal length comparable to controls. Here we propose that Cenpj regulates axon growth by destabilizing microtubules during cortical development. Finally, our findings suggest that Cenpj might be a novel target for axonal regeneration.
Collapse
Affiliation(s)
- Pamela Meneses Iack
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Neuroplasticidade, Centro de Ciências da Saúde Bloco F, Cidade Universitária, 21949-900, Rio de Janeiro, RJ, Brazil.,Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Neuroquímica, Centro de Ciências da Saúde, Bloco C, Cidade Universitária, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Danielle Rayêe
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Neuroplasticidade, Centro de Ciências da Saúde Bloco F, Cidade Universitária, 21949-900, Rio de Janeiro, RJ, Brazil.,Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, NY, USA
| | - Roberto Lent
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Neuroplasticidade, Centro de Ciências da Saúde Bloco F, Cidade Universitária, 21949-900, Rio de Janeiro, RJ, Brazil.,D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | - Victor Túlio Ribeiro-Resende
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Laboratório de Neuroquímica, Centro de Ciências da Saúde, Bloco C, Cidade Universitária, 21949-900, Rio de Janeiro, RJ, Brazil.,Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Universidade Federal do Rio de Janeiro, Campus de Duque de Caxias Geraldo Guerra Cidade, Duque de Caxias, RJ, 25255-030, Brazil
| | - Patrícia P Garcez
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas, Laboratório de Neuroplasticidade, Centro de Ciências da Saúde Bloco F, Cidade Universitária, 21949-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Abstract
In this review, Phan et al. discuss the different models that have been proposed to explain how centrosome dysfunction impairs cortical development, and review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Last, they also extend their discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair Primary microcephaly is a brain growth disorder characterized by a severe reduction of brain size and thinning of the cerebral cortex. Many primary microcephaly mutations occur in genes that encode centrosome proteins, highlighting an important role for centrosomes in cortical development. Centrosomes are microtubule organizing centers that participate in several processes, including controlling polarity, catalyzing spindle assembly in mitosis, and building primary cilia. Understanding which of these processes are altered and how these disruptions contribute to microcephaly pathogenesis is a central unresolved question. In this review, we revisit the different models that have been proposed to explain how centrosome dysfunction impairs cortical development. We review the evidence supporting a unified model in which centrosome defects reduce cell proliferation in the developing cortex by prolonging mitosis and activating a mitotic surveillance pathway. Finally, we also extend our discussion to centrosome-independent microcephaly mutations, such as those involved in DNA replication and repair.
Collapse
|
18
|
Buchwalter RA, Ogden SC, York SB, Sun L, Zheng C, Hammack C, Cheng Y, Chen JV, Cone AS, Meckes DG, Tang H, Megraw TL. Coordination of Zika Virus Infection and Viroplasm Organization by Microtubules and Microtubule-Organizing Centers. Cells 2021; 10:3335. [PMID: 34943843 PMCID: PMC8699624 DOI: 10.3390/cells10123335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) became a global health concern in 2016 due to its links to congenital microcephaly and other birth defects. Flaviviruses, including ZIKV, reorganize the endoplasmic reticulum (ER) to form a viroplasm, a compartment where virus particles are assembled. Microtubules (MTs) and microtubule-organizing centers (MTOCs) coordinate structural and trafficking functions in the cell, and MTs also support replication of flaviviruses. Here we investigated the roles of MTs and the cell's MTOCs on ZIKV viroplasm organization and virus production. We show that a toroidal-shaped viroplasm forms upon ZIKV infection, and MTs are organized at the viroplasm core and surrounding the viroplasm. We show that MTs are necessary for viroplasm organization and impact infectious virus production. In addition, the centrosome and the Golgi MTOC are closely associated with the viroplasm, and the centrosome coordinates the organization of the ZIKV viroplasm toroidal structure. Surprisingly, viroplasm formation and virus production are not significantly impaired when infected cells have no centrosomes and impaired Golgi MTOC, and we show that MTs are anchored to the viroplasm surface in these cells. We propose that the viroplasm is a site of MT organization, and the MTs organized at the viroplasm are sufficient for efficient virus production.
Collapse
Affiliation(s)
- Rebecca A. Buchwalter
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Sarah C. Ogden
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Sara B. York
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Li Sun
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Chunfeng Zheng
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Christy Hammack
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Jieyan V. Chen
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Allaura S. Cone
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - David G. Meckes
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; (S.C.O.); (C.H.); (Y.C.); (H.T.)
| | - Timothy L. Megraw
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA; (R.A.B.); (S.B.Y.); (L.S.); (C.Z.); (J.V.C.); (A.S.C.); (D.G.M.J.)
| |
Collapse
|
19
|
MCPH1, beyond its role deciding the brain size. Aging (Albany NY) 2021; 13:23437-23439. [PMID: 34705666 PMCID: PMC8580358 DOI: 10.18632/aging.203658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022]
|
20
|
Huang B, Li X. The Role of Mfsd2a in Nervous System Diseases. Front Neurosci 2021; 15:730534. [PMID: 34566571 PMCID: PMC8461068 DOI: 10.3389/fnins.2021.730534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Major facilitator superfamily (MFS) is the maximum and most diversified membrane transporter, acting as uniporters, symporters and antiporters. MFS is considered to have a good development potential in the transport of drugs for the treatment of brain diseases. The major facilitator superfamily domain containing protein 2a (Mfsd2a) is a member of MFS. Mfsd2a-knockout mice have shown a marked decrease of docosahexaenoic acid (DHA) level in brain, exhibiting neuron loss, microcephaly and cognitive deficits, as DHA acts essentially in brain growth and integrity. Mfsd2a has attracted more and more attention in the study of nervous system diseases because of its critical role in maintaining the integrity of the blood-brain barrier (BBB) and transporting DHA, including inhibiting cell transport in central nervous system endothelial cells, alleviating BBB injury, avoiding BBB injury in cerebral hemorrhage model, acting as a carrier etc. Up to now, the clinical research of Mfsd2a in nervous system diseases is rare. This article reviewed the current research progress of Mfsd2a in nervous system diseases. It summarized the physiological functions of Mfsd2a in the occurrence and development of intracranial hemorrhage (ICH), Alzheimer's disease (AD), sepsis-associated encephalopathy (SAE), autosomal recessive primary microcephaly (MCPH) and intracranial tumor, aiming to provide ideas for the basic research and clinical application of Mfsd2a.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Li Y, Wang WX. Integrated transcriptomics and proteomics revealed the distinct toxicological effects of multi-metal contamination on oysters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117533. [PMID: 34261227 DOI: 10.1016/j.envpol.2021.117533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The Pearl River Estuary (PRE) is the largest estuary in southern China and under high metal stress. In the present study, we employed an integrated method of transcriptomics and proteomics to investigate the ecotoxicological effects of trace metals on the Hong Kong oyster Crassostrea hongkongensis. Three oyster populations with distinct spatial distributions of metals were sampled, including the Control (Station QA, the lowest metal levels), the High Cd (Station JZ, the highest Cd), and the High Zn-Cu-Cr-Ni (Station LFS, with the highest levels of zinc, copper, chromium, and nickel). Dominant metals in oysters were differentiated by principal component analysis (PCA), and theirgene and protein profiles were studied using RNA-seq and iTRAQ techniques. Of the 2250 proteins identified at both protein and RNA levels, 70 proteins exhibited differential expressions in response to metal stress in oysters from the two contaminated stations. There were 8 proteins altered at both stations, with the potential effects on mitochondria and endoplasmic reticulum by Ag. The genotoxicity, including impaired DNA replication and transcription, was specifically observed in the High Cd oysters with the dominating influence of Cd. The structural components (cytoskeleton and chromosome-associated proteins) were impaired by the over-accumulated Cu, Zn, Cr, and Ni at Station LFS. However, enhanced tRNA biogenesis and exosome activity might help the oysters to alleviate the toxicities resulting from their exposure to these metals. Our study provided comprehensive information on the molecular changes in oysters at both protein and RNA levels in responding to multi-levels of trace metal stress.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
22
|
A Mathematical Model to Predict Human Microcephaly. J Craniofac Surg 2021; 32:2223-2225. [PMID: 34516060 DOI: 10.1097/scs.0000000000007552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Microcephaly (MiC) is defined as head circumference (HC) dimensions smaller than the normal standards. OBJECTIVE To detect MiC with a mathematical formula. MATERIALS AND METHODS The 0 to 5 years head HC percentile data for girls and boys reported by the World Health Organization were used. To assess early childhood, these growth standards are available on its website for international use. Mathematical formulas best estimating the 3rd percentile curves were defined using basic regression analysis methods. RESULTS The mathematical models obtained as a result of logarithmic regression analysis with the highest coefficient of determination values (R2 = 0.991 for girls; R2 = 0.991 for boys) were identified as the best model. The formulas of HC = 34.025 + 3.283 ∗ ln (age as months), and HC = 35.475 + 3.14 ∗ ln (age as months) were determined for girls and boys, respectively. A limitation of these formulas is that they do not provide the HC at birth (ln (0) = undetermined). CONCLUSION Microcephaly can be estimated using the mathematical formulas with a calculator without using percentile scales, mobile applications, software, or the Internet.
Collapse
|
23
|
Liu H, Tao N, Wang Y, Yang Y, He X, Zhang Y, Zhou Y, Liu X, Feng X, Sun M, Xu F, Su Y, Li L. A novel homozygous mutation of the PCNT gene in a Chinese patient with microcephalic osteodysplastic primordial dwarfism type II. Mol Genet Genomic Med 2021; 9:e1761. [PMID: 34331829 PMCID: PMC8457697 DOI: 10.1002/mgg3.1761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) is a rare autosomal recessive disorder characterized by severe pre‐ and postnatal growth restrictions, microcephaly, skeletal dysplasia, severe teeth deformities, and typical facial features. Previous studies have shown that MOPD II is associated with mutations in the pericentrin (PCNT) gene. Methods We evaluated the clinical features of a 10‐year and 7‐month‐old Chinese girl with MOPD II. Subsequently, next‐generation sequencing and flow cytometry were performed to investigate genetic characteristics and the expression of PCNT protein respectively. Results The patient presented with short stature, microcephaly, typical craniofacial features, teeth deformity, thrombocytosis, and a delayed bone age (approximately 7 years). No abnormality in growth hormone or insulin‐like growth factor 1 was detected. Notably, the patient was found to carry a novel homozygous PCNT mutation (c.6157G>T, p.Glu2053Ter), which was inherited from her healthy heterozygous parents. Meanwhile, significant deficiency of PCNT expression was identified in the patient. Conclusion Our study identified a novel PCNT mutation associated with MOPD II, expanded the mutation spectrum of the PCNT gene and improved our understanding of the molecular basis of MOPD II.
Collapse
Affiliation(s)
- Haifeng Liu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Na Tao
- Department of Endocrinology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yan Wang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yang Yang
- Department of Endocrinology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Xiaoli He
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yu Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yuantao Zhou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Xiaoning Liu
- Department of Pharmacy, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Xingxing Feng
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Meiyuan Sun
- Department of Endocrinology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Fang Xu
- Department of Endocrinology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yanfang Su
- Department of Endocrinology, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| |
Collapse
|
24
|
Pallavicini G, Gai M, Iegiani G, Berto GE, Adrait A, Couté Y, Di Cunto F. Goldberg-Shprintzen syndrome protein KIF1BP is a CITK interactor implicated in cytokinesis. J Cell Sci 2021; 134:jcs250902. [PMID: 34100550 DOI: 10.1242/jcs.250902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
Goldberg-Shprintzen disease (GOSHS) is a rare microcephaly syndrome accompanied by intellectual disability, dysmorphic facial features, peripheral neuropathy and Hirschsprung disease. It is associated with recessive mutations in the gene encoding kinesin family member 1-binding protein (KIF1BP, also known as KIFBP). The encoded protein regulates axon microtubules dynamics, kinesin attachment and mitochondrial biogenesis, but it is not clear how its loss could lead to microcephaly. We identified KIF1BP in the interactome of citron kinase (CITK, also known as CIT), a protein produced by the primary hereditary microcephaly 17 (MCPH17) gene. KIF1BP and CITK interact under physiological conditions in mitotic cells. Similar to CITK, KIF1BP is enriched at the midbody ring and is required for cytokinesis. The association between KIF1BP and CITK can be influenced by CITK activity, and the two proteins may antagonize each other for their midbody localization. KIF1BP knockdown decreases microtubule stability, increases KIF23 midbody levels and impairs midbody localization of KIF14, as well as of chromosome passenger complex. These data indicate that KIF1BP is a CITK interactor involved in midbody maturation and abscission, and suggest that cytokinesis failure may contribute to the microcephaly phenotype observed in GOSHS.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, Turin 10123, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin 10126, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin 10126, Italy
| | - Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, Turin 10123, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin 10126, Italy
| | - Gaia Elena Berto
- Neuroscience Institute Cavalieri Ottolenghi, Turin 10123, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin 10126, Italy
| | - Annie Adrait
- Univ. Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut national de la santé et de la recherche médicale (INSERM), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire Biologie à Grande Echelle (BGE), 38000 Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut national de la santé et de la recherche médicale (INSERM), Interdisciplinary Research Institute of Grenoble (IRIG), Laboratoire Biologie à Grande Echelle (BGE), 38000 Grenoble, France
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin 10123, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, Turin 10126, Italy
| |
Collapse
|
25
|
Further Delineation of Phenotype and Genotype of Primary Microcephaly Syndrome with Cortical Malformations Associated with Mutations in the WDR62 Gene. Genes (Basel) 2021; 12:genes12040594. [PMID: 33921653 PMCID: PMC8072659 DOI: 10.3390/genes12040594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 11/16/2022] Open
Abstract
Type 2 congenital microcephaly (MCPH2) is a brain development disorder characterized by primary microcephaly with or without brain malformations. MCPH2 is caused by mutations in the WDR62 gene. We present three new patients with MCPH2 and compound heterozygous mutations in the WDR62 gene. In all the cases, the parents were healthy and unrelated. All children were clinically diagnosed with congenital microcephaly and retardation of motor and speech development. Sequencing results in the presented patients revealed five new variants in the WDR62 gene (c.4273C>T, c.1711_1712insTA, c.1777_1778delGA, c.1642+2T>G, c.194T>A) and one previously described in the German population (c.2864_2867delACAG). In two of the presented cases, variants in the SMAD4, DKC1, and ATRX genes were also found with unknown effects on the course of the disease. Moreover, in the article we collected and compared the most common clinical symptoms, dysmorphic features, and changes in radiographic examinations of the brain observed in 120 patients with recessive primary microcephaly type 2 caused by mutations in the WDR62 gene.
Collapse
|
26
|
The microcephaly gene Donson is essential for progenitors of cortical glutamatergic and GABAergic neurons. PLoS Genet 2021; 17:e1009441. [PMID: 33739968 PMCID: PMC8011756 DOI: 10.1371/journal.pgen.1009441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/31/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Biallelic mutations in DONSON, an essential gene encoding for a replication fork protection factor, were linked to skeletal abnormalities and microcephaly. To better understand DONSON function in corticogenesis, we characterized Donson expression and consequences of conditional Donson deletion in the mouse telencephalon. Donson was widely expressed in the proliferation and differentiation zones of the embryonic dorsal and ventral telencephalon, which was followed by a postnatal expression decrease. Emx1-Cre-mediated Donson deletion in progenitors of cortical glutamatergic neurons caused extensive apoptosis in the early dorsomedial neuroepithelium, thus preventing formation of the neocortex and hippocampus. At the place of the missing lateral neocortex, these mutants exhibited a dorsal extension of an early-generated paleocortex. Targeting cortical neurons at the intermediate progenitor stage using Tbr2-Cre evoked no apparent malformations, whereas Nkx2.1-Cre-mediated Donson deletion in subpallial progenitors ablated 75% of Nkx2.1-derived cortical GABAergic neurons. Thus, the early telencephalic neuroepithelium depends critically on Donson function. Our findings help explain why the neocortex is most severely affected in individuals with DONSON mutations and suggest that DONSON-dependent microcephaly might be associated with so far unrecognized defects in cortical GABAergic neurons. Targeting Donson using an appropriate recombinase is proposed as a feasible strategy to ablate proliferating and nascent cells in experimental research. The cerebral cortex constitutes the largest part of the mammalian brain and is generated prenatally by highly proliferative progenitors. Genes encoding proteins that are essential for chromosomal segregation, mitotic division, DNA repair, and DNA damage response are frequently mutated in individuals diagnosed with microcephaly, a clinical condition characterized by cerebrocortical hypotrophy. Recent findings suggest that biallelic mutations in DONSON, a replication fork stabilization factor, cause microcephaly and skeletal defects, but this has not been formally tested. Here, we find that Cre-mediated Donson deletion in progenitors of cortical glutamatergic and cortical GABAergic neurons causes extensive programmed cell death at early stages of cortical development in mice. Cell death is induced in the proliferation zones and the postmitotic differentiation zones of the targeted progenitors. Mice undergoing Donson ablation in glutamatergic progenitors do not develop the hippocampus and dorsolateral neocortex, which leads to a dorsal shift of the early-generated piriform cortex. Donson deletion in GABAergic progenitors eliminates the vast majority of GABAergic neurons and oligodendrocyte precursors arising in the targeted lineage. We thus establish that Donson is essential for diverse early telencephalic progenitors. Targeting Donson might be used to kill off highly proliferating cells in experimental and probably therapeutic settings.
Collapse
|
27
|
Liu X, Schneble-Löhnert N, Kristofova M, Qing X, Labisch J, Hofmann S, Ehrenberg S, Sannai M, Jörß T, Ori A, Godmann M, Wang ZQ. The N-terminal BRCT domain determines MCPH1 function in brain development and fertility. Cell Death Dis 2021; 12:143. [PMID: 33542216 PMCID: PMC7862653 DOI: 10.1038/s41419-021-03406-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/27/2022]
Abstract
MCPH1 is a causal gene for the neurodevelopmental disorder, human primary microcephaly (MCPH1, OMIM251200). Most pathogenic mutations are located in the N-terminal region of the gene, which encodes a BRCT domain, suggesting an important function of this domain in brain size determination. To investigate the specific function of the N-terminal BRCT domain in vivo, we generated a mouse model lacking the N’-BRCT domain of MCPH1 (referred as Mcph1-ΔBR1). These mutant mice are viable, but exhibit reduced brain size, with a thinner cortex due to a reduction of neuroprogenitor populations and premature neurogenic differentiation. Mcph1-ΔBR1 mice (both male and female) are infertile; however, almost all female mutants develop ovary tumours. Mcph1-ΔBR1 MEF cells exhibit a defect in DNA damage response and DNA repair, and show the premature chromosome condensation (PCC) phenotype, a hallmark of MCPH1 patient cells and also Mcph1 knockout cells. In comparison with Mcph1 complete knockout mice, Mcph1-ΔBR1 mice faithfully reproduce all phenotypes, indicating an essential role of the N-terminal BRCT domain for the physiological function of MCPH1 in the control of brain size and gonad development as well as in multiple cellular processes.
Collapse
Affiliation(s)
- Xiaoqian Liu
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Nadine Schneble-Löhnert
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Martina Kristofova
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Xiaobing Qing
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Jan Labisch
- Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich-Schiller-University of Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Susanne Hofmann
- Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich-Schiller-University of Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Sandra Ehrenberg
- Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich-Schiller-University of Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Mara Sannai
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Tjard Jörß
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany
| | - Maren Godmann
- Institute of Biochemistry and Biophysics, Department of Biochemistry, Friedrich-Schiller-University of Jena, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745, Jena, Germany. .,Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Beutenbergstrasse 11, 07745, Jena, Germany.
| |
Collapse
|
28
|
Dell' Amico C, Tata A, Pellegrino E, Onorati M, Conti L. Genome editing in stem cells for genetic neurodisorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:403-438. [PMID: 34175049 DOI: 10.1016/bs.pmbts.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent advent of genome editing techniques and their rapid improvement paved the way in establishing innovative human neurological disease models and in developing new therapeutic opportunities. Human pluripotent (both induced or naive) stem cells and neural stem cells represent versatile tools to be applied to multiple research needs and, together with genomic snip and fix tools, have recently made possible the creation of unique platforms to directly investigate several human neural affections. In this chapter, we will discuss genome engineering tools, and their recent improvements, applied to the stem cell field, focusing on how these two technologies may be pivotal instruments to deeply unravel molecular mechanisms underlying development and function, as well as disorders, of the human brain. We will review how these frontier technologies may be exploited to investigate or treat severe neurodevelopmental disorders, such as microcephaly, autism spectrum disorder, schizophrenia, as well as neurodegenerative conditions, including Parkinson's disease, Huntington's disease, Alzheimer's disease, and spinal muscular atrophy.
Collapse
Affiliation(s)
- Claudia Dell' Amico
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Alice Tata
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Enrica Pellegrino
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy; Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy.
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
29
|
Keep Garfagnina alive. An integrated study on patterns of homozygosity, genomic inbreeding, admixture and breed traceability of the Italian Garfagnina goat breed. PLoS One 2021; 16:e0232436. [PMID: 33449925 PMCID: PMC7810337 DOI: 10.1371/journal.pone.0232436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023] Open
Abstract
The objective of this study was to investigate the genetic diversity of the Garfagnina (GRF) goat, a breed that currently risks extinction. For this purpose, 48 goats were genotyped with the Illumina CaprineSNP50 BeadChip and analyzed together with 214 goats belonging to 9 other Italian breeds (~25 goats/breed), whose genotypes were available from the AdaptMap project [Argentata (ARG), Bionda dell'Adamello (BIO), Ciociara Grigia (CCG), Di Teramo (DIT), Garganica (GAR), Girgentana (GGT), Orobica (ORO), Valdostana (VAL) and Valpassiria (VSS)]. Comparative analyses were conducted on i) runs of homozygosity (ROH), ii) admixture ancestries and iii) the accuracy of breed traceability via discriminant analysis on principal components (DAPC) based on cross-validation. ROH analyses was used to assess the genetic diversity of GRF, while admixture and DAPC to evaluate its relationship to the other breeds. For GRF, common ROH (more than 45% in GRF samples) was detected on CHR 12 at, roughly 50.25-50.94Mbp (ARS1 assembly), which spans the CENPJ (centromere protein) and IL17D (interleukin 17D) genes. The same area of common ROH was also present in DIT, while a broader region (~49.25-51.94Mbp) was shared among the ARG, CCG, and GGT. Admixture analysis revealed a small region of common ancestry from GRF shared by BIO, VSS, ARG and CCG breeds. The DAPC model yielded 100% assignment success for GRF. Overall, our results support the identification of GRF as a distinct native Italian goat breed. This work can contribute to planning conservation programmes to save GRF from extinction and will improve the understanding of the socio-agro-economic factors related with the farming of GRF.
Collapse
|
30
|
Razmara E, Azimi H, Tavasoli AR, Fallahi E, Sheida SV, Eidi M, Bitaraf A, Farjami Z, Daneshmand MA, Garshasbi M. Novel neuroclinical findings of autosomal recessive primary microcephaly 15 in a consanguineous Iranian family. Eur J Med Genet 2020; 63:104096. [PMID: 33186761 DOI: 10.1016/j.ejmg.2020.104096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/31/2022]
Abstract
Major facilitator superfamily domain-containing 2A (MFSD2A) is required for brain uptake of Docosahexaenoic acid and Lysophosphatidylcholine, both are essential for the normal neural development and function. Mutations in MFSD2A dysregulate the activity of this transporter in brain endothelial cells and can lead to microcephaly. In this study, we describe an 11-year-old male who is affected by autosomal recessive primary microcephaly 15. This patient also shows severe intellectual disability, recurrent respiratory and renal infections, low birth weight, and developmental delay. After doing clinical and neuroimaging evaluations, due to heterogeneity of neurogenetic disorders, no narrow clinical diagnosis was possible, therefore, we utilized targeted-exome sequencing to identify any causative genetic factors. This revealed a homozygous in-frame deletion (NM_001136493.1: c.241_243del; p.(Val81del)) in the MFSD2A gene as the most likely disease-susceptibility variant which was confirmed by Sanger sequencing. Neuroimaging revealed lateral ventricular asymmetry, corpus callosum hypoplasia, type B of cisterna magna, and widening of Sylvian fissures. All of these novel phenotypes are associated with autosomal recessive primary microcephaly-15 (MCPH15). According to the genotype-phenotype data, p.(Val81del) can be considered a likely pathogenic variant leading to non-lethal microcephaly. However, further cumulative data and molecular approaches are required to accurately identify genotype-phenotype correlations in MFSD2A.
Collapse
Affiliation(s)
- Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Homeyra Azimi
- Pediatrician-official Genetic Counselor, Dr. Azimi Genetic Counseling Center, Arak, Iran
| | - Ali Reza Tavasoli
- Myelin Disorders Clinic, Pediatric Neurology Division, Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Fallahi
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sadaf Valeh Sheida
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Milad Eidi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Farjami
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
31
|
Severino M, Geraldo AF, Utz N, Tortora D, Pogledic I, Klonowski W, Triulzi F, Arrigoni F, Mankad K, Leventer RJ, Mancini GMS, Barkovich JA, Lequin MH, Rossi A. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020; 143:2874-2894. [PMID: 32779696 PMCID: PMC7586092 DOI: 10.1093/brain/awaa174] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Malformations of cortical development are a group of rare disorders commonly manifesting with developmental delay, cerebral palsy or seizures. The neurological outcome is extremely variable depending on the type, extent and severity of the malformation and the involved genetic pathways of brain development. Neuroimaging plays an essential role in the diagnosis of these malformations, but several issues regarding malformations of cortical development definitions and classification remain unclear. The purpose of this consensus statement is to provide standardized malformations of cortical development terminology and classification for neuroradiological pattern interpretation. A committee of international experts in paediatric neuroradiology prepared systematic literature reviews and formulated neuroimaging recommendations in collaboration with geneticists, paediatric neurologists and pathologists during consensus meetings in the context of the European Network Neuro-MIG initiative on Brain Malformations (https://www.neuro-mig.org/). Malformations of cortical development neuroimaging features and practical recommendations are provided to aid both expert and non-expert radiologists and neurologists who may encounter patients with malformations of cortical development in their practice, with the aim of improving malformations of cortical development diagnosis and imaging interpretation worldwide.
Collapse
Affiliation(s)
| | - Ana Filipa Geraldo
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Neuroradiology Unit, Imaging Department, Centro Hospitalar Vila Nova de Gaia/Espinho (CHVNG/E), Vila Nova de Gaia, Portugal
| | - Norbert Utz
- Department of Pediatric Radiology, HELIOS Klinikum Krefeld, Germany
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Poland
| | - Fabio Triulzi
- Neuroradiology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi Milano, Italy
| | - Filippo Arrigoni
- Department of Neuroimaging Lab, Scientific Institute, IRCCS E. Medea, Bosisio Parini, Italy
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, UK
| | - Richard J Leventer
- Department of Neurology Royal Children’s Hospital, Murdoch Children’s Research Institute and University of Melbourne Department of Pediatrics, Melbourne, Australia
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - James A Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Maarten H Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
32
|
Link N, Bellen HJ. Using Drosophila to drive the diagnosis and understand the mechanisms of rare human diseases. Development 2020; 147:dev191411. [PMID: 32988995 PMCID: PMC7541339 DOI: 10.1242/dev.191411] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing has greatly accelerated the discovery of rare human genetic diseases. Nearly 45% of patients have variants associated with known diseases but the unsolved cases remain a conundrum. Moreover, causative mutations can be difficult to pinpoint because variants frequently map to genes with no previous disease associations and, often, only one or a few patients with variants in the same gene are identified. Model organisms, such as Drosophila, can help to identify and characterize these new disease-causing genes. Importantly, Drosophila allow quick and sophisticated genetic manipulations, permit functional testing of human variants, enable the characterization of pathogenic mechanisms and are amenable to drug tests. In this Spotlight, focusing on microcephaly as a case study, we highlight how studies of human genes in Drosophila have aided our understanding of human genetic disorders, allowing the identification of new genes in well-established signaling pathways.
Collapse
Affiliation(s)
- Nichole Link
- Howard Hughes Medical Institute, BCM, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics (MHG), BCM, Houston, TX, 77030, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, BCM, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics (MHG), BCM, Houston, TX, 77030, USA
- Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| |
Collapse
|
33
|
Yang XR, Benson MD, MacDonald IM, Innes AM. A diagnostic approach to syndromic retinal dystrophies with intellectual disability. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:538-570. [PMID: 32918368 DOI: 10.1002/ajmg.c.31834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022]
Abstract
Inherited retinal dystrophies are a group of monogenic disorders that, as a whole, contribute significantly to the burden of ocular disease in both pediatric and adult patients. In their syndromic forms, retinal dystrophies can be observed in association with intellectual disability, frequently alongside other systemic manifestations. There are now over 80 genes implicated in syndromic retinal dystrophies with intellectual disability. Identifying and accurately characterizing these disorders allows the clinician to narrow the differential diagnosis, evaluate for relevant associated features, arrive at a timely and accurate diagnosis, and address both sight-threatening ocular manifestations and morbidity-causing systemic manifestations. The co-occurrence of retinal dystrophy and intellectual disability in an individual can be challenging to investigate, diagnose, and counsel given the considerable phenotypic and genotypic heterogeneity that exists within this broad group of disorders. We performed a review of the current literature and propose an algorithm to facilitate the evaluation, and clinical and mechanistic classification, of these individuals.
Collapse
Affiliation(s)
- Xiao-Ru Yang
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthew D Benson
- Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada
| | - Ian M MacDonald
- Department of Ophthalmology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - A Micheil Innes
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
34
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
35
|
Pavone P, Pappalardo XG, Praticò AD, Polizzi A, Ruggieri M, Piccione M, Corsello G, Falsaperla R. Primary Microcephaly with Novel Variant of MCPH1 Gene in Twins: Both Manifesting in Childhood at the Same Time with Hashimoto's Thyroiditis. J Pediatr Genet 2020; 9:177-182. [PMID: 32714618 DOI: 10.1055/s-0040-1710046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
This study is a clinical report on twin females affected by primary microcephaly who displayed at molecular analysis of heterozygous novel MCPH1 variant. The twins at the age of 10 years developed, in coincidental time, a diagnosis of autoimmune juvenile thyroiditis. The main clinical features presented by the twins consisted of primary microcephaly with occipitofrontal circumference measuring -2 or -3 standard deviation, facial dysmorphism, typical nonsyndromic microcephaly, and mild intellectual disability. Molecular analysis of the major genes involved in primary microcephaly was performed and the following result was found in the twins: MCPH1 ; chr8.6357416; c.2180 C > T (rs 199861426), p.Pro727. Leu; heterozygous; missense; variant of uncertain significance (class 3). At the age of 10 years, the twins started to have, in coincidental time, marked asthenia and episodes of emotiveness, and laboratory exams disclosed a high level of antithyroid peroxidase leading to the diagnosis of autoimmune juvenile thyroiditis with normal thyroid function. The novel heterozygous MCPH1 variant found in the twins may be directly or indirectly involved in the onset of the primary microcephaly. The thyroid disorder in the twins and its onset, in a coincidental time, confirmed the effect of genetic predisposition on the pathogenesis of the immune thyroiditis.
Collapse
Affiliation(s)
- Piero Pavone
- Department of Clinical and Experimental Medicine, Pediatric Clinic, University Hospital, A.U.O. "Policlinico-Vittorio Emanuele," Catania, Italy
| | - Xena Giada Pappalardo
- National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, Catania, Italy.,Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Catania, Italy
| | - Andrea Domenico Praticò
- Department of Clinical and Experimental Medicine, Pediatric Clinic, University Hospital, A.U.O. "Policlinico-Vittorio Emanuele," Catania, Italy
| | - Agata Polizzi
- Department of Educational Sciences, Chair of Pediatrics, University of Catania, Catania, Italy
| | - Martino Ruggieri
- Department of Clinical and Experimental Medicine, Pediatric Clinic, University Hospital, A.U.O. "Policlinico-Vittorio Emanuele," Catania, Italy
| | - Maria Piccione
- Operative Unit of Pediatrics and Neonatal Intensive Therapy, Department of Mother and Child, University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Operative Unit of Pediatrics and Neonatal Intensive Therapy, Department of Mother and Child, University of Palermo, Palermo, Italy
| | - Raffaele Falsaperla
- Department of Pediatrics and Pediatric Emergency, University Hospital, A.U.O. "Policlinico Vittorio Emanuele," Catania, Italy
| |
Collapse
|
36
|
Cueto-González AM, Fernández-Cancio M, Fernández-Alvarez P, García-Arumí E, Tizzano EF. Unusual context of CENPJ variants and primary microcephaly: compound heterozygosity and nonconsanguinity in an Argentinian patient. Hum Genome Var 2020; 7:20. [PMID: 32549991 PMCID: PMC7280259 DOI: 10.1038/s41439-020-0105-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 11/09/2022] Open
Abstract
Primary microcephaly (MCPH) is a genetically heterogeneous disorder showing an autosomal recessive mode of inheritance. Patients with MCPH present head circumference values two or three standard deviations (SDs) significantly below the mean for age- and sex-matched populations. MCPH is associated with a nonprogressive mild to severe intellectual disability, with normal brain structure in most patients, or with a small brain and gyri without visceral malformations. We present the case of an adult patient born from Argentinian nonconsanguineous healthy parents. He had a head circumference >5 SD below the mean, cerebral neuroimaging showing hypoplasia of the corpus callosum, bilateral migration disorder with heterotopia of the sylvian fissure and colpocephaly. The patient was compound heterozygous for pathogenic variants in the CENPJ gene (c.289dupA inherited from his mother and c.1132 C > T inherited from his father). Our patient represents an uncommon situation for the usual known context of CENPJ and MCPH, including family origin (Argentinian), pedigree (nonconsanguineous), and genotype (a compound heterozygous case with two variants predicting a truncated protein). Next-generation sequencing studies applied in a broader spectrum of clinical presentations of MCPH syndromes may discover additional similar patients and families.
Collapse
Affiliation(s)
- Anna M. Cueto-González
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d´Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
- European Reference Network Craniofacial Anomalies and ENT disorders (ERN CRANIO)(member) and ERN ITHACA (affiliated), Barcelona, Spain
| | - Mónica Fernández-Cancio
- Pediatric Endocrinology Unit, Vall d´Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula Fernández-Alvarez
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d´Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Elena García-Arumí
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Neuromuscular and Mitochondrial Pathology Group, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
| | - Eduardo F. Tizzano
- Department of Clinical and Molecular Genetics, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Medicine Genetics Group, Vall d´Hebron Research Institute (VHIR), Vall d’Hebron Barcelona Hospital Campus, Autonomous University of Barcelona, Barcelona, Spain
- European Reference Network Craniofacial Anomalies and ENT disorders (ERN CRANIO)(member) and ERN ITHACA (affiliated), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
37
|
Network of Interactions between ZIKA Virus Non-Structural Proteins and Human Host Proteins. Cells 2020; 9:cells9010153. [PMID: 31936331 PMCID: PMC7016862 DOI: 10.3390/cells9010153] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 12/16/2022] Open
Abstract
The Zika virus (ZIKV) is a mosquito-borne Flavivirus and can be transmitted through an infected mosquito bite or through human-to-human interaction by sexual activity, blood transfusion, breastfeeding, or perinatal exposure. After the 2015-2016 outbreak in Brazil, a strong link between ZIKV infection and microcephaly emerged. ZIKV specifically targets human neural progenitor cells, suggesting that proteins encoded by ZIKV bind and inactivate host cell proteins, leading to microcephaly. Here, we present a systematic annotation of interactions between human proteins and the seven non-structural ZIKV proteins corresponding to a Brazilian isolate. The interaction network was generated by combining tandem-affinity purification followed by mass spectrometry with yeast two-hybrid screens. We identified 150 human proteins, involved in distinct biological processes, as interactors to ZIKV non-structural proteins. Our interacting network is composed of proteins that have been previously associated with microcephaly in human genetic disorders and/or animal models. Further, we show that the protein inhibitor of activated STAT1 (PIAS1) interacts with NS5 and modulates its stability. This study builds on previously published interacting networks of ZIKV and genes related to autosomal recessive primary microcephaly to generate a catalog of human cellular targets of ZIKV proteins implicated in processes related to microcephaly in humans. Collectively, these data can be used as a resource for future characterization of ZIKV infection biology and help create a basis for the discovery of drugs that may disrupt the interaction and reduce the health damage to the fetus.
Collapse
|
38
|
Moriwaki T, Yamazaki N, So T, Kosuga M, Miyazaki O, Narumi-Kishimoto Y, Kaname T, Nishimura G, Okuyama T, Fukuhara Y. Normal early development in siblings with novel compound heterozygous variants in ASPM. Hum Genome Var 2020; 6:56. [PMID: 31934343 PMCID: PMC6943122 DOI: 10.1038/s41439-019-0088-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 11/11/2022] Open
Abstract
Autosomal recessive primary microcephaly 5 (MCPH5) is caused by pathogenic variants in ASPM. Using whole-exome sequencing, we diagnosed two siblings with MCPH5. A known pathogenic variant (NM_018136.4: c.9697C > T, p.(Arg3233*)) and a novel pathogenic variant (c.1402_1406del, p.(Asn468Serfs*2)) of ASPM were identified in affected siblings with normal intelligence. Their pathogenic variants were not located in the critical regions of ASPM, but the relationship between the genotypes and their normal intelligence was unclear.
Collapse
Affiliation(s)
- Taro Moriwaki
- Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
| | - Narutoshi Yamazaki
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
| | - Tetsumin So
- Division of Critical Care Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
| | - Motomichi Kosuga
- Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
| | - Osamu Miyazaki
- Department of Radiology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
| | - Yoko Narumi-Kishimoto
- Medical Genome Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
| | - Gen Nishimura
- Center of Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
| | - Yasuyuki Fukuhara
- Division of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535 Japan
| |
Collapse
|
39
|
Duerinckx S, Jacquemin V, Drunat S, Vial Y, Passemard S, Perazzolo C, Massart A, Soblet J, Racapé J, Desmyter L, Badoer C, Papadimitriou S, Le Borgne YA, Lefort A, Libert F, De Maertelaer V, Rooman M, Costagliola S, Verloes A, Lenaerts T, Pirson I, Abramowicz M. Digenic inheritance of human primary microcephaly delineates centrosomal and non-centrosomal pathways. Hum Mutat 2019; 41:512-524. [PMID: 31696992 PMCID: PMC7496698 DOI: 10.1002/humu.23948] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 12/30/2022]
Abstract
Primary microcephaly (PM) is characterized by a small head since birth and is vastly heterogeneous both genetically and phenotypically. While most cases are monogenic, genetic interactions between Aspm and Wdr62 have recently been described in a mouse model of PM. Here, we used two complementary, holistic in vivo approaches: high throughput DNA sequencing of multiple PM genes in human patients with PM, and genome‐edited zebrafish modeling for the digenic inheritance of PM. Exomes of patients with PM showed a significant burden of variants in 75 PM genes, that persisted after removing monogenic causes of PM (e.g., biallelic pathogenic variants in CEP152). This observation was replicated in an independent cohort of patients with PM, where a PM gene panel showed in addition that the burden was carried by six centrosomal genes. Allelic frequencies were consistent with digenic inheritance. In zebrafish, non‐centrosomal gene casc5 −/− produced a severe PM phenotype, that was not modified by centrosomal genes aspm or wdr62 invalidation. A digenic, quadriallelic PM phenotype was produced by aspm and wdr62. Our observations provide strong evidence for digenic inheritance of human PM, involving centrosomal genes. Absence of genetic interaction between casc5 and aspm or wdr62 further delineates centrosomal and non‐centrosomal pathways in PM.
Collapse
Affiliation(s)
- Sarah Duerinckx
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium
| | - Valérie Jacquemin
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Séverine Drunat
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Yoann Vial
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Sandrine Passemard
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Camille Perazzolo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Annick Massart
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Soblet
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium.,Department of Genetics, ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, ULB Center of Human Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Judith Racapé
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Desmyter
- Department of Genetics, ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Cindy Badoer
- Department of Genetics, ULB Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sofia Papadimitriou
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium.,Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yann-Aël Le Borgne
- Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Lefort
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Frédérick Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Viviane De Maertelaer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Sabine Costagliola
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Verloes
- Department of Genetics, Robert Debré University Hospital, APHP, Paris, France.,INSERM UMR 1141, Université de Paris Diderot, Paris, France
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles-Vrije Universiteit Brussel, Brussels, Belgium.,Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium.,Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Pirson
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Abramowicz
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, Brussels, Belgium.,Present Address: Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| |
Collapse
|
40
|
Thomas S, Boutaud L, Reilly ML, Benmerah A. Cilia in hereditary cerebral anomalies. Biol Cell 2019; 111:217-231. [DOI: 10.1111/boc.201900012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Sophie Thomas
- Laboratory of Embryology and Genetics of Human MalformationINSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
| | - Lucile Boutaud
- Laboratory of Embryology and Genetics of Human MalformationINSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
| | - Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
- Paris Diderot University 75013 Paris France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163Paris Descartes UniversityImagine Institute 75015 Paris France
| |
Collapse
|
41
|
Urbach A, Witte OW. Divide or Commit - Revisiting the Role of Cell Cycle Regulators in Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2019; 7:55. [PMID: 31069222 PMCID: PMC6491688 DOI: 10.3389/fcell.2019.00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
The adult dentate gyrus continuously generates new neurons that endow the brain with increased plasticity, helping to cope with changing environmental and cognitive demands. The process leading to the birth of new neurons spans several precursor stages and is the result of a coordinated series of fate decisions, which are tightly controlled by extrinsic signals. Many of these signals act through modulation of cell cycle (CC) components, not only to drive proliferation, but also for linage commitment and differentiation. In this review, we provide a comprehensive overview on key CC components and regulators, with emphasis on G1 phase, and analyze their specific functions in precursor cells of the adult hippocampus. We explore their role for balancing quiescence versus self-renewal, which is essential to maintain a lifelong pool of neural stem cells while producing new neurons “on demand.” Finally, we discuss available evidence and controversies on the impact of CC/G1 length on proliferation versus differentiation decisions.
Collapse
Affiliation(s)
- Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
42
|
Novel SASS6 compound heterozygous mutations in a Chinese family with primary autosomal recessive microcephaly. Clin Chim Acta 2019; 491:15-18. [PMID: 30639237 DOI: 10.1016/j.cca.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Primary autosomal recessive microcephaly (MCPH) is a rare hereditary disease characterized by congenitally small with brain circumference of the head below 3 standard deviations (SD). By far, 18 MCPH genes have been reported to be associated with the disease. SASS6 gene functioned in assembly of centrioles that the majority of MCPH genes present at the centrosome. There was only research reporting a homozygous missense mutation in SASS6 gene detected in a consanguineous Pakistani family. By conducting Whole-exome sequencing (WES) and Sanger sequencing on the family trio, we identified two novel splice site mutations c.127-13A>G and c.1867+2T>A in compound heterozygous hereditary form in the SASS6 gene. The two mutations were confirmed to alter mRNA splicing by RT-PCR assay. Our finding supported the role of SASS6 in the pathogenesis of microcephaly, expanding mutation spectrums and contributing to understanding of molecular mechanisms of MCPH.
Collapse
|