1
|
Wijegunawardhana D, Wijesekara I, Liyanage R, Truong T, Silva M, Chandrapala J. The Impact of Varying Lactose-to-Maltodextrin Ratios on the Physicochemical and Structural Characteristics of Pasteurized and Concentrated Skim and Whole Milk-Tea Blends. Foods 2024; 13:3016. [PMID: 39335944 PMCID: PMC11431367 DOI: 10.3390/foods13183016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the impact of substituting lactose with maltodextrin in milk-tea formulations to enhance their physicochemical and structural properties. Various lactose-to-maltodextrin ratios (100:0, 90:10, 85:15, 80:20, 75:25) were evaluated in both post-pasteurized and concentrated skim milk-tea (SM-T) and whole milk-tea (WM-T) formulations. Concentration significantly improved the zeta potential, pH, and browning index in both SM-T and WM-T compared to pasteurization. L:M ratios of 90:10 and 75:25 in WM-T and 90:10 and 80:20 in SM-T showed higher phenolic preservation after concentration due to structural changes resulting from the addition of maltodextrin and water removal during prolonged heating. The preservation effect of phenolic components in both WM-T and SM-T is governed by many mechanisms including pH stabilization, zeta potential modulation, protein interactions, complex formation, and encapsulation effects. Therefore, optimizing milk-tea stability and phenolic preservation through L:M ratio adjustments provides a promising approach for enhancing milk-tea properties.
Collapse
Affiliation(s)
- Dilema Wijegunawardhana
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Rumesh Liyanage
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka
| | - Tuyen Truong
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
- School of Science, Engineering & Technology, RMIT University, Ho Chi Minh City 700000, Vietnam
| | - Mayumi Silva
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | - Jayani Chandrapala
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
2
|
Wijegunawardhana D, Wijesekara I, Liyanage R, Truong T, Silva M, Chandrapala J. Process-Induced Molecular-Level Protein-Carbohydrate-Polyphenol Interactions in Milk-Tea Blends: A Review. Foods 2024; 13:2489. [PMID: 39200417 PMCID: PMC11353574 DOI: 10.3390/foods13162489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The rapid increase in the production of powdered milk-tea blends is driven by a growing awareness of the presence of highly nutritious bioactive compounds and consumer demand for convenient beverages. However, the lack of literature on the impact of heat-induced component interactions during processing hinders the production of high-quality milk-tea powders. The production process of milk-tea powder blends includes the key steps of pasteurization, evaporation, and spray drying. Controlling heat-induced interactions, such as protein-protein, protein-carbohydrate, protein-polyphenol, carbohydrate-polyphenol, and carbohydrate-polyphenol, during pasteurization, concentration, and evaporation is essential for producing a high-quality milk-tea powder with favorable physical, structural, rheological, sensory, and nutritional qualities. Adjusting production parameters, such as the type and the composition of ingredients, processing methods, and processing conditions, is a great way to modify these interactions between components in the formulation, and thereby, provide improved properties and storage stability for the final product. Therefore, this review comprehensively discusses how molecular-level interactions among proteins, carbohydrates, and polyphenols are affected by various unit operations during the production of milk-tea powders.
Collapse
Affiliation(s)
- Dilema Wijegunawardhana
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka;
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka;
| | - Rumesh Liyanage
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Dampe-Pitipana Road, Homagama 10200, Sri Lanka;
| | - Tuyen Truong
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
- School of Science, Engineering & Technology, RMIT University, Ho Chi Minh City 700000, Vietnam
| | - Mayumi Silva
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
| | - Jayani Chandrapala
- School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia; (D.W.); (T.T.); (M.S.)
| |
Collapse
|
3
|
Mbye M, Ayyash M, Abu-Jdayil B, Kamal-Eldin A. The Texture of Camel Milk Cheese: Effects of Milk Composition, Coagulants, and Processing Conditions. Front Nutr 2022; 9:868320. [PMID: 35520282 PMCID: PMC9062519 DOI: 10.3389/fnut.2022.868320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous people in African, Middle Asian, Middle Eastern, and Gulf Cooperation Council (GCC) countries highly value camel milk (CM) as it plays a vital role in their diet. The protein composition of CM as well as the structure of its casein micelles differs significantly from bovine milk (BM). Cheeses made from CM have a weak curd and soft texture compared to those made from BM. This review article presents and discusses the effect of milk protein composition, processing conditions (pasteurization and high-pressure treatment), and coagulants (camel chymosin, organic acids, plant proteases) on the quality of CM cheeses. CM cheese's weak texture is due to compositional characteristics of the milk, including low κ-casein-to-β-casein ratio (≈0.05 in CM vs. ≈0.33 in BM), large micelle size, different whey protein components, and higher proteolytic activity than BM. CM cheese texture can be improved by preheating the milk at low temperatures or by high pressure. Supplementing CM with calcium has shown inconsistent results on cheese texture, which may be due to interactions with other processing conditions. Despite their structure, CM cheeses are generally well liked in sensory studies.
Collapse
Affiliation(s)
- Mustapha Mbye
- Department of Food Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Basim Abu-Jdayil
- Department of Petroleum & Chemical Engineering, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
4
|
Oka D, Ono W, Tamaki S, Noguchi T, Takano K. Effects of the thermal denaturation degree of a whey protein isolate on the strength of acid milk gels and the dissociation of κ-casein. J DAIRY RES 2022; 89:1-5. [PMID: 35236515 DOI: 10.1017/s0022029922000103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this study, the effects of the degree of thermal denaturation of whey protein (WP) added to milk on the dissociation of κ-casein from casein micelles were investigated, since they are related to the strength of acid milk gel and its factors. Acid milk gels were prepared by heating thermally denatured WP isolate (WPI) and undenatured milk mixtures and treating them with glucono-δ-lactone as a coagulant. The strength of these gels was negatively correlated with the WPI denaturation degree and strongly positively correlated with the extent of κ-casein dissociation from casein micelles. This behavior was ascribed to the fact that α-lactalbumin (α-La) and β-lactoglobulin (β-Lg) contained in WPI denatured after heating and engaged in disulfide bond formation with each other. With an increase in the degree of denaturation and disulfide bond formation, the bonding between β-lactoglobulin and κ-casein was suppressed to decrease the amount of κ-casein-WPI complexes. When β-Lg forms SS bonds with α-La, the number of highly reactive, free SH groups decreases, which complicates the formation of SS bridges between β-Lg and κ-casein. Thus, the denaturation degree of WPI largely determined the degree of κ-casein dissociation from casein micelles and, consequently, the strength of acid milk gels. Adding WP to milk increases the strength of acid milk gel, and it can be controlled by changing the degree of thermal denaturation of the WP. Furthermore, it was clarified for the first time that the dissociation of κ-casein from casein micelles influences this effect. Further studies are needed to elucidate the structural features of κ-casein-dissociated micelles.
Collapse
Affiliation(s)
- Daiki Oka
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo156-8502, Japan
| | - Wataru Ono
- Food Processing Technology Center, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo156-8502, Japan
| | - Shojiro Tamaki
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama350-1165, Japan
| | - Tomohiro Noguchi
- Food Processing Technology Center, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo156-8502, Japan
| | - Katsumi Takano
- Department of Agricultural Chemistry, Tokyo University of Agriculture, Tokyo156-8502, Japan
| |
Collapse
|
5
|
Liu H, Liao X, Ren Y. Effects of additive dosage and coagulation bath pH on amphoteric fluorocarbon special surfactant (FS-50) blend PVDF membranes. CHEMOSPHERE 2022; 287:132212. [PMID: 34547558 DOI: 10.1016/j.chemosphere.2021.132212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Amphiphilic copolymers containing hydrophilic and hydrophobic blocks represented by surfactants have proven to be more effective for modifying membranes than hydrophilic copolymers. However, studies on the effects of additive and coagulation bath pH on the morphology and properties of surfactant-modified membranes have rarely been reported. Hence, this study aims to investigate the effects of the additive dosage and the coagulation bath pH on the mechanisms of phase inversion and performance improvement of amphoteric fluorocarbon special surfactant (FS-50) blended PVDF membranes. It was observed that the pure water flux increased from 114.68 LMH/bar of the original membrane M0 to 205.02 LMH/bar of the blend membrane M1, and then to 615.88 LMH/bar of the coagulation-bath-regulated membrane MPH9 with a high BSA rejection rate of 90.86%, showing a two-stage jump. The addition of FS-50 promoted the instantaneous phase inversion of the membrane, allowing the blend membrane to exhibit a higher proportion of pore characteristics and stronger permeability. After that, the mechanisms of the membrane phase inversion process affected by the coagulation bath pH were interpreted according to the pH-response characteristics of FS-50 in terms of charge repulsion effect and compressed double-electron layer effect. Furthermore, the cross-sectional morphology and the surface structure of the membrane prepared in acidic and alkaline coagulation baths were significantly affected by the pH of the coagulation bath, exhibiting different features. For one, the porosity of the membranes gradually decreased as the acidity and alkalinity of the coagulation bath increased, and the membrane MPH9 exhibited both maximum surface and overall porosity. For another, the coagulation bath pH did not negatively affect the contact angle, surface roughness and tensile strength of the membranes. Overall, adjusting the dosage of FS-50 and the pH of the coagulation bath is a promising approach to greatly enhance membrane performance.
Collapse
Affiliation(s)
- Hailong Liu
- School of Environmental Science and Resources, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China.
| | - Xiangjun Liao
- School of Environmental Science and Resources, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| | - Yuxia Ren
- School of Environmental Science and Resources, Shanxi University, No. 92 Wucheng Road, Taiyuan, 030006, China
| |
Collapse
|
6
|
Ono W, Oka D, Tsujii Y, Noguchi T. Dry-heat treatment of skim milk powder improves acid-induced gelation due to protein glycation and cross-linking of caseins. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Wataru Ono
- Food Processing Technology Center, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Daiki Oka
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Yoshimasa Tsujii
- Department of Agricultural Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture
| | - Tomohiro Noguchi
- Food Processing Technology Center, Faculty of Applied Bioscience, Tokyo University of Agriculture
| |
Collapse
|
7
|
Li S, Ye A, Singh H. Effects of seasonal variations on the quality of set yogurt, stirred yogurt, and Greek-style yogurt. J Dairy Sci 2020; 104:1424-1432. [PMID: 33309362 DOI: 10.3168/jds.2020-19071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/19/2020] [Indexed: 11/19/2022]
Abstract
We studied the effects of seasonal variations on the quality of stirred yogurt, set yogurt, and Greek-style yogurt over 2 milking seasons in New Zealand. Correlations between the properties of the yogurts, the characteristics of the milk, and the acid gelation properties induced by glucono-δ-lactone, reported in our previous works, were also explored. Set yogurt and Greek-style yogurt from the early season had the highest firmness over the seasons. The yogurt firmness correlated with the gel strength of glucono-δ-lactone-induced acid gels, indicating that the latter could, to some extent, predict the seasonal variations in the firmness of set yogurt. The correlation studies highlighted the potentially important role of the glycosylation of κ-casein in the seasonal variations in the yogurt structures. Yogurt made from mid-season milk had the lowest water-holding capacity, which may have played a part in lowering its firmness and viscosity. Late-season stirred yogurt displayed the strongest resistance to shear-induced thinning, which might arise from the unique viscoelastic properties of late-season yogurt gels.
Collapse
Affiliation(s)
- Siqi Li
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
8
|
Jefferson MT, Rutter C, Fraine K, Borges GVB, de Souza Santos GM, Schoene FAP, Hurst GA. Valorization of Sour Milk to Form Bioplastics: Friend or Foe? JOURNAL OF CHEMICAL EDUCATION 2020; 97:1073-1076. [PMID: 32308213 PMCID: PMC7161078 DOI: 10.1021/acs.jchemed.9b00754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/15/2020] [Indexed: 06/03/2023]
Abstract
A demonstration was developed to introduce students to waste valorization in order to form bioplastics. Waste valorization is the process of reusing, recycling, or composting, from waste, useful products or sources of energy. In this demonstration, waste valorization is introduced by converting sour milk into a bioplastic via the addition of lemon juice upon heating. Utilizing lemon juice to perform the acidification offers a greener procedure than the traditional formaldehyde (used commercially to make galalith) and enhances the transferability in remote locations such as the Amazon Rainforest in comparison to vinegar. Students can establish connections to relevant United Nations Sustainable Development Goals (UN SDGs) by adopting a systems thinking approach. However, through this, it is noteworthy that this process is also used (particularly in the Indian subcontinent) to make paneer, a farmer cheese. While this also enables students to make a link to additional UN SDGs pertaining to "zero hunger", there is an ethical discussion to be had as to whether such a process that is utilized to feed malnourished citizens should be used to make a decorative bioplastic. As such, despite this demonstration being transferrable, instructors may consider carefully whether to utilize this resource, and, if so, to use this as an opportunity to teach the importance of ethics in science.
Collapse
Affiliation(s)
- Mark T. Jefferson
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, England,
United Kingdom
| | - Connor Rutter
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, England,
United Kingdom
| | - Katherine Fraine
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, England,
United Kingdom
| | - Gabriel V. B. Borges
- Department
of Natural Sciences, Escola SESC de Ensino
Médio, Av Ayrton
Senna 5677, Rio
de Janeiro, RJ, Brazil
| | - Gabriela M. de Souza Santos
- Department
of Natural Sciences, Escola SESC de Ensino
Médio, Av Ayrton
Senna 5677, Rio
de Janeiro, RJ, Brazil
| | - Frederico A. P. Schoene
- Department
of Natural Sciences, Escola SESC de Ensino
Médio, Av Ayrton
Senna 5677, Rio
de Janeiro, RJ, Brazil
| | - Glenn A. Hurst
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, England,
United Kingdom
- Green
Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, England, United Kingdom
| |
Collapse
|
9
|
Li S, Ye A, Singh H. Effect of seasonal variations on the acid gelation of milk. J Dairy Sci 2020; 103:4965-4974. [PMID: 32253034 DOI: 10.3168/jds.2019-17603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/10/2020] [Indexed: 11/19/2022]
Abstract
We investigated the effect of seasonal variations on the acid gelation properties of bovine milk in a seasonal-calving New Zealand herd for 2 full milking seasons. We tested the formation of acid gels in 2 milk systems: unstandardized skim milk and standardized whole milk (4.6% protein, 4.0% fat). For unstandardized skim milk, late-season milk acid gels had a longer gelation time and a lower gelation pH than early- and mid-season milk acid gels, but we found no consistent seasonal variation in the final storage modulus. For standardized milk, late-season milk had the most inferior acid gelation properties during the year, including the lowest final storage modulus, the lowest gelation pH, and the longest gelation time. Standardization alleviated but did not eliminate the prolonged gelation time of late-season milk. These results indicated that the physicochemical properties of seasonal milk contributed greatly to its acid gelation, independent of differences in protein content. Standardization was not adequate to stabilize the acid gelation properties of late-season milk. Desirable acid gelation properties correlated with lower glycosylated κ-casein content, lower β-lactoglobulin:α-lactalbumin ratio, lower extent of whey protein-casein micelle association, and lower total calcium and ionic calcium content. We discuss the possible effects of the correlating variables on the acid gelation properties of seasonal milk. Natural variations in the glycosylation degree of κ-casein might play an important role in acid gel structural development by altering the electrostatic and hydrophobic interactions among the milk proteins.
Collapse
Affiliation(s)
- Siqi Li
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
10
|
Zhou M, Xia Y, Cao F, Li N, Hemar Y, Tang S, Sun Y. A theoretical and experimental investigation of the effect of sodium dodecyl sulfate on the structural and conformational properties of bovine β-casein. SOFT MATTER 2019; 15:1551-1561. [PMID: 30663758 DOI: 10.1039/c8sm01967c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A predicted three-dimensional structure of bovine β-casein was constructed using homology modeling with the aid of MODELLER and I-TASSER programs, with the validity and reliability of the models evaluated according to stereochemical qualities and small angle X-ray scattering. By comparing the results obtained from the two models using the CRYSOL program, an optimal model of the β-casein structure derived from I-TASSER was selected and used in subsequent molecular dynamics (MD) analysis. 300 ns MD simulations of β-casein in water and in the presence of different SDS concentrations at 300 K were performed. The results of the MD simulations indicated that SDS molecules played a dual role in modifying the conformation of β-casein at 300 K. Concentrations of SDS below its CMC (1 mM), at which only the monomer form of SDS was present, induced β-casein to lose its secondary structure by converting helices into random coils; however the conformation of the complex was still comparable with that of native β-casein. In the presence of 10 mM SDS (above its CMC), the helical content of β-casein was increased along with reduced random coils, and the structural rearrangement led to a more compact conformation. The latter change is likely related to the hydrophobic interactions that dominate the binding of the C-terminal region, along with the anchoring of sulfate groups of SDS on the positively charged N-terminal portion via electrostatic attraction. Hydrogen bonding supplemented the SDS-induced stabilization of β-casein. A correlated "necklace and bead" model, in which the micelles nucleate on the protein hydrophobic sites, was proposed for the structure of β-casein-SDS complexes.
Collapse
Affiliation(s)
- Meng Zhou
- School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
|