1
|
Heimbrand Y, Limburg K, Hüssy K, Næraa T, Casini M. Cod otoliths document accelerating climate impacts in the Baltic Sea. Sci Rep 2024; 14:16750. [PMID: 39033179 PMCID: PMC11271452 DOI: 10.1038/s41598-024-67471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Anthropogenic deoxygenation of the Baltic Sea caused major declines in demersal and benthic habitat quality with consequent impacts on biodiversity and ecosystem services. Using Baltic cod otolith chemical proxies of hypoxia, salinity, and fish metabolic status and growth, we tracked changes from baseline conditions in the late Neolithic (4500 BP) and early twentieth century to the present, in order to understand how recent, accelerating climate change has affected this key species. Otolith hypoxia proxies (Mn:Mg) increased with expanding anoxic water volumes, but decreased with increasing salinity indexed by otolith Sr:Ca. Metabolic status proxied by otolith Mg:Ca and reconstructed growth were positively related to dissolved oxygen percent saturation, with particularly severe declines since 2010. This long-term record of otolith indicators provides further evidence of a profound state change in oxygen for the worse, in one of the world's largest inland seas. Spreading hypoxia due to climate warming will likely impair fish populations globally and evidence can be tracked with otolith chemical biomarkers.
Collapse
Affiliation(s)
- Yvette Heimbrand
- Department of Aquatic Resources, Swedish University of Agricultural Science, Almas Allé 5, Box 7018, 750 07, Uppsala, Sweden.
| | - Karin Limburg
- Department of Aquatic Resources, Swedish University of Agricultural Science, Almas Allé 5, Box 7018, 750 07, Uppsala, Sweden
- SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Karin Hüssy
- National Institute of Aquatic Resources, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Tomas Næraa
- Department of Geology, Lund University, Sölvegatan 12, 223 62, Lund, Sweden
| | - Michele Casini
- Department of Aquatic Resources, Swedish University of Agricultural Science, Almas Allé 5, Box 7018, 750 07, Uppsala, Sweden
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
2
|
Behrens JW, Ryberg MP, Chondromatidou V, Iburg TM. Comparative histopathology of livers from Baltic cod infected with the parasitic nematode Contracaecum osculatum. JOURNAL OF FISH DISEASES 2023; 46:653-662. [PMID: 36917496 DOI: 10.1111/jfd.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 05/07/2023]
Abstract
Infection levels with the parasitic nematode Contracaecum osculatum in Eastern Baltic cod have increased in the last decades. Eastern Baltic cod is transport host for this parasite that has a high affinity for the liver of the fish. The liver is a highly vital organ and damage to the liver tissue can result in reduced functionality of the organ. Previous studies have revealed that cod with high infections loads reveal impaired physiological performance, reduced nutritional condition and show signs of having a liver disease. Yet, little is known about the pathological changes and inflammatory reactions of the cod liver related to the infections. In this study, we performed histological examinations on 30 Baltic cod livers caught in the eastern part of the Baltic Sea (length; 38 ± 0.9 cm, weight; 454 ± 34.8 gram) and three Sound cod livers (length; 63 ± 2.9 cm, weight; 3396 ± 300.2 gram) to categorize the degree of inflammation and its relation to pathological changes in infected cod livers. We further investigated how C. osculatum infection levels varied with intensity of inflammation and co-infections. We found that high infection loads with C. osculatum caused severe inflammation in the liver tissue of cod and reduced fat content of the hepatocytes. Conspicuous amounts of glycogen were found in the muscle and intestinal epithelial cells of the nematodes and parasitic co-infections occurred more frequently in the most heavily infected livers.
Collapse
Affiliation(s)
- Jane W Behrens
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kgs. Lyngby, Denmark
| | - Marie Plambech Ryberg
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kgs. Lyngby, Denmark
| | - Virginia Chondromatidou
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kgs. Lyngby, Denmark
| | - Tine Moesgaard Iburg
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Eero M, Brander K, Baranova T, Krumme U, Radtke K, Behrens JW. New insights into the recent collapse of Eastern Baltic cod from historical data on stock health. PLoS One 2023; 18:e0286247. [PMID: 37228079 DOI: 10.1371/journal.pone.0286247] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
The Eastern Baltic cod (Gadus morhua) stock is currently in a very poor state, with low biomass and adverse trends in several life history and demographic parameters. This raises concern over whether and to what level recovery is possible. Here, we look for new insights from a historical perspective, extending the time series of various stock health indicators back to the 1940s, i.e. to the beginning of intensive exploitation of the Eastern Baltic cod. The historical data confirm that the stock deterioration in recent years is unprecedented, as all indicators are presently in their worst states on record. Cod body condition and energy reserves were equally low in the 1940s-1950s, accompanied by high parasitic liver worm infection, comparable to that measured in recent years. However, other stock parameters (size structure, size at maturity, stock distribution) are currently in their worst states over the past 80 years. In contrast, the state of cod in the 1970s to early 1990s that is often perceived as a desirable target, was exceptional, with the most favorable indicator levels in the time series. Long-term observation data reveal concurrent or asynchronous trends in different indicators of stock health and to what extent these have coincided with changes in possible external drivers. In this way, the extended time series contribute to ongoing research on understanding the collapse of the cod and its recovery potential.
Collapse
Affiliation(s)
- Margit Eero
- National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Keith Brander
- National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tatjana Baranova
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Uwe Krumme
- Thünen Institute of Baltic Sea Fisheries, Rostock, Germany
| | | | - Jane W Behrens
- National Institute for Aquatic Resources, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Buchmann K. Seals, fish, humans and parasites in the Baltic: ecology, evolution and history. Folia Parasitol (Praha) 2023; 70. [PMID: 37265200 DOI: 10.14411/fp.2023.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/31/2023] [Indexed: 06/03/2023]
Abstract
Evolutionary and ecological processes affecting the interactions between hosts and parasites in the aquatic environment are at display in the Baltic Sea, a young and ecologically unstable marine ecosystem, where fluctuating abiotic and biotic factors affect the parasitofauna in fish. The dynamic infections of Baltic cod, a subpopulation of the Atlantic cod (Gadus morhua Linnaeus), with third stage anisakid nematode larvae of Pseudoterranova decipiens (Krabbe, 1878) and Contracaecum osculatum (Rudolphi, 1802) have increased following a significant increase of the Baltic grey seal Halichoerus grypus (Fabricius) population in the region. Cod serves as a paratenic host and marine mammals, pinnipeds, are definitive hosts releasing parasite eggs, with faeces, to the marine environment, where embryonation and hatching of the third stage larva take place. The parasite has no obligate intermediate hosts, but various invertebrates, smaller fish and cod act as paratenic hosts transmitting the infection to the seal. Contracaecum osculatum has an impact on the physiological performance of the cod, which optimises transmission of the larva from fish to seal. Thus, a muscle mass decrease of nearly 50% may result from heavy C. osculatum infections, probably amplified by a restricted food availability. The muscle atrophy is likely to reduce the escape reactions of the fish when meeting a foraging seal. In certain regions, where fish and seals are restricted in their migration patterns, such as the semi-enclosed Baltic Sea, the predation may contribute to a severe cod stock depletion. The parasites are zoonotic and represent a human health risk, when consumers ingest insufficiently heat- or freeze-treated infected products. Marked infections of the cod were previously reported during periods with elevated seal populations (late 19th and middle 20th century) and various scenarios for management of risk factors are evaluated in an evolutionary context.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| |
Collapse
|
5
|
Ryberg MP, Christensen A, Jørgensen C, Neuenfeldt S, Skov PV, Behrens JW. Bioenergetics modelling of growth processes in parasitized Eastern Baltic cod ( Gadus morhua L.). CONSERVATION PHYSIOLOGY 2023; 11:coad007. [PMID: 36911046 PMCID: PMC9999110 DOI: 10.1093/conphys/coad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Changes in physiological processes can reveal how individuals respond to environmental stressors. It can be difficult to link physiological responses to changes in vital rates such as growth, reproduction and survival. Here, bioenergetics modelling can aid in understanding non-intuitive outcomes from stressor combinations. Building on an established bioenergetics model, we examine the potential effects of parasite infection on growth rate and body condition. Parasites represent an overlooked biotic factor, despite their known effects on the physiology of the host organism. As a case study, we use the host-parasite system of Eastern Baltic cod (Gadus morhua) infected with the parasitic nematode Contraceacum osculatum. Eastern Baltic cod have during the past decade experienced increasing infection loads with C. osculatum that have been shown to lead to physiological changes. We hypothesized that infection with parasites affects cod growth negatively as previous studies reveal that the infections lead to reduced energy turnover, severe liver disease and reduced nutritional condition. To test this, we implemented new variables into the bioenergetics model representing the physiological changes in infected fish and parameterized these based on previous experimental data. We found that growth rate and body condition decreased with increased infection load. Highly infected cod reach a point of no return where their energy intake cannot maintain a surplus energy balance, which may eventually lead to induced mortality. In conclusion, parasite infections cannot be ignored when assessing drivers of fish stock dynamics.
Collapse
Affiliation(s)
- Marie Plambech Ryberg
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet, Building 202,
Kgs. Lyngby 2800, Denmark
| | - Asbjørn Christensen
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet, Building 202,
Kgs. Lyngby 2800, Denmark
| | - Christian Jørgensen
- Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53 A/B, 5006 Bergen, Norway
| | - Stefan Neuenfeldt
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet, Building 202,
Kgs. Lyngby 2800, Denmark
| | - Peter V Skov
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Willemoesvej 2, Hirtshals 9850, Denmark
| | - Jane W Behrens
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet, Building 202,
Kgs. Lyngby 2800, Denmark
| |
Collapse
|
6
|
Alt KG, Feldmeyer B, Kochmann J, Klimpel S. Gene expression and allergenic potential of Pseudoterranova bulbosa L3 from different infection sites in North Atlantic cod (Gadus morhua). JOURNAL OF FISH DISEASES 2022; 45:1073-1086. [PMID: 35475516 DOI: 10.1111/jfd.13630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The recent advances in molecular methods and data processing have facilitated research on anisakid nematodes. While most research efforts were made regarding the genus Anisakis, since this genus is held responsible for the majority of reported clinical signs, there is still a demand for data on the genus Pseudoterranova. Several case studies of severe invasive anisakidosis affecting various organs caused by species of the P. decipiens complex have been described. To better understand the way these parasites might infest their fish host, we examined whether parasite location within the fish host affects gene expression. A de novo assembly of the transcriptome of Pseudoterranova bulbosa, isolated from North Atlantic cod, was analysed for patterns of differential gene expression between samples taken from liver and viscera. We additionally searched for homologs to known nematode allergens, to give a first estimate of the potential allergenicity of P. bulbosa. There was a subtle difference in the gene expression of samples taken from liver and viscera. Seventy genes were differentially expressed, 32 genes were upregulated in parasites isolated from liver and 38 genes were upregulated in parasites from viscera. Homologs of five nematode allergens were identified among the genes expressed by P. bulbosa. Our transcriptome of P. bulbosa will be a valuable resource for further meta-analyses and resequencing projects.
Collapse
Affiliation(s)
- Katharina G Alt
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt/Main, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt/Main, Germany
| | - Judith Kochmann
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt/Main, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt/Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany
| |
Collapse
|
7
|
Orio A, Heimbrand Y, Limburg K. Deoxygenation impacts on Baltic Sea cod: Dramatic declines in ecosystem services of an iconic keystone predator. AMBIO 2022; 51:626-637. [PMID: 34075555 PMCID: PMC8800964 DOI: 10.1007/s13280-021-01572-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The intensified expansion of the Baltic Sea's hypoxic zone has been proposed as one reason for the current poor status of cod (Gadus morhua) in the Baltic Sea, with repercussions throughout the food web and on ecosystem services. We examined the links between increased hypoxic areas and the decline in maximum length of Baltic cod, a demographic proxy for services generation. We analysed the effect of different predictors on maximum length of Baltic cod during 1978-2014 using a generalized additive model. The extent of minimally suitable areas for cod (oxygen concentration ≥ 1 ml l-1) is the most important predictor of decreased cod maximum length. We also show, with simulations, the potential for Baltic cod to increase its maximum length if hypoxic areal extent is reduced to levels comparable to the beginning of the 1990s. We discuss our findings in relation to ecosystem services affected by the decrease of cod maximum length.
Collapse
Affiliation(s)
- Alessandro Orio
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
| | - Yvette Heimbrand
- Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences, Skolgatan 6, 742 42 Öregrund, Sweden
| | - Karin Limburg
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY USA
| |
Collapse
|
8
|
Pawlak J. In situ evidence of the role of Crangon crangon in infection of cod Gadus morhua with nematode parasite Hysterothylacium aduncum in the Baltic Sea. Parasitology 2021; 148:1691-1696. [PMID: 34369334 PMCID: PMC11010046 DOI: 10.1017/s0031182021001414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 11/05/2022]
Abstract
Cod was one of the most important fish species in the Baltic Sea, but its condition is deteriorating for several reasons, including an increasing parasite burden. The aim of this study was to determine the source of infection of Baltic cod with parasites by examination of invertebrates found in situ in the cod stomach. A total of 1681 cod were sampled during four research cruises in the southern Baltic Sea in 2012, 2013 and 2014 and the composition of their diet was analysed. Each prey item from cod stomach was identified to the lowest possible taxonomic level and a parasitological analysis of all invertebrates collected was performed. Crangon crangon, Saduria entomon and Mysis mixta were the most commonly represented invertebrates among food items. Hysterothylacium aduncum was found only in C. crangon. This host–parasite system is reported here for the first time in situ in the stomach of cod from the Baltic Sea, confirming the role of C. crangon in cod infection with H. aduncum.
Collapse
Affiliation(s)
- Joanna Pawlak
- National Marine Fisheries Research Institute, Kołłątaja 1, Gdynia 81-332, Poland
| |
Collapse
|
9
|
Mehrdana F, Lavilla M, Kania PW, Pardo MÁ, Audicana MT, Longo N, Buchmann K. Evidence of IgE-Mediated Cross-Reactions between Anisakis simplex and Contracaecum osculatum Proteins. Pathogens 2021; 10:pathogens10080950. [PMID: 34451414 PMCID: PMC8399947 DOI: 10.3390/pathogens10080950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Fish consumers may develop allergic reactions following the ingestion of fish products containing nematode larvae within the genus Anisakis. Sensitized patients may cross-react with proteins from insects, mites and mollusks, leading to allergic reactions even in the absence of the offending food. Potential cross-reactivity in Anisakis-allergic patients with larval proteins from other zoonotic parasites present in freshwater and sea fish should be investigated due to an increasing occurrence in certain fish stocks, particularly Contracaecum osculatum. In this work, we evaluated IgE-cross reactions by in vivo (skin prick tests with parasites extracts) and in vitro methods (IgE-ELISA and IgE-immunoblot). In vivo skin prick tests (SPT) proved the reactivity of Anisakis-sensitized patients when exposed to C. osculatum antigens. Sera from Anisakis-sensitized patients confirmed the reaction with somatic antigens (SA) and excretory/secretory proteins (ES) from C. osculatum. Only anecdotal responses were obtained from other freshwater worm parasites. Consequently, it is suggested that Anisakis-sensitized humans, especially patients with high levels of specific anti-Anisakis antibodies, may react to C. osculatum proteins, possibly due to IgE-mediated cross-reactivity.
Collapse
Affiliation(s)
- Foojan Mehrdana
- Laboratory of Aquatic Pathobiology, Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (F.M.); (P.W.K.)
| | - María Lavilla
- AZTI-BRTA, Food Research, Parque Tecnológico de Bizkaia, Astondo Bidea-Edificio 609, E-48160 Derio, Spain; (M.L.); (M.Á.P.)
| | - Per Walter Kania
- Laboratory of Aquatic Pathobiology, Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (F.M.); (P.W.K.)
| | - Miguel Ángel Pardo
- AZTI-BRTA, Food Research, Parque Tecnológico de Bizkaia, Astondo Bidea-Edificio 609, E-48160 Derio, Spain; (M.L.); (M.Á.P.)
| | - María Teresa Audicana
- Allergy Department, Araba Integrated Health Organization, Bioaraba.Osakidetza, Basque Health Service, Jose Atxotegui s/n, E-01009 Vitoria, Spain; (M.T.A.); (N.L.)
| | - Natividad Longo
- Allergy Department, Araba Integrated Health Organization, Bioaraba.Osakidetza, Basque Health Service, Jose Atxotegui s/n, E-01009 Vitoria, Spain; (M.T.A.); (N.L.)
| | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (F.M.); (P.W.K.)
- Correspondence: ; Tel.: +45-35-33-27-00
| |
Collapse
|
10
|
Niemikoski H, Straumer K, Ahvo A, Turja R, Brenner M, Rautanen T, Lang T, Lehtonen KK, Vanninen P. Detection of chemical warfare agent related phenylarsenic compounds and multibiomarker responses in cod (Gadus morhua) from munition dumpsites. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105160. [PMID: 33011584 DOI: 10.1016/j.marenvres.2020.105160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Recently, sea-dumped chemical weapons (CWs) containing toxic chemical warfare agents (CWAs) have raised international attention. It is well known that CWAs are leaking from corroded munitions causing a risk to the surrounding marine environment, while the impact on marine biota is still unknown. In this study, cod (Gadus morhua) was used as a model species to study the possible bioaccumulation of phenylarsenic CWAs and their negative effects at multiple levels of biological organization on fish living in the vicinity of a major CWs dumpsite in the Bornholm Basin in the Baltic Sea. In total, 14% of the cod muscle samples collected close to the main dumpsite contained trace levels of phenylarsenic CWAs. However, most of the biomarkers measured did not show clear differences between this area compared with a lesser contaminated reference area. On the other hand, significant changes in some biomarkers were observed in individuals containing trace levels of CWA-related chemicals. The results gained in this study have significant importance for environmental risk assessment and for evaluating the risk of CWA contamination for human seafood consumers.
Collapse
Affiliation(s)
- Hanna Niemikoski
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, FI-00014, University of Helsinki, Finland; Finnish Environment Institute (SYKE), Laboratory Centre, Mustialankatu 3, FI-00790, Helsinki, Finland.
| | - Katharina Straumer
- Thünen Institute for Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Aino Ahvo
- Finnish Environment Institute (SYKE), Marine Research Centre, Agnes Sjöbergin Katu 2, FI-00790, Helsinki, Finland
| | - Raisa Turja
- Finnish Environment Institute (SYKE), Marine Research Centre, Agnes Sjöbergin Katu 2, FI-00790, Helsinki, Finland
| | - Matthias Brenner
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Tomi Rautanen
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, FI-00014, University of Helsinki, Finland
| | - Thomas Lang
- Thünen Institute for Fisheries Ecology, Herwigstraße 31, 27572, Bremerhaven, Germany
| | - Kari K Lehtonen
- Finnish Environment Institute (SYKE), Marine Research Centre, Agnes Sjöbergin Katu 2, FI-00790, Helsinki, Finland
| | - Paula Vanninen
- Finnish Institute for Verification of the Chemical Weapons Convention (VERIFIN), Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1, FI-00014, University of Helsinki, Finland
| |
Collapse
|
11
|
Kochanowski M, Różycki M, Dąbrowska J, Karamon J, Sroka J, Antolak E, Bełcik A, Cencek T. Development and Application of Novel Chemiluminescence Immunoassays for Highly Sensitive Detection of Anisakis simplex Proteins in Thermally Processed Seafood. Pathogens 2020; 9:pathogens9100777. [PMID: 32977528 PMCID: PMC7598195 DOI: 10.3390/pathogens9100777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/08/2023] Open
Abstract
The third-stage larvae (L3) of Anisakis simplex are the most important source of hidden allergens in seafood products. However, there exist no commercial methods for detecting Anisakis proteins in food. Furthermore, only a few methods have been validated for the detection of A. simplex in thermally processed food. The aims of our study are (i) the development and validation of high-sensitivity chemiluminescent (CL) immunoassays for the detection of A. simplex proteins in processed seafood, (ii) and A. simplex antigen detection in common seafood products from Polish markets. We developed and validated CL sandwich ELISA (S-ELISA) and CL competitive ELISA (C-ELISA) methods for A. simplex proteins detection in food, with respective detection limits of 0.5 and 5 ng/mL. The usefulness of the assays for detecting A. simplex proteins in highly processed food was evaluated by examination of autoclaved canned fish spiked with A. simplex larvae (1–8 larvae/200 g). Commercial real-time PCR was unable to detect A. simplex in autoclaved samples at all levels of enrichment with Anisakis larvae. CL-S-ELISA was used to test various types of seafood products from Polish markets. Among all tested products (n = 259), 28% were positive. A. simplex antigens were found mostly (n = 39) in smoked fish products: mackerel, herring, cod, and hake. Other positive samples were found in marinated herrings, canned cod livers, canned mackerels, and surimi sticks. In tuna, Atlantic argentine, anchovy, sardine, sprat, and squid products, A. simplex antigens were not detected. This study provides novel effective tools for the detection of A. simplex proteins in processed food and highlights the potential allergic hazards for Anisakis-sensitized Polish consumers of seafood.
Collapse
|
12
|
Ryberg MP, Skov PV, Vendramin N, Buchmann K, Nielsen A, Behrens JW. Physiological condition of Eastern Baltic cod, Gadus morhua, infected with the parasitic nematode Contracaecum osculatum. CONSERVATION PHYSIOLOGY 2020; 8:coaa093. [PMID: 32995005 PMCID: PMC7507771 DOI: 10.1093/conphys/coaa093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 05/23/2023]
Abstract
Establishing relationships between parasite infection and physiological condition of the host can be difficult and therefore are often neglected when describing factors causing population declines. Using the parasite-host system between the parasitic nematode Contracaecum osculatum and the Eastern Baltic cod Gadus morhua, we here shed new light on how parasite load may relate to the physiological condition of a transport host. The Eastern Baltic cod is in distress, with declining nutritional conditions, disappearance of the larger fish, high natural mortality and no signs of recovery of the population. During the latest decade, high infection levels with C. osculatum have been observed in fish in the central and southern parts of the Baltic Sea. We investigated the aerobic performance, nutritional condition, organ masses, and plasma and proximate body composition of wild naturally infected G. morhua in relation to infection density with C. osculatum. Fish with high infection densities of C. osculatum had (i) decreased nutritional condition, (ii) depressed energy turnover as evidenced by reduced standard metabolic rate, (iii) reduction in the digestive organ masses, and alongside (iv) changes in the plasma, body and liver composition, and fish energy source. The significantly reduced albumin to globulin ratio in highly infected G. morhua suggests that the fish suffer from a chronic liver disease. Furthermore, fish with high infection loads had the lowest Fulton's condition factor. Yet, it remains unknown whether our results steam from a direct effect of C. osculatum, or because G. morhua in an already compromised nutritional state are more susceptible towards the parasite. Nevertheless, impairment of the physiological condition can lead to reduced swimming performance, compromising foraging success while augmenting the risk of predation, potentially leading to an increase in the natural mortality of the host. We hence argue that fish-parasite interactions must not be neglected when implementing and refining strategies to rebuild deteriorating populations.
Collapse
Affiliation(s)
- Marie Plambech Ryberg
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet 201, Kgs. Lyngby 2800, Denmark
| | - Peter V Skov
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Willemoesvej 2, Hirtshals 9850, Denmark
| | - Niccolò Vendramin
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet 201, Kgs. Lyngby 2800, Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, Frederiksberg 1870, Denmark
| | - Anders Nielsen
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet 201, Kgs. Lyngby 2800, Denmark
| | - Jane W Behrens
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet 201, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
13
|
Deksne G, Davidson RK, Buchmann K, Kärssin A, Kirjušina M, Gavarāne I, Miller AL, Pálsdóttir GR, Robertson LJ, Mørk T, Oksanen A, Palinauskas V, Jokelainen P. Parasites in the changing world - Ten timely examples from the Nordic-Baltic region. Parasite Epidemiol Control 2020; 10:e00150. [PMID: 32435705 PMCID: PMC7232095 DOI: 10.1016/j.parepi.2020.e00150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
The world is changing, and parasites adapt. The Nordic-Baltic region in northern Europe - including the Nordic countries Denmark, Finland, Iceland, Norway and Sweden, and the Baltic States Estonia, Latvia and Lithuania - is facing new parasitological challenges due to changes in populations of parasites and their hosts and the spread of new parasites to the region due to climate change. Some changes can also be ascribed to increased awareness and detection. In this paper, we review and discuss a convenience selection of ten timely examples of recent observations that exemplify trends and challenges from different fields of parasitology, with particular focus on climate change and potential changes in epidemiology of pathogens in northern Europe. The examples illustrate how addressing parasitological challenges often requires both intersectoral and international collaboration, and how using both historical baseline data and modern methodologies are needed.
Collapse
Affiliation(s)
- Gunita Deksne
- Institute of Food safety, Animal health and Environment “BIOR”, Lejupes Str. 3, Riga LV-1076, Latvia
- Faculty of Biology, University of Latvia, Jelgavas Str. 1, Riga LV-1004, Latvia
| | | | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark
| | - Age Kärssin
- Veterinary and Food Laboratory, Kreutzwaldi 30, 51006 Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Muza Kirjušina
- Institute of Life Sciences and Technology, Daugavpils University, Parādes Str. 1A, Daugavpils LV-5401, Latvia
| | - Inese Gavarāne
- Institute of Life Sciences and Technology, Daugavpils University, Parādes Str. 1A, Daugavpils LV-5401, Latvia
| | - Andrea L. Miller
- Norwegian Institute for Nature Research, Department for Terrestrial Ecology, Postboks 5685 Sluppen, 7485 Trondheim, Norway
| | - Guðný Rut Pálsdóttir
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, IS-112 Reykjavík, Iceland
| | - Lucy J. Robertson
- Norwegian University of Life Sciences, Department of Food Safety and Infection Biology, Section for Microbiology, Immunology, and Parasitology, Parasitology Lab, Adamstuen Campus, Ullevålsveien 72, 0454 Oslo, Norway
| | - Torill Mørk
- Norwegian Veterinary Institute, Stakkevollvegen 23b, 9010 Tromsø, Norway
| | - Antti Oksanen
- Finnish Food Authority (FINPAR), Elektroniikkatie 3, 90590 Oulu, Finland
| | | | - Pikka Jokelainen
- Laboratory of Parasitology, Department of Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| |
Collapse
|
14
|
Mohamed A, Zuo S, Karami AM, Marnis H, Setyawan A, Mehrdana F, Kirkeby C, Kania P, Buchmann K. Contracaecum osculatum (sensu lato) infection of Gadus morhua in the Baltic Sea: inter- and intraspecific interactions. Int J Parasitol 2020; 50:891-898. [PMID: 32681931 DOI: 10.1016/j.ijpara.2020.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
The subpopulation of Atlantic cod, Gadus morhua, in the eastern part of the Baltic Sea has experienced a significant increase in infections with anisakid nematode larvae of the species Contracaecum osculatum sensu lato (s.l.) since the year 2000. The life cycle of the parasite includes seals and especially the grey seal, Halichoerus grypus, as final hosts, carrying the adult nematodes in the stomach, crustaceans (copepods, amphipods) as first intermediate hosts and various fish species (clupeids, sandeel) including cod as second intermediate/paratenic hosts. Cod with a body length below 28 cm are generally non-infected but experience increasing infection levels when they switch to a piscine diet (infected intermediate/paratenic hosts). We present an overall frequency distribution analysis of worms in 166 cod (body length 30-49 cm) collected in the spawning area over the last 5 years. It shows a fit to the negative binomial distribution, a prevalence of infection of 89.8%, a mean intensity of 29.3 parasites per fish (range 1-377) and a variance/mean ratio of 59.2 (≫1), indicating overdispersion. We present measurements of the adult Contracaecum osculatum (s.l.) specimens in the seal stomach and show that the parasites reach a maximum length of 6.6 cm (females) and 5.8 cm (males). L3s in sprat have a total length from 1to 11 mm whereas the larvae in cod liver are 3-27 mm. A decreasing mean worm length associated with high worm densities in cod (number of nematodes per liver) was recorded. Possible explanations might include timing of feeding on infected intermediate/paratenic hosts, intraspecific competition (crowding) between larvae in cod and host responses (indicated by a significant antibody production in cod against C. osculatum (s.l.) antigens). A significant negative correlation between infection intensity and muscle mass of cod was found, suggesting parasite-induced down-regulation of growth factors in cod.
Collapse
Affiliation(s)
- Abdu Mohamed
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Shaozhi Zuo
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Asma M Karami
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Huria Marnis
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Agung Setyawan
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Foojan Mehrdana
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Carsten Kirkeby
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Per Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
15
|
Anisakid nematode larvae in the liver of Atlantic cod Gadus morhua L. from West Greenland. Parasitol Res 2020; 119:3233-3241. [PMID: 32656658 DOI: 10.1007/s00436-020-06807-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Anisakid nematode larvae occur frequently in the liver of Atlantic cod, but merely few infection data from cod in waters around Greenland exist. The present study reports the occurrence of third-stage anisakid larvae in the livers of 200 Atlantic cod caught on fishing grounds along the West coast of Greenland (fjord systems of Maniitsoq) in May, June, August and September 2017. Classical and molecular helminthological techniques were used to identify the nematodes. A total of 200 cod livers were examined, and 194 were infected with third-stage nematode larvae (overall prevalence of infection 97%) with a mean intensity of 10.3 (range between 1 and 44 parasites per fish). Prevalences recorded were 96% for Anisakis simplex (s.l.), 55% for Pseudoterranova decipiens (s.l.) and 8% for Contracaecum osculatum (s.l.). Sequencing the mtDNA cox2 from 8 out of 23 these latter larvae conferred these to C. osculatum sp. B. A clear seasonal variation was observed, with a rise in A. simplex (s.l.) and P. decipiens (s.l.) occurrence in June and August and a decline in September. The study may serve as a baseline for future investigations using the three anisakids as biological indicators in Greenland waters.
Collapse
|
16
|
Abstract
We suggest helminthological investigations of cod as a supplement to traditional biological and hydrographical methods for elucidation of ecological changes in the Baltic Sea. It is under discussion if oxygen deficit or seal abundance should explain the present critical situation of Baltic cod. A comparative investigation of endoparasitic helminths in Baltic cod (Gadus morhua), captured in the same marine habitat with an interval of 35 years (1983/2018) recorded 11 species of helminths comprising trematodes (Hemiurus luehei, Podocotyle atomon, Lepidapedon elongatum), nematodes (Contracaecum osculatum, Hysterothylacium aduncum, Capillaria gracilis, Cucullanus cirratus), cestodes (Bothriocephalus sp.) and acanthocephalans (Echinorhynchus gadi, Pomphorhynchus laevis, Corynosoma semerme). Significant prevalence and intensity increases were recorded for third-stage larvae of the nematode C. osculatum (liver location) and larvae of C. semerme (encapsulated in viscera). Both parasite species use grey seal as their final host, indicating the recent expansion of the Baltic seal population. A lower E. gadi intensity and an increased prevalence of L. elongatum of small cod (31-40 cm body length) suggest a lowered intake of amphipods (intermediate host) and elevated ingestion of polychaetes, respectively, but no significant changes were seen for other helminths.
Collapse
|
17
|
Local immune depression in Baltic cod ( Gadus morhua) liver infected with Contracaecum osculatum. J Helminthol 2020; 94:e112. [PMID: 31907099 DOI: 10.1017/s0022149x19001111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Third-stage larvae of the anisakid nematode Contracaecum osculatum infecting cod (Gadus morhua) liver elicit a host immune response involving both innate and adaptive factors, but the reactions differ between liver and spleen. Inflammatory reactions occur in both liver and spleen, but a series of immune effector genes are downregulated in liver infected with nematodes whereas these genes in spleen from the same fish are upregulated. A series of novel primer and probe sets targeting cod immune responses were developed and applied in a real-time quantitative polymerase chain reaction set-up to measure the expression of immune-relevant genes in liver and spleen of infected and uninfected cod. In infected liver, 12 of 23 genes were regulated. Genes encoding cytokines associated with inflammatory reactions (IL-1β, IL-6, IL-8) were significantly upregulated, whereas genes encoding effector molecules, assisting the elimination of pathogens, C-reactive protein (CRP)-PII, hepcidin, lysozyme G1, lysozyme G2, C3 and IgDm, were significantly downregulated. The number of downregulated genes increased with the parasite burden. In spleen, 14 of 23 immune genes showed significant regulation and nine of these were upregulated, including genes encoding CRPI, CRPII, C3, hepcidin and transferrin. The general gene expression level was higher in spleen compared to liver, and although inflammation was induced in nematode-infected liver, the effector molecule genes were depressed, which suggests a worm-induced immune suppression locally in the liver.
Collapse
|
18
|
Engelhardt J, Frisell O, Gustavsson H, Hansson T, Sjöberg R, Collier TK, Balk L. Severe thiamine deficiency in eastern Baltic cod (Gadus morhua). PLoS One 2020; 15:e0227201. [PMID: 31895939 PMCID: PMC6939936 DOI: 10.1371/journal.pone.0227201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/14/2019] [Indexed: 11/23/2022] Open
Abstract
The eastern Baltic cod (Gadus morhua) population has been decreasing in the Baltic Sea for at least 30 years. Condition indices of the Baltic cod have decreased, and previous studies have suggested that this might be due to overfishing, predation, lower dissolved oxygen or changes in salinity. However, numerous studies from the Baltic Sea have demonstrated an ongoing thiamine deficiency in several animal classes, both invertebrates and vertebrates. The thiamine status of the eastern Baltic cod was investigated to determine if thiamine deficiency might be a factor in ongoing population declines. Thiamine concentrations were determined by chemical analyses of thiamine, thiamine monophosphate and thiamine diphosphate (combined SumT) in the liver using high performance liquid chromatography. Biochemical analyses measured the activity of the thiamine diphosphate-dependent enzyme transketolase to determine the proportion of apoenzymes in both liver and brain tissue. These biochemical analyses showed that 77% of the cod were thiamine deficient in the liver, of which 13% had a severe thiamine deficiency (i.e. 25% transketolase enzymes lacked thiamine diphosphate). The brain tissue of 77% of the cod showed thiamine deficiency, of which 64% showed severe thiamine deficiency. The thiamine deficiency biomarkers were investigated to find correlations to different biological parameters, such as length, weight, otolith weight, age (annuli counting) and different organ weights. The results suggested that thiamine deficiency increased with age. The SumT concentration ranged between 2.4–24 nmol/g in the liver, where the specimens with heavier otoliths had lower values of SumT (P = 0.0031). Of the cod sampled, only 2% of the specimens had a Fulton’s condition factor indicating a healthy specimen, and 49% had a condition factor below 0.8, indicating poor health status. These results, showing a severe thiamine deficiency in eastern Baltic cod from the only known area where spawning presently occurs for this species, are of grave concern.
Collapse
Affiliation(s)
- Josefin Engelhardt
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- * E-mail: (JE); (LB)
| | - Oscar Frisell
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Hanna Gustavsson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Tomas Hansson
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Rajlie Sjöberg
- Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | - Tracy K. Collier
- Huxley College of the Environment, Western Washington University, Bellingham, Washington, United States of America
| | - Lennart Balk
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
- * E-mail: (JE); (LB)
| |
Collapse
|
19
|
Marnis H, Kania PW, Syahputra K, Zuo S, Dirks RP, Buchmann K. Transcriptomic analysis of Baltic cod (Gadus morhua) liver infected with Contracaecum osculatum third stage larvae indicates parasitic effects on growth and immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 93:965-976. [PMID: 31419536 DOI: 10.1016/j.fsi.2019.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
High infection levels due to third-stage larvae of the anisakid nematode Contracaecum osculatum have been documented in cod from the eastern part of the Baltic sea during the latest decades. The nematode larvae mainly infect the liver of Baltic cod and prevalence of infection has reached 100% with a mean intensity up to 80 parasites per host in certain areas and size classes. Low condition factors of the cod have been observed concomitant with the rise in parasite abundance suggesting a parasitic effect on growth parameters. To investigate any association between parasite infection and physiological status of the host we performed a comparative transcriptomic analysis of liver obtained from C. osculatum infected and non-infected cod. A total of 47,025 predicted gene models showed expression in cod liver and sequences corresponding to 2084 (4.43%) unigenes were differentially expressed in infected liver when compared to non-infected liver. Of the differentially expressed unigenes (DEGs) 1240 unigenes were up-regulated while 844 unigenes were down-regulated. The Gene Ontology (GO) enrichment analysis showed that 1304 DEGs were represented in cellular process and single-organism process, cell and cell part, binding and catalytic activity. As determined by the Kyoto Encyclopedia of Gene and Genomes (KEGG) Pathways analysis, 454 DEGs were involved in 138 pathways. Ninety-seven genes were related to metabolic pathways including carbohydrate, lipid, and amino acid metabolism. Thirteen regulated genes were playing a role in immune response such as Toll-like receptor signaling, NOD-like receptor signaling, RIG-I-like receptor signalling and thirty-six genes were associated with growth processes. This indicates that the nematode infection in Baltic cod may affect on molecular mechanisms involving metabolism, immune function and growth.
Collapse
Affiliation(s)
- Huria Marnis
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Per W Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Khairul Syahputra
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Shaozhi Zuo
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ron P Dirks
- Future Genomics Technologies B.V, Leiden, the Netherlands
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
20
|
First evidence of the presence of Anisakis simplex in Crangon crangon and Contracaecum osculatum in Gammarus sp. by in situ examination of the stomach contents of cod (Gadus morhua) from the southern Baltic Sea. Parasitology 2019; 146:1699-1706. [DOI: 10.1017/s0031182019001124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractCod (Gadus morhua), an important fish species in the Baltic Sea, is the paratenic host for many parasite species, including the zoonotic nematodes, Anisakis sp. and Contracaecum osculatum. We aimed to identify which invertebrate species (found in situ in the fish stomach) are responsible for infection of cod with zoonotic nematodes. We found that Crangon crangon and Gammarus sp., both invertebrate prey species of cod, were infected with Anisakis simplex and C. osculatum, respectively. These host–parasite systems are reported here for the first time, implicating C. crangon and Gammarus sp. as sources of infection of Baltic cod with zoonotic nematodes.
Collapse
|
21
|
Klapper R, Carballeda-Sangiao N, Kuhn T, Jensen HM, Buchmann K, Gonzalez-Muñoz M, Karl H. Anisakid infection levels in fresh and canned cod liver: Significant reduction through liver surface layer removal. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Borucinska JD, Morka D, Grabowski Z, Smith H. A follow-up study of selected biomarkers of health in cod Gadus morhua L. collected from the southern Baltic off the Polish coast. JOURNAL OF FISH DISEASES 2017; 40:1883-1894. [PMID: 28661024 DOI: 10.1111/jfd.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Selected biomarkers of health were examined in 50 post-spawning cod Gadus morhua collected in November 2015 from the southern Baltic. The biomarkers included condition factor (CF), macroscopic lesions, histopathology of spleen, liver and gonads, and morphometry of follicular atresia and hepatic and splenic melanomacrophage cells (MMC). All fish appeared in good body condition. One fish had a dermal ulcer, and in seven, macroscopic nematodes were noted within body cavity. Microscopic lesions in the liver included biliary myxozoanosis, microsporidial and necrocentric granulomas, parasitic hepatitis, multifocal necrosis, foci of cellular alterations, spongiosis, peliosis and cytoplasmic fibrillar inclusions. The spleen and gonads had microsporidial and/or necrocentric granulomas. Some of the biomarkers showed differences as compared to spawning cod collected in May from the same location in 2012, most importantly values an order of magnitude lower for splenic MMC in post-spawning fish. In post-spawning fish, there were statistically significant correlations between MMC, CF, follicular atresia, parasitic hepatitis and microsporidiosis. This is the first comparison of biomarkers of health in post-spawning and spawning Baltic cod. Future studies need to examine the relationships of biomarkers to levels of pollutants in the environment and in tissues of cod.
Collapse
Affiliation(s)
- J D Borucinska
- Department of Biology, University of Hartford, West Hartford, CT, USA
| | - D Morka
- Department of Mathematics and Natural Sciences, Pomeranian University, Slupsk, Poland
| | - Z Grabowski
- School of the Environment, Portland State University, Portland, OR, USA
| | - H Smith
- Department of Biology, University of Hartford, West Hartford, CT, USA
| |
Collapse
|
23
|
Saduria entomon infected with Hysterothylacium aduncum found in situ in the stomach of cod (Gadus morhua) from the Baltic Sea. J Helminthol 2017; 92:645-648. [DOI: 10.1017/s0022149x1700092x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe parasite fauna of cod (Gadus morhus) is well described, but the life cycles of Baltic cod parasites are known only in general terms. Invertebrates commonly found in the stomach of cod are recognized as intermediate hosts in the life cycles of nematodes or acanthocephalans. The aim of this study was to determine the source of infection of Baltic cod with parasites found in situ in invertebrates present in the cod stomach. Our results indicate that Saduria entomon is both a source of infection of Baltic cod with parasites and an intermediate host in the life cycle of Hysterothylacium aduncum in the Baltic Sea.
Collapse
|
24
|
|
25
|
Zuo S, Barlaup L, Mohammadkarami A, Al-Jubury A, Chen D, Kania PW, Buchmann K. Extrusion of Contracaecum osculatum nematode larvae from the liver of cod (Gadus morhua). Parasitol Res 2017; 116:2721-2726. [PMID: 28795224 DOI: 10.1007/s00436-017-5580-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/28/2022]
Abstract
Baltic cod livers have during recent years been found increasingly and heavily infected with third-stage larvae of Contracaecum osculatum. The infections are associated with an increasing population of grey seals which are final hosts for the parasite. Heavy worm burdens challenge utilization and safety of the fish liver products, and technological solutions for removal of worms are highly needed. We investigated the attachment of the worm larvae in liver tissue by use of histochemical techniques and found that the cod host encapsulates the worm larvae in layers of host cells (macrophages, fibroblasts) supported by enclosures of collagen and calcium. A series of incubation techniques, applying compounds targeting molecules in the capsule, were then tested for their effect to induce worm escape/release reactions. Full digestion solutions comprising pepsin, NaCl, HCl and water induced a fast escape of more than 60% of the worm larvae within 20 min and gave full release within 65 min but the liver tissue became highly dispersed. HCl alone, in concentrations of 48 and 72 mM, triggered a corresponding release of worm larvae with minor effect on liver integrity. A lower HCl concentration of 24 mM resulted in 80% release within 35 min. Water and physiological saline had no effect on worm release, and 1% pepsin in water elicited merely a weak escape reaction. In addition to the direct effect of acid on worm behaviour it is hypothesised that the acid effect on calcium carbonate in the encapsulation, with subsequent release of reaction products, may contribute to activation of C. osculatum larvae and induce escape reactions. Short-term pretreatment of infected cod liver and possibly other infected fish products, using low acid concentrations is suggested as part of a technological solution for worm clearance as low acid concentrations had limited macroscopic effect on liver integrity within 35 min.
Collapse
Affiliation(s)
- S Zuo
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - L Barlaup
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - A Mohammadkarami
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - A Al-Jubury
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - D Chen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - P W Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - K Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
26
|
Mehrdana F, Buchmann K. Excretory/secretory products of anisakid nematodes: biological and pathological roles. Acta Vet Scand 2017. [PMID: 28645306 PMCID: PMC5482935 DOI: 10.1186/s13028-017-0310-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Parasites from the family Anisakidae are widely distributed in marine fish populations worldwide and mainly nematodes of the three genera Anisakis, Pseudoterranova and Contracaecum have attracted attention due to their pathogenicity in humans. Their life cycles include invertebrates and fish as intermediate or transport hosts and mammals or birds as final hosts. Human consumption of raw or underprocessed seafood containing third stage larvae of anisakid parasites may elicit a gastrointestinal disease (anisakidosis) and allergic responses. Excretory and secretory (ES) compounds produced by the parasites are assumed to be key players in clinical manifestation of the disease in humans, but the molecules are likely to play a general biological role in invertebrates and lower vertebrates as well. ES products have several functions during infection, e.g. penetration of host tissues and evasion of host immune responses, but are at the same time known to elicit immune responses (including antibody production) both in fish and mammals. ES proteins from anisakid nematodes, in particular Anisakis simplex, are currently applied for diagnostic purposes but recent evidence suggests that they also may have a therapeutic potential in immune-related diseases.
Collapse
|
27
|
Nadolna-Ałtyn K, Podolska M, Szostakowska B. Great sandeel (Hyperoplus lanceolatus) as a putative transmitter of parasite Contracaecum osculatum (Nematoda: Anisakidae). Parasitol Res 2017; 116:1931-1936. [DOI: 10.1007/s00436-017-5471-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022]
|
28
|
Contracaecum osculatumand other anisakid nematodes in grey seals and cod in the Baltic Sea: molecular and ecological links. J Helminthol 2017; 92:81-89. [DOI: 10.1017/s0022149x17000025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractPopulations of grey seals (Halichoerus grypus), sprats (Sprattus sprattus) and cod (Gadus morhua) in the Baltic Sea are relatively stationary. The present work, applying classical and molecular helminthological techniques, documents that seals and cod also share a common parasite, the anisakid nematodeContracaecum osculatum, which uses seals as the final host and fish as transport hosts. Sequencing mitochondrial genes (COX1andCOX2) in adult worms from seals and third-stage larvae from livers of Baltic fish (sprats and cod), showed that all gene variants occur in both seals and fish. Other anisakid nematodesPseudoterranova decipiensandAnisakis simplexare also found in both seals and cod in the Baltic Sea, but at much lower rates. The Baltic grey seal population was left at a critically low level (comprising a few hundred individuals) during the latter part of the 20th century, but since the year 2000 a marked increase in the population has been observed, reaching more than 40,000 individuals at present. Ecological consequences of the increased seal abundance may result from increased predation on fish stocks, but recent evidence also points to the influence of elevated parasitism on fish performance.Contracaecum osculatumlarvae preferentially infect the liver of Baltic cod, considered a vital organ of the host. Whereas low prevalences and intensities in cod were reported during the 1980s and 1990s, the present study documents 100% prevalence and a mean intensity of above 80 worms per fish. Recent studies have also indicated the zoonotic potential ofC. osculatumlarvae in fish, following the consumption of raw or under-cooked fish. Therefore the present work discusses the impact of parasitism on the cod stock and the increasing risk for consumer health, and lists possible solutions for control.
Collapse
|
29
|
Effects of anisakid nematodes Anisakis simplex (s.l.), Pseudoterranova decipiens (s.l.) and Contracaecum osculatum (s.l.) on fish and consumer health. Food Waterborne Parasitol 2016. [DOI: 10.1016/j.fawpar.2016.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
30
|
Zuo S, Huwer B, Bahlool Q, Al-Jubury A, Daugbjerg Christensen N, Korbut R, Kania P, Buchmann K. Host size-dependent anisakid infection in Baltic cod Gadus morhua associated with differential food preferences. DISEASES OF AQUATIC ORGANISMS 2016; 120:69-75. [PMID: 27304871 DOI: 10.3354/dao03002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A significant increase in the infection level of Baltic cod Gadus morhua with the anisakid nematode larvae Contracaecum osculatum and Pseudoterranova decipiens has been recorded during recent years due to the expanding local population of grey seals Halichoerus grypus, which act as final hosts for these parasites. Here, we report from an investigation of 368 cod (total length [TL] 6-49 cm; caught in ICES Subdivision 25) that the infection level of juvenile cod (TL 6-30 cm) with larvae of C. osculatum and P. decipiens is absent or very low, whereas it increases drastically in larger cod (TL 31-48 cm). A third nematode Hysterothylacium aduncum was rarely found. The study indicates that the prey animals for large cod act as transport hosts for the parasite larvae. Analyses of stomach contents of cod caught in the same area (2007-2014) showed that small benthic organisms (including polychaetes Harmothoë sarsi) are preferred food items by small cod, the isopod Saduria entomon is taken by all size classes, and sprat Sprattus sprattus are common prey items for cod larger than 30 cm. Parasitological investigations (microscopic and molecular analyses) of H. sarsi (100 specimens) and S. entomon (40 specimens) did not reveal infection in these invertebrates, but 11.6% of sprat (265 specimens examined) was shown to be infected with 1-8 C. osculatum third stage larvae per fish. Analyses of sprat stomach contents confirmed that copepods and cladocerans are the main food items of sprat. These observations suggest that the C. osculatum life cycle in the Baltic Sea includes grey seals as final hosts, sprat as the first transport host and cod as second transport host. It may be speculated that sprat obtain infection by feeding on copepods and/or cladocerans, which could serve as the first intermediate hosts. One cannot exclude the possibility that the size-dependent C. osculatum infection of cod may contribute (indirectly or directly) to the differential mortality of larger cod (>38 cm) compared to smaller cod (<30 cm) recently recorded in the Baltic cod population.
Collapse
Affiliation(s)
- Shaozhi Zuo
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Third-stage nematode larvae of Contracaecum osculatum from Baltic cod (Gadus morhua) elicit eosinophilic granulomatous reactions when penetrating the stomach mucosa of pigs. Parasitol Res 2015; 114:1217-20. [DOI: 10.1007/s00436-014-4306-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/23/2014] [Indexed: 11/26/2022]
|
32
|
Lunneryd SG, Boström MK, Aspholm PE. Sealworm (Pseudoterranova decipiens) infection in grey seals (Halichoerus grypus), cod (Gadus morhua) and shorthorn sculpin (Myoxocephalus scorpius) in the Baltic Sea. Parasitol Res 2014; 114:257-64. [DOI: 10.1007/s00436-014-4187-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
33
|
Mehrdana F, Bahlool QZM, Skov J, Marana MH, Sindberg D, Mundeling M, Overgaard BC, Korbut R, Strøm SB, Kania PW, Buchmann K. Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Vet Parasitol 2014; 205:581-7. [PMID: 25224792 DOI: 10.1016/j.vetpar.2014.08.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/20/2014] [Accepted: 08/23/2014] [Indexed: 11/30/2022]
Abstract
Baltic cod Gadus morhua (a total of total 224 specimens) captured east of the island of Bornholm in the southern Baltic Sea were subjected to a parasitological investigation between March 2013 and April 2014. Full artificial digestion of fillets from 188 cod and additional investigation of livers from 36 cod were performed. Cod or seal worm Pseudoterranova decipiens was recorded in musculature (prevalences up to 55% and intensities up to 56 worms per fish) associated with a negative correlation between worm intensity and condition factor. Liver worm Contracaecum osculatum (100% prevalence with intensities up to 320 worms per fish) in liver tissue were recorded but only a slight negative correlation between intensity and condition factor was noted. Seals act as final host for both worm species and the increased occurrence during recent years is associated with the increasing grey seal population in the area. Infection with Anisakis simplex (the herring or whale worm) in Baltic cod was found at a low level corresponding to previous studies.
Collapse
Affiliation(s)
- Foojan Mehrdana
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Qusay Z M Bahlool
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Jakob Skov
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Moonika H Marana
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Diana Sindberg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Mai Mundeling
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Bettina C Overgaard
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rozalia Korbut
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sverri B Strøm
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Per W Kania
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
34
|
Ferrantelli V, Cicero A, Costa A, Alongi A, Palumbo P, Graci S, Giangrosso G. Anisakidae in Fishing Products Sold in Sicily. Ital J Food Saf 2014; 3:1719. [PMID: 27800344 PMCID: PMC5083874 DOI: 10.4081/ijfs.2014.1719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/13/2022] Open
Abstract
One of the parasite diseases associated with the consumption of raw fish that occurs with some frequency is the anisakiasis, a human disease caused by the accidental ingestion of larval nematodes of the genus Anisakis, family Anisakidae. At the National Reference Centre for Anisakiasis (C.Re.N.A.) from October 2012 to February 2013, a number of 231 bony fish (Trichiuridae, Engraulidae, Scombridae and Clupeidae) were received from different fishing sites in Sicily. Anisakis pegreffii is the main species detected in fish, as identified by molecular analysis based on polymerase chain reaction-restriction fragment length polymorphism, while Anisakis simplex sensu stricto was found only in Scomber scombrus caught in the Mediterranean Sea (Fishing Areas 37), in the Spanish coast (Fishing Areas 37) and in the Atlantic Ocean (Fishing Areas 34). Larvae of the genus Pseudoterranova were found only in fish caught in the Norwegian Sea.
Collapse
Affiliation(s)
- Vincenzo Ferrantelli
- Centro di Referenza Nazionale per le Anisakiasi (C.Re.N.A.), Istituto Zooprofilattico Sperimentale della Sicilia , Palermo, Italy
| | - Antonello Cicero
- Centro di Referenza Nazionale per le Anisakiasi (C.Re.N.A.), Istituto Zooprofilattico Sperimentale della Sicilia , Palermo, Italy
| | - Antonella Costa
- Centro di Referenza Nazionale per le Anisakiasi (C.Re.N.A.), Istituto Zooprofilattico Sperimentale della Sicilia , Palermo, Italy
| | - Angelina Alongi
- Centro di Referenza Nazionale per le Anisakiasi (C.Re.N.A.), Istituto Zooprofilattico Sperimentale della Sicilia , Palermo, Italy
| | - Paola Palumbo
- Centro di Referenza Nazionale per le Anisakiasi (C.Re.N.A.), Istituto Zooprofilattico Sperimentale della Sicilia , Palermo, Italy
| | - Stefania Graci
- Centro di Referenza Nazionale per le Anisakiasi (C.Re.N.A.), Istituto Zooprofilattico Sperimentale della Sicilia , Palermo, Italy
| | - Giuseppe Giangrosso
- Centro di Referenza Nazionale per le Anisakiasi (C.Re.N.A.), Istituto Zooprofilattico Sperimentale della Sicilia , Palermo, Italy
| |
Collapse
|