1
|
Grabner D, Rothe LE, Sures B. Parasites and Pollutants: Effects of Multiple Stressors on Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1946-1959. [PMID: 37283208 DOI: 10.1002/etc.5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Parasites can affect their hosts in various ways, and this implies that parasites may act as additional biotic stressors in a multiple-stressor scenario, resembling conditions often found in the field if, for example, pollutants and parasites occur simultaneously. Therefore, parasites represent important modulators of host reactions in ecotoxicological studies when measuring the response of organisms to stressors such as pollutants. In the present study, we introduce the most important groups of parasites occurring in organisms commonly used in ecotoxicological studies ranging from laboratory to field investigations. After briefly explaining their life cycles, we focus on parasite stages affecting selected ecotoxicologically relevant target species belonging to crustaceans, molluscs, and fish. We included ecotoxicological studies that consider the combination of effects of parasites and pollutants on the respective model organism with respect to aquatic host-parasite systems. We show that parasites from different taxonomic groups (e.g., Microsporidia, Monogenea, Trematoda, Cestoda, Acanthocephala, and Nematoda) clearly modulate the response to stressors in their hosts. The combined effects of environmental stressors and parasites can range from additive, antagonistic to synergistic. Our study points to potential drawbacks of ecotoxicological tests if parasite infections of test organisms, especially from the field, remain undetected and unaddressed. If these parasites are not detected and quantified, their physiological effects on the host cannot be separated from the ecotoxicological effects. This may render this type of ecotoxicological test erroneous. In laboratory tests, for example to determine effect or lethal concentrations, the presence of a parasite can also have a direct effect on the concentrations to be determined and thus on the subsequently determined security levels, such as predicted no-effect concentrations. Environ Toxicol Chem 2023;42:1946-1959. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Louisa E Rothe
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Kochmann J, Laier M, Klimpel S, Wick A, Kunkel U, Oehlmann J, Jourdan J. Infection with acanthocephalans increases tolerance of Gammarus roeselii (Crustacea: Amphipoda) to pyrethroid insecticide deltamethrin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55582-55595. [PMID: 36897452 PMCID: PMC10121498 DOI: 10.1007/s11356-023-26193-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 06/09/2023]
Abstract
Crustacean amphipods serve as intermediate hosts for parasites and are at the same time sensitive indicators of environmental pollution in aquatic ecosystems. The extent to which interaction with the parasite influences their persistence in polluted ecosystems is poorly understood. Here, we compared infections of Gammarus roeselii with two species of Acanthocephala, Pomphorhynchus laevis, and Polymorphus minutus, along a pollution gradient in the Rhine-Main metropolitan region of Frankfurt am Main, Germany. Prevalence of P. laevis was very low at the unpolluted upstream reaches (P ≤ 3%), while higher prevalence (P ≤ 73%) and intensities of up to 9 individuals were found further downstream-close to an effluent of a large wastewater treatment plant (WWTP). Co-infections of P. minutus and P. laevis occurred in 11 individuals. Highest prevalence of P. minutus was P ≤ 9% and one parasite per amphipod host was the maximum intensity recorded. In order to assess whether the infection affects survival in the polluted habitats, we tested the sensitivity of infected and uninfected amphipods towards the pyrethroide insecticide deltamethrin. We found an infection-dependent difference in sensitivity within the first 72 h, with an effect concentration (24 h EC50) of 49.8 ng/l and 26.6 ng/l for infected and uninfected G. roeselii, respectively. Whereas final host abundance might partially explain the high prevalence of P. laevis in G. roeselii, the results of the acute toxicity test suggest a beneficial effect of acanthocephalan infection for G. roeselii at polluted sites. A strong accumulation of pollutants in the parasite could serve as a sink for pesticide exposure of the host. Due to the lack of a co-evolutionary history between parasite and host and a lack of behavioral manipulation (unlike in co-evolved gammarids), the predation risk by fish remains the same, explaining high local prevalence. Thus, our study exemplifies how organismic interaction can favor the persistence of a species under chemical pollution.
Collapse
Affiliation(s)
- Judith Kochmann
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch Weg 15, 55128 Mainz, Germany
| | - Melanie Laier
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Sven Klimpel
- Department of Integrative Parasitology and Zoophysiology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Uwe Kunkel
- Federal Institute of Hydrology, Am Mainzer Tor 1, D-56068 Koblenz, Germany
- Present Address: Bavarian Environment Agency, Specific Analysis for Environmental Monitoring, Bürgermeister-Ulrich-Str. 160, D-86179 Augsburg, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Department Aquatic Ecotoxicology, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
3
|
Rothe LE, Loeffler F, Gerhardt A, Feld CK, Stift R, Weyand M, Grabner D, Sures B. Parasite infection influences the biomarker response and locomotor activity of Gammarus fossarum exposed to conventionally-treated wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113474. [PMID: 35390685 DOI: 10.1016/j.ecoenv.2022.113474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Modern wastewater treatment plants cannot completely remove pollutants. Often, effluents entering the aquatic environment still contain micropollutants such as pharmaceuticals or pesticides, which may impose adverse effects on aquatic biota. At the same time, a large proportion of free-living aquatic species are known to be infected with parasites, which raises the question of interactions between environmental stressors (such as micropollutants) and parasite infection. We chose the freshwater amphipod Gammarus fossarum (Koch, 1835) as a test organism to investigate potential pollutant-parasite interactions. This gammarid is frequently used in ecotoxicological tests and is also commonly infected with larvae of the acanthocephalan parasite species Polymorphus minutus (Zeder, 1800) Lühe, 1911. We exposed infected and uninfected specimens of G. fossarum to conventionally-treated wastewater and river water in a 22-day flow channel experiment. The test organisms' response was measured as mortality rates, concentrations or activities of five biomarkers, and overall locomotor activity. No significant differences were found between mortality rates of different exposure conditions. Contrastingly, three biomarkers (phenoloxidase activity, glycogen, and lipid concentrations) showed a significant increase in infected gammarids, while the effect of the water type was insignificant. Infected gammarids also showed a significantly higher locomotor activity in both water types. Our results suggest that the response of G. fossarum during the exposure experiments was mainly driven by parasite infection. This implies that parasites may act as additional biotic stressors in multiple stressor scenarios, and therefore, might play an important role when measuring the response of organisms to chemical stressors. Future ecotoxicological studies and assessments thus should consider parasite infection as an additional test parameter.
Collapse
Affiliation(s)
- Louisa E Rothe
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany.
| | - Felix Loeffler
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany
| | | | - Christian K Feld
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany
| | - Robin Stift
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany
| | - Michael Weyand
- Ruhrverband, Department of River Basin Management, Kronprinzenstr. 37, D-45128 Essen, Germany
| | - Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstraße 5, D-45141 Essen, Germany
| |
Collapse
|
4
|
Ndaba J, Gilbert BM, Avenant-Oldewage A. METALLOTHIONEIN EXPRESSION IN A PARASITIC CRUSTACEAN, LAMPROGLENA CLARIAE (CRUSTACEA: COPEPODA), ON CLARIAS GARIEPINUS (TELOESTEI: CLARIIDAE) CORRESPONDS TO WATER QUALITY. J Parasitol 2022; 108:10-21. [PMID: 34995354 DOI: 10.1645/21-62] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Globally, parasites are sensitive toward environmental changes, and, in some cases, they are even more sensitive than their hosts. However, there is limited knowledge on the physiological responses of parasites and their effects on their hosts in relation to environmental degradation. In this study, metallothioneins (MTs) were isolated and compared between the ectoparasite Lamproglena clariae and its host fish Clarias gariepinus. Differences in the levels of MTs in the parasite and host were compared to physicochemical water quality variables and metals to determine if MT expression was linked with changes in water quality. Clarias gariepinus individuals were sampled from 2 sites of differing water quality along the Vaal River using gill nets and assessed for L. clariae. Gill, muscle, and liver tissue of the host and L. clariae were collected and stored in liquid nitrogen for analysis of MT. Water and sediment samples were collected for metal analysis by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry. Nutrient levels and water hardness in water samples were assessed using spectrophotometry. MTs were quantified using spectrophotometry and size exclusion chromatography in the host and parasite, respectively. Infections by L. clariae differed between sites, with higher parasite intensity at the unpolluted Vaal Dam site. Concentrations of MT in host tissues and L. clariae were significantly higher at the polluted site, below the Vaal River Barrage, compared to the Vaal Dam site. Parasite MT concentrations were significantly lower compared to concentrations in the liver and gill tissue of C. gariepinus individuals. In conclusion, differences in the concentrations of MT and infection biology of L. clariae reflected the state of the environment and support the usefulness of this parasite and other Lamproglena spp. as bioindicators.
Collapse
Affiliation(s)
- Jabulani Ndaba
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Beric M Gilbert
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| | - Annemariè Avenant-Oldewage
- Department of Zoology, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa
| |
Collapse
|
5
|
Dairain A, Legeay A, Gonzalez P, Baudrimont M, Gourves PY, de Montaudouin X. Seasonal influence of parasitism on contamination patterns of the mud shrimp Upogebia cf. pusilla in an area of low pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:319-332. [PMID: 31349171 DOI: 10.1016/j.scitotenv.2019.07.258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Very few studies have characterized the concentrations of pollutants in bioturbating species. These species are considered as ecosystem engineers and characterizing stressors, such as contaminants, that impact them could lead to a better understanding of the functioning of ecosystems. In addition to contaminants, bioturbators are affected by a wide range of stressors, which can influence their physiological status and their ability to accumulate pollutants. Among these stressors, parasitism is of particular concern due to the ubiquity of parasites in natural environments and their influence on the fitness of their host. This study aims to assess the relationship between parasitism and metal accumulation in the bioturbating mud shrimp Upogebia cf. pusilla. A one-year seasonal survey was conducted in Arcachon Bay, France, with the aims of (1) characterizing the levels of metals in the mud shrimp and (2) evaluating the influence of two macroparasites (a bopyrid isopod and a trematode) on the variation of the metal content in mud shrimp. The bopyrid parasite castrates its female host and a particular attention has therefore been paid to the reproductive cycle of female mud shrimp by quantifying the expression of the vitellogenin gene that encodes the major yolk protein in female crustaceans. The levels of contaminants in mud shrimp appeared low compared to those reported in other crustaceans in areas of higher pollution. Even at these low contamination levels, we observed a significant impact by the bopyrid parasite that depends on season: bopyrid-infested organisms are generally more contaminated than their uninfested conspecifics except in summer when the opposite trend was observed. We suggest that the bopyrid indirectly interferes with the metal accumulation process by altering the reproductive capabilities of the mud shrimp. On the opposite, very low influence of the trematode parasite on the metal content of the host was found.
Collapse
Affiliation(s)
| | - Alexia Legeay
- Univ. Bordeaux, EPOC, UMR CNRS 5805, F-33400 Talence, France
| | | | | | | | | |
Collapse
|
6
|
Grabner D, Sures B. Amphipod parasites may bias results of ecotoxicological research. DISEASES OF AQUATIC ORGANISMS 2019; 136:123-134. [PMID: 31575839 DOI: 10.3354/dao03355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphipods are commonly used test organisms in ecotoxicological studies. Nevertheless, their naturally occurring parasites have mostly been neglected in these investigations, even though several groups of parasites can have a multitude of effects, e.g. on host survival, physiology, or behavior. In the present review, we summarize the knowledge on the effects of Microsporidia and Acanthocephala, 2 common and abundant groups of parasites in amphipods, on the outcome of ecotoxicological studies. Parasites can have significant effects on toxicological endpoints (e.g. mortality, biochemical markers) that are unexpected in some cases (e.g. down-regulation of heat shock protein 70 response in infected individuals). Therefore, parasites can bias the interpretation of results, for example if populations with different parasite profiles are compared, or if toxicological effects are masked by parasite effects. With the present review, we would like to encourage ecotoxicologists to consider parasites as an additional factor if field-collected test organisms are analyzed for biomarkers. Additionally, we suggest intensification of research activities on the effects of parasites in amphipods in connection with other stressors to disentangle parasite and pollution effects and to improve our understanding of parasite effects in this host taxon.
Collapse
Affiliation(s)
- Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, 45141 Essen, Germany
| | | |
Collapse
|
7
|
Gilbert BM, Avenant-Oldewage A. Parasites and pollution: the effectiveness of tiny organisms in assessing the quality of aquatic ecosystems, with a focus on Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18742-18769. [PMID: 28660518 DOI: 10.1007/s11356-017-9481-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
The aquatic environment represents the final repository for many human-generated pollutants associated with anthropogenic activities. The quality of natural freshwater systems is easily disrupted by the introduction of pollutants from urban, industrial and agricultural processes. To assess the extent of chemical perturbation and associated environmental degradation, physico-chemical parameters have been monitored in conjunction with biota in numerous biological monitoring protocols. Most studies incorporating organisms into such approaches have focussed on fish and macroinvertebrates. More recently, interest in the ecology of parasites in relation to environmental monitoring has indicated that these organisms are sensitive towards the quality of the macroenvironment. Variable responses towards exposure to pollution have been identified at the population and component community level of a number of parasites. Furthermore, such responses have been found to differ with the type of pollutant and the lifestyle of the parasite. Generally, endoparasite infection levels have been shown to become elevated in relation to poorer water quality conditions, while ectoparasites are more sensitive, and exposure to contaminated environments resulted in a decline in ectoparasite infections. Furthermore, endoparasites have been found to be suitable accumulation indicators for monitoring levels of several trace elements and metals in the environment. The ability of these organisms to accumulate metals has further been observed to be of benefit to the host, resulting in decreased somatic metal levels in infected hosts. These trends have similarly been found for host-parasite models in African freshwater environments, but such analyses are comparatively sparse compared to other countries. Recently, studies on diplozoids from two freshwater systems have indicated that exposure to poorer water quality resulted in decreased infections. In the Vaal River, the poor water quality resulted in the extinction of the parasite from a site below the Vaal River Barrage. Laboratory exposures have further indicated that oncomiracidia of Paradiplozoon ichthyoxanthon are sensitive to exposure to dissolved aluminium. Overall, parasites from African freshwater and marine ecosystems have merit as effect and accumulation indicators; however, more research is required to detail the effects of exposure on sensitive biological processes within these organisms.
Collapse
|
8
|
Gilbert BM, Avenant-Oldewage A. Trace element and metal sequestration in vitellaria and sclerites, and reactive oxygen intermediates in a freshwater monogenean, Paradiplozoon ichthyoxanthon. PLoS One 2017; 12:e0177558. [PMID: 28498876 PMCID: PMC5428946 DOI: 10.1371/journal.pone.0177558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/28/2017] [Indexed: 11/18/2022] Open
Abstract
Exposure to metals and other trace elements negatively affects infection dynamics of monogeneans, including diplozoids, but, physiological mechanisms linked to exposure have yet to be documented. In this study sequestration of trace elements and reactive oxygen intermediate production in the monogenean, Paradiplozoon ichthyoxanthon, was demonstrated. During dissection of host fish, Labeobarbus aeneus, the gills were excised and assessed for P. ichthyoxanthon, which were removed and frozen for fluorescence microscopy or fixed for transmission electron microscopy. Trace elements were sequestered in the vitellaria and sclerites in P. ichthyoxanthon, and the presence of reactive oxygen intermediates was observed predominantly in the tegument of the parasite. Trace elements and metals identified and ranked according to weight percentages (wt%) in the vitellaria were Cu > C > Au > O > Cr > Fe > Si while for the sclerites C > Cu > O > Au > Fe > Cr > Si were identified. For most element detected, readings were higher in the vitellaria than the sclerites, except for C and O which were higher in sclerites. Specifically for metals, all levels detected in the vitellaria were greater than in sclerites. Based on the proportion of trace elements present in the vitellaria and sclerites it appears that most trace elements including metals were sequestered in the vitellaria. The results of reactive oxygen intermediate production in the tegument of the parasite suggests either trace element accumulation takes place across the tegument or results from the action of the host's immune response on the parasite. The results serve as the first demonstration of trace element sequestration and reactive oxygen intermediates in a freshwater monogenean parasite.
Collapse
Affiliation(s)
- Beric M. Gilbert
- Department of Zoology, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | | |
Collapse
|
9
|
Zimmermann S, Wolff C, Sures B. Toxicity of platinum, palladium and rhodium to Daphnia magna in single and binary metal exposure experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:368-376. [PMID: 28222978 DOI: 10.1016/j.envpol.2017.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Mainly due to automobile traffic, but also due to other sources, the platinum group elements (PGE) platinum (Pt), palladium (Pd) and rhodium (Rh) are introduced into aquatic biotopes where they accumulate in sediments of lakes and rivers. However, the toxicity of these noble metals to aquatic organisms is not well understood and especially toxicity studies under standardized condition are lacking. Thus, the toxicity of Pt, Pd and Rh to Daphnia magna was tested in single metal exposure experiments according to OECD guideline 202. Immobility and lethality was recorded after 24 h and 48 h of exposure and EC50 and LC50, respectively, were determined. As the nominal exposure concentration of Pd differed significantly from the quantified concentration, the control of the real exposure concentration by chemical analysis is mandatory, especially for Pd. The toxicity decreased in the order Pd > Pt ≫ Rh with e.g. LC50(48 h) values of 14 μg/L for Pd, 157 μg/L for Pt and 56,800 μg/L for Rh. The exposure period had a clear effect on the toxicity of Pt, Pd and Rh. For Pt and Rh the endpoint immobility was more sensitive than the endpoint lethality whereas Pd toxicity was similar for both endpoints. The Hill slopes, which are a measure for the steepness of the concentration-response curves, showed no significant discrepancies between the different metals. The binary metal exposure to Pt and Pd revealed a more-than-additive, i.e. a synergistic toxicity using the toxic unit approach. The present study is a start to understand the toxicity of interacting PGE. The modes of action behind the synergistic effect are unclear.
Collapse
Affiliation(s)
- Sonja Zimmermann
- Aquatic Ecology, and Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitaetsstrasse 2, 45141 Essen, Germany.
| | - Carolina Wolff
- Aquatic Ecology, University of Duisburg-Essen, Universitaetsstrasse 2, 45141 Essen, Germany
| | - Bernd Sures
- Aquatic Ecology, and Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Universitaetsstrasse 2, 45141 Essen, Germany
| |
Collapse
|
10
|
Bojko J, Bącela-Spychalska K, Stebbing PD, Dunn AM, Grabowski M, Rachalewski M, Stentiford GD. Parasites, pathogens and commensals in the "low-impact" non-native amphipod host Gammarus roeselii. Parasit Vectors 2017; 10:193. [PMID: 28427445 PMCID: PMC5397875 DOI: 10.1186/s13071-017-2108-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/24/2017] [Indexed: 12/02/2022] Open
Abstract
Background Whilst vastly understudied, pathogens of non-native species (NNS) are increasingly recognised as important threats to native wildlife. This study builds upon recent recommendations for improved screening for pathogens in NNS by focusing on populations of Gammarus roeselii in Chojna, north-western Poland. At this location, and in other parts of continental Europe, G. roeselii is considered a well-established and relatively ‘low-impact’ invader, with little understanding about its underlying pathogen profile and even less on potential spill-over of these pathogens to native species. Results Using a combination of histological, ultrastructural and phylogenetic approaches, we define a pathogen profile for non-native populations of G. roeselii in Poland. This profile comprised acanthocephalans (Polymorphus minutus Goese, 1782 and Pomphorhynchus sp.), digenean trematodes, commensal rotifers, commensal and parasitic ciliated protists, gregarines, microsporidia, a putative rickettsia-like organism, filamentous bacteria and two viral pathogens, the majority of which are previously unknown to science. To demonstrate potential for such pathogenic risks to be characterised from a taxonomic perspective, one of the pathogens, a novel microsporidian, is described based upon its pathology, developmental cycle and SSU rRNA gene phylogeny. The novel microsporidian Cucumispora roeselii n. sp. displayed closest morphological and phylogenetic similarity to two previously described taxa, Cucumispora dikerogammari (Ovcharenko & Kurandina, 1987), and Cucumispora ornata Bojko, Dunn, Stebbing, Ross, Kerr & Stentiford, 2015. Conclusions In addition to our discovery extending the host range for the genus Cucumispora Ovcharenko, Bacela, Wilkinson, Ironside, Rigaud & Wattier, 2010 outside of the amphipod host genus Dikerogammarus Stebbing, we reveal significant potential for the co-transfer of (previously unknown) pathogens alongside this host when invading novel locations. This study highlights the importance of pre-invasion screening of low-impact NNS and, provides a means to document and potentially mitigate the additional risks posed by previously unknown pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2108-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jamie Bojko
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.,Pathology and Molecular Systematics Team, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
| | - Karolina Bącela-Spychalska
- Department of Invertebrate Zoology & Hydrobiology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Paul D Stebbing
- Epidemiology and Risk Team, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
| | - Alison M Dunn
- Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Michał Grabowski
- Department of Invertebrate Zoology & Hydrobiology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Michał Rachalewski
- Department of Invertebrate Zoology & Hydrobiology, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Grant D Stentiford
- Pathology and Molecular Systematics Team, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK. .,European Union Reference Laboratory for Crustacean Diseases, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK.
| |
Collapse
|
11
|
Sures B, Nachev M, Selbach C, Marcogliese DJ. Parasite responses to pollution: what we know and where we go in 'Environmental Parasitology'. Parasit Vectors 2017; 10:65. [PMID: 28166838 PMCID: PMC5294906 DOI: 10.1186/s13071-017-2001-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023] Open
Abstract
Environmental parasitology deals with the interactions between parasites and pollutants in the environment. Their sensitivity to pollutants and environmental disturbances makes many parasite taxa useful indicators of environmental health and anthropogenic impact. Over the last 20 years, three main research directions have been shown to be highly promising and relevant, namely parasites as accumulation indicators for selected pollutants, parasites as effect indicators, and the role of parasites interacting with established bioindicators. The current paper focuses on the potential use of parasites as indicators of environmental pollution and the interactions with their hosts. By reviewing some of the most recent findings in the field of environmental parasitology, we summarize the current state of the art and try to identify promising ideas for future research directions. In detail, we address the suitability of parasites as accumulation indicators and their possible application to demonstrate biological availability of pollutants; the role of parasites as pollutant sinks; the interaction between parasites and biomarkers focusing on combined effects of parasitism and pollution on the health of their hosts; and the use of parasites as indicators of contaminants and ecosystem health. Therefore, this review highlights the application of parasites as indicators at different biological scales, from the organismal to the ecosystem.
Collapse
Affiliation(s)
- Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.,Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Milen Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, D-45141, Essen, Germany.
| | - Christian Selbach
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - David J Marcogliese
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, St. Lawrence Centre, 105 McGill Street, 7th floor, Montreal, QC, H2Y 2E7, Canada.,St. Andrews Biological Station, Fisheries and Oceans Canada, 531 Brandy Cove Road, St, Andrews, NB, E5B 2 L9, Canada
| |
Collapse
|
12
|
Abstract
SUMMARYComplex life cycles are common in free-living and parasitic organisms alike. The adaptive decoupling hypothesis postulates that separate life cycle stages have a degree of developmental and genetic autonomy, allowing them to be independently optimized for dissimilar, competing tasks. That is, complex life cycles evolved to facilitate functional specialization. Here, I review the connections between the different stages in parasite life cycles. I first examine evolutionary connections between life stages, such as the genetic coupling of parasite performance in consecutive hosts, the interspecific correlations between traits expressed in different hosts, and the developmental and functional obstacles to stage loss. Then, I evaluate how environmental factors link life stages through carryover effects, where stressful larval conditions impact parasites even after transmission to a new host. There is evidence for both autonomy and integration across stages, so the relevant question becomes how integrated are parasite life cycles and through what mechanisms? By highlighting how genetics, development, selection and the environment can lead to interdependencies among successive life stages, I wish to promote a holistic approach to studying complex life cycle parasites and emphasize that what happens in one stage is potentially highly relevant for later stages.
Collapse
|
13
|
Keppel M, Dangel KC, Sures B. The Hsp70 response of Anguillicola species to host-specific stressors. Parasitol Res 2016; 115:2149-54. [PMID: 26920569 DOI: 10.1007/s00436-016-4956-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/11/2016] [Indexed: 12/20/2022]
Abstract
The present study is based on infection experiments of two different swim bladder parasite species, Anguillicola crassus Kuwahara et al., 1974 and Anguillicola novaezelandiae Moravec and Taraschewski, 1988, which were experimentally transferred to the two eel species Anguilla anguilla Linnaeus, 1758 and Anguilla japonica Temmink and Schlegel, 1846, respectively. The host-parasite groups were selected due to their different grades of mutual adaptation. The main aim of this study was to analyze the stress responses within the parasites, which were confronted with different hosts, i.e. with different stressors related to the respective host. For this purpose, mean intensities, recovery rates, larvae output, and levels of synthesized heat shock proteins (Hsp70) were determined in nematodes of each infection group. Increased stress responses were detected in the endemic system of A. crassus parasitizing A. japonica and A. crassus in its recently acquired host A. anguilla, which seems to be associated with the immune response of the particular host species and the expenditure of energy on producing larvae. A. novaezelandiae showed overall weak activities in its unknown host species A. japonica, with the lowest recovery rate of all examined groups neither featuring elevated Hsp responses, nor a high mean intensity, nor any reproductive output. On the contrary, in A. anguilla, the parasite reached higher recovery rates, mean intensities, and reproductive output, but no increased Hsp70 levels could be detected. The four considered factors proved partially interdependent, whereas few results did not follow a clear pattern.
Collapse
Affiliation(s)
- M Keppel
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstrasse 5, 45141, Essen, Germany.
| | - K C Dangel
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstrasse 5, 45141, Essen, Germany
| | - B Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstrasse 5, 45141, Essen, Germany.,Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
14
|
Lewis SE, Freund JG, Wankowski JL, Baldridge MG. Correlations between estrogen and testosterone concentrations, pairing status and acanthocephalan infection in an amphipod. J Zool (1987) 2015. [DOI: 10.1111/jzo.12309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Chen HY, Grabner DS, Nachev M, Shih HH, Sures B. Effects of the acanthocephalan Polymorphus minutus and the microsporidian Dictyocoela duebenum on energy reserves and stress response of cadmium exposed Gammarus fossarum. PeerJ 2015; 3:e1353. [PMID: 26539331 PMCID: PMC4631464 DOI: 10.7717/peerj.1353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022] Open
Abstract
Amphipods are commonly parasitized by acanthocephalans and microsporidians and co-infections are found frequently. Both groups of parasites are known to have severe effects on their host. For example, microsporidians can modify host sex ratio and acanthocephalans can manipulate the behavior of the amphipod to promote transmission to the final host. These effects influence host metabolism in general and will also affect the ability of amphipods to cope with additional stressors such as environmental pollution, e.g., by toxic metals. Here we tested the effects of sub-lethal concentrations of cadmium on glycogen and lipid levels, as well as on the 70kDa heat shock protein (hsp70) response of field collected Gammarus fossarum, which were naturally infected with microsporidians and the acanthocephalan Polymorphus minutus. Infected and uninfected G. fossarum were exposed to a nominal Cd concentration of 4 µg/L, which resembled measured aqueous Cd concentration of 2.9 µg/L in reconstituted water for 7 d at 15 °C in parallel to an unexposed control. After exposure gammarids were snap frozen, weighed, sexed and tested for microsporidian infection by PCR. Only individuals containing the microsporidian Dictyocoela duebenum were used for the further biochemical and metal analyses. P. minutus infected amphipods were significantly smaller than their uninfected conspecifics. Mortality was insignificantly increased due to cadmium exposure, but not due to parasite infection. Microsporidian infection in combination with cadmium exposure led to increased glycogen levels in female gammarids. An increase of glycogen was also found due to interaction of acanthocephalan and microsporidian infection. Elevated lipid levels were observed in all groups infected with microsporidians, while acanthocephalans had the opposite effect. A positive correlation of lipid and glycogen levels was observed. The general stress response measured in form of hsp70 was significantly increased in microsporidian infected gammarids exposed to cadmium. P. minutus did not affect the stress response of its host. Lipid levels were correlated negatively with hsp70 response, and indicated a possible increased stress susceptibility of individuals with depleted energy reserves. The results of our study clearly demonstrate the importance of parasitic infections, especially of microsporidians, for ecotoxicological research.
Collapse
Affiliation(s)
- Hui-Yu Chen
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Daniel S Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Milen Nachev
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Hsiu-Hui Shih
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany.,Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
16
|
|
17
|
Peschke K, Geburzi J, Köhler HR, Wurm K, Triebskorn R. Invertebrates as indicators for chemical stress in sewage-influenced stream systems: toxic and endocrine effects in gammarids and reactions at the community level in two tributaries of Lake Constance, Schussen and Argen. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:115-125. [PMID: 24836886 DOI: 10.1016/j.ecoenv.2014.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/29/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
The present study investigates the impact of releases from waste water treatment plants and storm water overflow basins on gammarids and other macrozoobenthos. The study relates to a recent upgrading of a waste water treatment plant (Langwiese) at the Schussen river, an important tributary to Lake Constance. Samples were taken at different sites at the Schussen river upstream and downstream of a storm water overflow basin and the waste water treatment plant Langwiese and, in parallel, at the Argen river, a less polluted reference stream. We assessed the influence of water quality on the distribution of macrozoobenthos and on the health of gammarid populations by a variety of ecotoxicological methods including biomarkers prior to the expansion of the waste water treatment plant. Through histopathological studies, the impact of parasites on host tissue health was evaluated. Analyses of heat shock protein (hsp70) levels allowed us to draw conclusions about the proteotoxicity-related stress status of the organisms. Furthermore, gammarid populations from all sites were investigated in respect to sex ratio, parasitism rate, and fecundity. Macrozoobenthos community integrity was determined by means of the saprobic index and the abundance as well as by the number of taxa. In gammarids, the sex ratio was significantly shifted towards females, fecundity was significantly decreased, and the hsp70 level was significantly increased downstream of the waste water treatment plant Langwiese, compared to the upstream sampling site. Similarly, these effects could be detected downstream of three small storm water overflow basins. In the macrozoobenthos communities, the abundance of taxa, the number of taxa, the number of ephemeroptera, plecoptera, and trichoptera taxa (EPT-taxa), and the number of sensitive taxa decreased downstream of the storm water overflow basin Mariatal as well as downstream of the waste water treatment plant Langwiese. Our study showed, that waste water treatment plants and storm water overflow basins affected macroinvertebrate communities and the health of gammarids.
Collapse
Affiliation(s)
- Katharina Peschke
- Animal Physiological Ecology, University of Tuebingen, Konrad-Adenauer-Str. 20, D-72072 Tuebingen, Germany.
| | - Jonas Geburzi
- Animal Physiological Ecology, University of Tuebingen, Konrad-Adenauer-Str. 20, D-72072 Tuebingen, Germany
| | - Heinz-R Köhler
- Animal Physiological Ecology, University of Tuebingen, Konrad-Adenauer-Str. 20, D-72072 Tuebingen, Germany
| | - Karl Wurm
- GÖL Water Ecology Laboratory Starzach, Tulpenstr. 4, D-72181 Starzach, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tuebingen, Konrad-Adenauer-Str. 20, D-72072 Tuebingen, Germany; Transfer Center Ecotoxicology and Ecophysiology, Blumenstr. 13, D-72108 Rottenburg, Germany
| |
Collapse
|
18
|
Grabner DS, Schertzinger G, Sures B. Effect of multiple microsporidian infections and temperature stress on the heat shock protein 70 (hsp70) response of the amphipod Gammarus pulex. Parasit Vectors 2014; 7:170. [PMID: 24708778 PMCID: PMC4234974 DOI: 10.1186/1756-3305-7-170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/28/2014] [Indexed: 11/30/2022] Open
Abstract
Background Increasing temperatures can be a significant stressor for aquatic organisms. Amphipods are one of the most abundant and functionally important groups of freshwater macroinvertebrates. Therefore, we conducted a laboratory experiment with Gammarus pulex, naturally infected with microsporidians. Methods In each group, 42 gammarids were exposed to 15°C and 25°C for 24 h. Sex of gammarids was determined and microsporidian infections were detected by specific PCR. To quantify stress levels of the amphipods, the 70 kDa heat shock proteins (hsp70) were analyzed by western blot. Results More males than females were detected in the randomized population sample (ratio of females/males: 0.87). No mortality occurred at 15°C, while 42.9% of gammarids died at 25°C. Sequences of three microsporidians (M1, M2, M3) were detected in this G. pulex population (99.7%-100% sequence identity to Microsporidium spp. from GenBank). Previous studies showed that M3 is vertically transmitted, while M1 and M2 are presumably horizontally transmitted. Prevalences, according to PCR, were 27.0%, 37.8% and 64.9% for Microsporidium sp. M1, M2 and M3, respectively. Cumulative prevalence was 82.4%. Multiple infections with all three microsporidians in single gammarids were detected with a prevalence of 8.1%, and bi-infections ranged between 12.2% and 25.7%. In dead gammarids, comparatively low prevalences were noted for M1 (males and females: 11.1%) and M2 (females: 11.1%; males 0%), while prevalence of M3 was higher (females: 66.7%; males: 88.9%). No significant effect of host sex on microsporidian infection was found. Significant effects of temperature and bi-infection with Microsporidium spp. M2 + M3 on hsp70 response were detected by analysis of the whole sample (15°C and 25°C group) and of M2 + M3 bi-infection and gammarid weight when analyzing the 25°C group separately. None of the parameters had a significant effect on hsp70 levels in the 15°C group. Conclusion This study shows that some microsporidian infections in amphipods can cause an increase in stress protein level, in addition to other stressors. Although more harmful effects of combined stressors can be expected, experimental evidence suggests that such an increase might possibly have a protective effect for the host against acute temperature stress.
Collapse
Affiliation(s)
- Daniel S Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr, 5, Essen 45141, Germany.
| | | | | |
Collapse
|
19
|
Wey-Fabrizius AR, Podsiadlowski L, Herlyn H, Hankeln T. Platyzoan mitochondrial genomes. Mol Phylogenet Evol 2013; 69:365-75. [DOI: 10.1016/j.ympev.2012.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/16/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
|
20
|
Frank SN, Godehardt S, Nachev M, Trubiroha A, Kloas W, Sures B. Influence of the cestode Ligula intestinalis and the acanthocephalan Polymorphus minutus on levels of heat shock proteins (HSP70) and metallothioneins in their fish and crustacean intermediate hosts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 180:173-179. [PMID: 23770459 DOI: 10.1016/j.envpol.2013.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 06/02/2023]
Abstract
It is a common method to analyse physiological mechanisms of organisms - commonly referred to as biomarkers - to indicate the presence of environmental pollutants. However, as biomarkers respond to a wide range of stressors we want to direct the attention on natural stressors, i.e. on parasites. After two years maintenance under controlled conditions, roach (Rutilus rutilus) revealed no influence on levels of metallothionein by the parasite Ligula intestinalis. The same was found for Gammarus fossarum infected with Polymorphus minutus. However, the heat shock protein (HSP70) response was affected in both host-parasite systems. While the infection of roach resulted in reduced levels of HSP70 compared to uninfected roach, the infection in G. fossarum led to higher levels of HSP70. We also analysed the effect of a 14 days Cd exposure (4 μg/L) on the uninfected and infected gammarids. The exposure resulted in induced levels for both, metallothionein and HSP70 whereas the combination of stressors, parasite and exposure, revealed a decrease for levels of HSP70 in comparison to the metal exposure only. Accordingly, parasites as natural parts of aquatic ecosystems have to be considered in ecotoxicological research.
Collapse
Affiliation(s)
- Sabrina N Frank
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg/Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Weber M, Wey-Fabrizius AR, Podsiadlowski L, Witek A, Schill RO, Sugár L, Herlyn H, Hankeln T. Phylogenetic analyses of endoparasitic Acanthocephala based on mitochondrial genomes suggest secondary loss of sensory organs. Mol Phylogenet Evol 2012; 66:182-9. [PMID: 23044398 DOI: 10.1016/j.ympev.2012.09.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 11/27/2022]
Abstract
The metazoan taxon Syndermata (Monogononta, Bdelloidea, Seisonidea, Acanthocephala) comprises species with vastly different lifestyles. The focus of this study is on the phylogeny within the syndermatan subtaxon Acanthocephala (thorny-headed worms, obligate endoparasites). In order to investigate the controversially discussed phylogenetic relationships of acanthocephalan subtaxa we have sequenced the mitochondrial (mt) genomes of Echinorhynchus truttae (Palaeacanthocephala), Paratenuisentis ambiguus (Eoacanthocephala), Macracanthorhynchus hirudinaceus (Archiacanthocephala), and Philodina citrina (Bdelloidea). In doing so, we present the largest molecular phylogenetic dataset so far for this question comprising all major subgroups of Acanthocephala. Alongside with publicly available mt genome data of four additional syndermatans as well as 18 other lophotrochozoan (spiralian) taxa and one outgroup representative, the derived protein-coding sequences were used for Maximum Likelihood as well as Bayesian phylogenetic analyses. We achieved entirely congruent results, whereupon monophyletic Archiacanthocephala represent the sister taxon of a clade comprising Eoacanthocephala and monophyletic Palaeacanthocephala (Echinorhynchida). This topology suggests the secondary loss of lateral sensory organs (sensory pores) within Palaeacanthocephala and is further in line with the emergence of apical sensory organs in the stem lineage of Archiacanthocephala.
Collapse
Affiliation(s)
- Mathias Weber
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, J-J Becherweg 30a, D-55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Effect of multiple parasitic infections on the tolerance to pollutant contamination. PLoS One 2012; 7:e41950. [PMID: 22844535 PMCID: PMC3406021 DOI: 10.1371/journal.pone.0041950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022] Open
Abstract
The horizontally-transmitted acanthocephalan parasite Polymorphus minutus and the vertically-transmitted microsporidian parasite Dictyocoela roeselum have both been shown to influence on the antitoxic responses of mono-infected Gammarus roeseli exposed to cadmium. The present study investigates the effect of this co-infection on the antitoxic defence responses of naturally infected females exposed to cadmium stress. Our results revealed that, depending on the cadmium dose, bi-infection induced only slight, significant increased cell damage in G. roeseli as compared to non-infection. In addition, the antitoxic defence pattern of cadmium-exposed bi-infected hosts was similar to the pattern of cadmium-exposed D. roeselum-infected hosts. Reduced glutathione concentrations, carotenoid levels and γ-glutamylcystein ligase activity decreased, while metallothionein concentrations increased. This similar pattern indicates that host physiology can be controlled to some extent by microsporidia under stress conditions. It supports the hypothesis of a disruption of acanthocephalan effects in the presence of microsporidia. However, the global negative effects of bi-infection on host condition should be tested on more biological models, since competition between parasites depends on life history trade-off.
Collapse
|
23
|
Gismondi E, Beisel JN, Cossu-Leguille C. Polymorphus minutus affects antitoxic responses of Gammarus roeseli exposed to cadmium. PLoS One 2012; 7:e41475. [PMID: 22911795 PMCID: PMC3401126 DOI: 10.1371/journal.pone.0041475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/27/2012] [Indexed: 11/18/2022] Open
Abstract
The acanthocephalan parasite Polymorphus minutus is a manipulator of its intermediate host Gammarus roeseli, which favours its transmission to the final host, a water bird. In contaminated environments, G. roeseli have to cope with two stresses, i.e. P. minutus infection and pollutants. As P. minutus survival relies on its host's survival, we investigated the influence of P. minutus on the antitoxic defence capacities and the energy reserves of G. roeseli females after cadmium exposure. In parallel, malondialdehyde, a toxic effect biomarker, was measured in G. roeseli females and in P. minutus. The results revealed that infected females displayed higher cell damage than uninfected ones, despite an apparent increase in reduced glutathione and metallothionein production. In fact, the increase of these antitoxic systems could be counterbalanced by carotenoid intake by the parasite, so that the overall defence system seemed less efficient in infected females than in uninfected ones. In addition, we demonstrated that cadmium induced cell damage in P. minutus, probably linked with cadmium accumulation in the parasite. Altogether, we observed a paradoxical pattern of responses suggesting that P. minutus increases cadmium toxicity in G. roeseli females although (i) it tends to increase several host antitoxic defence capacities and (ii) it bears part of the pollutant, as reflected by cell damage in the parasite.
Collapse
Affiliation(s)
- Eric Gismondi
- Laboratoire des Interactions Ecotoxicologie Biodiversité Ecosystèmes (LIEBE), CNRS UMR 7146, Université de Lorraine, Metz, France.
| | | | | |
Collapse
|
24
|
Gismondi E, Cossu-Leguille C, Beisel JN. Acanthocephalan parasites: help or burden in gammarid amphipods exposed to cadmium? ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1188-1193. [PMID: 22461071 DOI: 10.1007/s10646-012-0873-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/11/2012] [Indexed: 05/31/2023]
Abstract
We investigated the influence of the acanthocephalan parasite Polymorphus minutus on the mortality of its intermediate host, Gammarus roeseli, exposed to cadmium, by the measure of LC(50-96h) values as well as the bioaccumulation of cadmium both in the host and in its parasite. LC(50) results revealed that infected G. roeseli males died less under cadmium stress than uninfected ones; while the converse has been observed in females. Cadmium resistance of infected males could be explained by a weaker bioconcentration factor (BCF) than in females. The lower BCF in infected individuals was closely related with an uptake of cadmium by P. minutus in its host. Nevertheless, although infected females had both weaker BCF and cadmium concentration in their body, the presence of P. minutus did not induce lower mortality than uninfected females. On the contrary, their sensitivity to cadmium was increased by the presence of P. minutus. We discuss the hypothesis that differences of mortality between uninfected and infected gammarids could be explained by a difference of cadmium bioconcentration in host, and by the cadmium bioaccumulation in the parasite. Indeed, results suggested that P. minutus could help G. roeseli to face with stress, what contributed to keep the host alive and favour the parasite transmission.
Collapse
Affiliation(s)
- E Gismondi
- Laboratoire des Interactions Ecotoxicologie Biodiversité Ecosystèmes (LIEBE) Laboratory, CNRS UMR 7146, Université de Lorraine (UdL), Metz, France.
| | | | | |
Collapse
|
25
|
Does the acanthocephalan parasite Polymorphus minutus modify the energy reserves and antitoxic defences of its intermediate host Gammarus roeseli? Parasitology 2012; 139:1054-61. [PMID: 22405348 DOI: 10.1017/s0031182012000315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In disturbed environments, infected organisms have to face both parasitic and chemical stresses. Although this situation is common, few studies have been devoted to the effects of infection on hosts' energy reserves and antitoxic defence capacities, while parasite survival depends on host survival. In this study, we tested the consequences of an infection by Polymorphus minutus on the energy reserves (protein, lipid and glycogen) and antioxidant defence capacities (reduced glutathione, γ-glutamylcysteine ligase activity) of Gammarus roeseli males and females, in the absence of chemical stress. Moreover, malondialdehyde concentration was used as a toxicity biomarker. The results revealed that in infected G. roeseli, whatever their gender and the sampling month, protein and lipid contents were lower, but glycogen contents were higher. This could be explained by the fact that the parasite diverts part of the host's energy for its own development. Moreover, glutathione concentrations and γ-glutamylcysteine ligase activity were both lower, which could lead to lower antitoxic defence in the host. These results suggest negative effects on individuals in the case of additional stress (e.g. pollutant exposure). In the absence of chemical stress, the lower malondialdehyde level in infected gammarids could imply a probable protective effect of the parasite.
Collapse
|
26
|
Minguez L, Boiché A, Sroda S, Mastitsky S, Brulé N, Bouquerel J, Giambérini L. Cross-effects of nickel contamination and parasitism on zebra mussel physiology. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:538-547. [PMID: 22076027 DOI: 10.1007/s10646-011-0814-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
Aquatic organisms are exposed to pollution which may make them more susceptible to infections and diseases. The present investigation evaluated effects of nickel contamination and parasitism (ciliates Ophryoglena spp. and intracellular bacteria Rickettsiales-like organisms), alone and in combination, on biological responses of the zebra mussel Dreissena polymorpha, and also the infestation abilities of parasites, under laboratory controlled conditions. Results showed that after 48 h, more organisms were infected in nickel-exposed groups, which could be related to weakening of their immune system. Acting separately, nickel contamination and infections were already stressful conditions; however, their combined action caused stronger biological responses in zebra mussels. Our data, therefore, confirm that the parasitism in D. polymorpha represents a potential confounding factor in ecotoxicological studies that involve this bivalve.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université Paul Verlaine-Metz, Laboratoire des Interactions, Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Metz, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Gismondi E, Rigaud T, Beisel JN, Cossu-Leguille C. Microsporidia parasites disrupt the responses to cadmium exposure in a gammarid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 160:17-23. [PMID: 22035920 DOI: 10.1016/j.envpol.2011.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/01/2011] [Accepted: 09/14/2011] [Indexed: 05/31/2023]
Abstract
Microsporidia parasites are commonly found in amphipods, where they are often asymptomatic, vertically-transmitted and have several effects on host sexuality and behaviour. As amphipods are often used as models in ecotoxicological studies, we investigated the effect of microsporidian infections on energy reserves and defence capacities of Gammarus roeseli under cadmium stress. Only females were infected by two microsporidia parasites: Dictyocoela roeselum or Dictyocoela muelleri. In physiological conditions, microsporidia had no major effect on energy reserves and defence capacities of G. roeseli, while under cadmium exposure, energy reserves and antioxidant defence were weaker in infected females. Moreover, higher malondialdehyde levels detected in infected females revealed that they suffered more cellular damages. Our results suggest that microsporidia may affect gammarid fitness in stressful conditions, when parasitic stress cannot be compensated by the host. Consequently, microsporidia parasites should be a factor necessary to take into account in ecotoxicology studies involving amphipods.
Collapse
Affiliation(s)
- Eric Gismondi
- Laboratoire des Interactions Ecotoxicologie Biodiversité Ecosystèmes (LIEBE), Université Paul Verlaine - METZ, CNRS UMR 7146, Campus Bridoux, Avenue du Général Delestraint, 57070 Metz, France.
| | | | | | | |
Collapse
|
28
|
Combined effects of parasites and contaminants on animal health: parasites do matter. Trends Parasitol 2011; 27:123-30. [DOI: 10.1016/j.pt.2010.11.002] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/01/2010] [Accepted: 11/09/2010] [Indexed: 11/22/2022]
|
29
|
Parasite-induced changes in the diet of a freshwater amphipod: field and laboratory evidence. Parasitology 2011; 138:537-46. [DOI: 10.1017/s0031182010001617] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYTrophically transmitted parasites are likely to strongly influence food web-structure. The extent to which they change the trophic ecology of their host remains nevertheless poorly investigated and field evidence is lacking. This is particularly true for acanthocephalan parasites whose invertebrate hosts can prey on other invertebrates and contribute to leaf-litter breakdown. We used a multiple approach combining feeding experiments, neutral lipids and stable isotopes to investigate the trophic ecology of the freshwater amphipodGammarus roeseliparasitized by the bird acanthocephalanPolymorphus minutus. Infected compared to uninfected amphipods consumed as many dead isopods, but fewer live isopods and less leaf material. Infection had no influence on the total concentration of neutral lipids. Contrary to what we expected based on laboratory findings, the nitrogen isotope signature, which allows for the estimation of consumer's trophic position, was not influenced by infection status. Conversely, the carbon isotope signature, which is used to identify food sources, changed with infection and suggested that the diet of infectedG. roeseliincludes less perilithon (i.e. fixed algae on rocks, stones) but more terrestrial inputs (e.g. leaf material) than that of uninfected conspecifics. This study shows evidence of changes in the trophic ecology ofP. minutus-infectedG. roeseliand we stress the need to complement feeding experiments with field data when investigating top-down effects of infection in an opportunistic feeder which adapts its diet to the available food sources.
Collapse
|
30
|
Sub-littoral and supra-littoral amphipods respond differently to acute thermal stress. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:413-8. [DOI: 10.1016/j.cbpb.2010.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/22/2009] [Accepted: 01/11/2010] [Indexed: 11/22/2022]
|
31
|
Paul-Pont I, Gonzalez P, Baudrimont M, Jude F, Raymond N, Bourrasseau L, Le Goïc N, Haynes F, Legeay A, Paillard C, de Montaudouin X. Interactive effects of metal contamination and pathogenic organisms on the marine bivalve Cerastoderma edule. MARINE POLLUTION BULLETIN 2010; 60:515-25. [PMID: 20031177 DOI: 10.1016/j.marpolbul.2009.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/11/2009] [Accepted: 11/16/2009] [Indexed: 02/05/2023]
Abstract
The present study evaluated the interactive effects of cadmium contamination and pathogenic organisms (trematodes Himasthla elongata and bacteria Vibrio tapetis) singularly and in combination during 7 days on the bivalve Cerastoderma edule. Some defense-related activities were analyzed such as genetic expression, metallothionein and immune responses. Trematode metacercarial infection, similar whatever the treatment, induced the strongest responses of immune parameters. Particularly, the interaction between cadmium and parasite exposures induced unusual responses on gene expression and immune responses. No effect of bacterial challenge appeared on bivalve responses, nevertheless a strong mortality of V. tapetis infected cockles occurred between 7 and 14 days. Cadmium bioaccumulation was significantly modulated by both pathogenic organisms. Furthermore, an antagonistic effect of trematodes and bacteria was shown on metal bioaccumulation of co-infected cockles. These results highlighted the importance of considering the multiplicity of perturbation sources in coastal ecosystems to assess the health status of organisms.
Collapse
Affiliation(s)
- Ika Paul-Pont
- Université Bordeaux 1, UMR 5805 CNRS, Station Marine d'Arcachon, Place du Dr. Peyneau, Arcachon 33120, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Marcogliese DJ, Dautremepuits C, Gendron AD, Fournier M. Interactions between parasites and pollutants in yellow perch (Perca flavescens) in the St. Lawrence River, Canada: implications for resistance and tolerance to parasites. CAN J ZOOL 2010. [DOI: 10.1139/z09-140] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasites were examined in yellow perch, Perca flavescens (Mitchill, 1814), from four localities ranging in degree of pollution in the St. Lawrence River, Quebec, Canada, to examine the effects of the most prevalent parasite species on expression of biomarkers of oxidative stress. Various biomarkers appeared to be affected by the infection levels of Apophallus brevis Ransom, 1920 and genus Diplostomum von Nordmann, 1832. For certain biomarkers, interactions between infection level and pollution type were detected for A. brevis, Diplostomum spp., and genus Ichthyocotylurus Odening, 1969. Activity of glutathione reductase in gill tissue decreased with increasing numbers of A. brevis, but only at the two most polluted localities. Catalase activity in kidney increased with numbers of Diplostomum spp. at the polluted localities, but not at the two least contaminated sites. Results suggest that parasites may affect expression of biomarkers of pollution and that pathogenicity of parasites may be enhanced under polluted conditions. Exposure to contaminants appears to reduce tolerance, but not resistance, to parasites in yellow perch in this system. This type of immunosuppression may be widespread in polluted ecosystems.
Collapse
Affiliation(s)
- David J. Marcogliese
- Fluvial Ecosystem Research Section, Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment Canada, St. Lawrence Centre, 105 McGill Street, 7th Floor, Montréal, QC H2Y 2E7, Canada
- INRS-Institut Armand Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Claire Dautremepuits
- Fluvial Ecosystem Research Section, Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment Canada, St. Lawrence Centre, 105 McGill Street, 7th Floor, Montréal, QC H2Y 2E7, Canada
- INRS-Institut Armand Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Andrée D. Gendron
- Fluvial Ecosystem Research Section, Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment Canada, St. Lawrence Centre, 105 McGill Street, 7th Floor, Montréal, QC H2Y 2E7, Canada
- INRS-Institut Armand Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Michel Fournier
- Fluvial Ecosystem Research Section, Aquatic Ecosystem Protection Research Division, Water Science and Technology Directorate, Science and Technology Branch, Environment Canada, St. Lawrence Centre, 105 McGill Street, 7th Floor, Montréal, QC H2Y 2E7, Canada
- INRS-Institut Armand Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
33
|
Pech D, Vidal-Martínez VM, Aguirre-Macedo ML, Gold-Bouchot G, Herrera-Silveira J, Zapata-Pérez O, Marcogliese DJ. The checkered puffer (Spheroides testudineus) and its helminths as bioindicators of chemical pollution in Yucatan coastal lagoons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:2315-2324. [PMID: 19135703 DOI: 10.1016/j.scitotenv.2008.11.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 11/21/2008] [Accepted: 11/22/2008] [Indexed: 05/27/2023]
Abstract
The suitability of using helminth communities as bioindicators of environmental quality of the Yucatan coastal lagoons status was tested on the checkered puffer (Spheroides testudineus) in four coastal lagoons along the Yucatan coast. The concentration of chemical pollutants in sediments, water quality parameters, helminth infracommunity characteristics, as well as fish physiological biomarkers, including EROD (7-ethoxyresorufin-O-deethylase) and catalase activities, were measured. Results from sediment analyses demonstrated the presence of hydrocarbons, organochlorine pesticides and polychlorinated biphenyls at varying concentrations, some of which exceeded the Probability Effect Level (PEL). Significant negative associations among organochlorine pesticides, infracommunity characteristics and fish physiological responses were observed in most of the lagoons. Results suggest that EROD activity and parasite infracommunity characteristics could be useful tools to evaluate the effects of chemical pollutants on the fish host and in the environment. Importantly, certain parasites appear to influence biomarker measurements, indicating that parasites should be considered in ecotoxicological studies.
Collapse
Affiliation(s)
- Daniel Pech
- Departamento de Recursos del Mar, Cinvestav, 97310 Mérida, Yucatán, Mexico.
| | | | | | | | | | | | | |
Collapse
|