1
|
Nakamura A, Kurihara S, Takahashi D, Ohashi W, Nakamura Y, Kimura S, Onuki M, Kume A, Sasazawa Y, Furusawa Y, Obata Y, Fukuda S, Saiki S, Matsumoto M, Hase K. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation in the colon. Nat Commun 2021; 12:2105. [PMID: 33833232 PMCID: PMC8032791 DOI: 10.1038/s41467-021-22212-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal microbiota-derived metabolites have biological importance for the host. Polyamines, such as putrescine and spermidine, are produced by the intestinal microbiota and regulate multiple biological processes. Increased colonic luminal polyamines promote longevity in mice. However, no direct evidence has shown that microbial polyamines are incorporated into host cells to regulate cellular responses. Here, we show that microbial polyamines reinforce colonic epithelial proliferation and regulate macrophage differentiation. Colonisation by wild-type, but not polyamine biosynthesis-deficient, Escherichia coli in germ-free mice raises intracellular polyamine levels in colonocytes, accelerating epithelial renewal. Commensal bacterium-derived putrescine increases the abundance of anti-inflammatory macrophages in the colon. The bacterial polyamines ameliorate symptoms of dextran sulfate sodium-induced colitis in mice. These effects mainly result from enhanced hypusination of eukaryotic initiation translation factor. We conclude that bacterial putrescine functions as a substrate for symbiotic metabolism and is further absorbed and metabolised by the host, thus helping maintain mucosal homoeostasis in the intestine.
Collapse
Affiliation(s)
- Atsuo Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Shin Kurihara
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Wakana Ohashi
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Yutaka Nakamura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masayoshi Onuki
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
| | - Aiko Kume
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan
| | - Yukiko Sasazawa
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yukihiro Furusawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Kurokawa, Toyama, Japan
| | - Yuuki Obata
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan
- The Francis Crick Institute, London, UK
| | - Shinji Fukuda
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
| | - Shinji Saiki
- Department of Neurology, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Mitsuharu Matsumoto
- Dairy Science and Technology Institute, Kyodo Milk Industry Co., Ltd., Hinode-machi, Nishitama-gun, Tokyo, Japan.
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Minato-ku, Tokyo, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Guard BC, Mila H, Steiner JM, Mariani C, Suchodolski JS, Chastant-Maillard S. Characterization of the fecal microbiome during neonatal and early pediatric development in puppies. PLoS One 2017; 12:e0175718. [PMID: 28448583 PMCID: PMC5407640 DOI: 10.1371/journal.pone.0175718] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/30/2017] [Indexed: 01/24/2023] Open
Abstract
Limited information is available describing the development of the neonatal fecal microbiome in dogs. Feces from puppies were collected at 2, 21, 42, and 56 days after birth. Feces were also collected from the puppies’ mothers at a single time point within 24 hours after parturition. DNA was extracted from fecal samples and 454-pyrosequencing was used to profile 16S rRNA genes. Species richness continued to increase significantly from 2 days of age until 42 days of age in puppies. Furthermore, microbial communities clustered separately from each other at 2, 21, and 42 days of age. The microbial communities belonging to dams clustered separately from that of puppies at any given time point. Major phylogenetic changes were noted at all taxonomic levels with the most profound changes being a shift from primarily Firmicutes in puppies at 2 days of age to a co-dominance of Bacteroidetes, Fusobacteria, and Firmicutes by 21 days of age. Further studies are needed to elucidate the relationship between puppy microbiota development, physiological growth, neonatal survival, and morbidity.
Collapse
Affiliation(s)
- Blake C. Guard
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Hanna Mila
- NeoCare, IHAP, Reproduction, Université de Toulouse, Toulouse, France
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | | | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | | |
Collapse
|
3
|
Bryce A, Costelloe C, Hawcroft C, Wootton M, Hay AD. Faecal carriage of antibiotic resistant Escherichia coli in asymptomatic children and associations with primary care antibiotic prescribing: a systematic review and meta-analysis. BMC Infect Dis 2016; 16:359. [PMID: 27456093 PMCID: PMC4960702 DOI: 10.1186/s12879-016-1697-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/08/2016] [Indexed: 01/21/2023] Open
Abstract
Background The faecal reservoir provides optimal conditions for the transmission of resistance genes within and between bacterial species. As key transmitters of infection within communities, children are likely important contributors to endemic community resistance. We sought to determine the prevalence of antibiotic-resistant faecal Escherichia coli from asymptomatic children aged between 0 and 17 years worldwide, and investigate the impact of routinely prescribed primary care antibiotics to that resistance. Methods A systematic search of Medline, Embase, Cochrane and Web of Knowledge databases from 1940 to 2015. Pooled resistance prevalence for common primary care antibiotics, stratified by study country OECD status. Random-effects meta-analysis to explore the association between antibiotic exposure and resistance. Results Thirty-four studies were included. In OECD countries, the pooled resistance prevalence to tetracycline was 37.7 % (95 % CI: 25.9–49.7 %); ampicillin 37.6 % (24.9–54.3 %); and trimethoprim 28.6 % (2.2–71.0 %). Resistance in non-OECD countries was uniformly higher: tetracycline 80.0 % (59.7–95.3 %); ampicillin 67.2 % (45.8–84.9 %); and trimethoprim 81.3 % (40.4–100 %). We found evidence of an association between primary care prescribed antibiotics and resistance lasting for up to 3 months post-prescribing (pooled OR: 1.65, 1.36–2.0). Conclusions Resistance to many primary care prescribed antibiotics is common among faecal E. coli carried by asymptomatic children, with higher resistance rates in non-OECD countries. Despite tetracycline being contra-indicated in children, tetracycline resistance rates were high suggesting children could be important recipients and transmitters of resistant bacteria, or that use of other antibiotics is leading to tetracycline resistance via inter-bacteria resistance transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1697-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashley Bryce
- Centre for Academic Primary Care, NIHR School for Primary Care Research, School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK.
| | - Céire Costelloe
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, W12 0NN, London, UK
| | - Claire Hawcroft
- Centre for Academic Primary Care, NIHR School for Primary Care Research, School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology Cardiff, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
| | - Alastair D Hay
- Centre for Academic Primary Care, NIHR School for Primary Care Research, School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol, BS8 2PS, UK
| |
Collapse
|
4
|
Abstract
E. coli's hardiness, versatility, broad palate and ease of handling have made it the most intensively studied and best understood organism on the planet. However, research on E.coli has primarily examined it as a model organism, one that is abstracted from any natural history. But E. coli is far more than just a microbial lab rat. Rather, it is a highly diverse organism with a complex, multi-faceted niche in the wild. Recent studies of 'wild' E. coli have, for example, revealed a great deal about its presence in the environment, its diversity and genomic evolution, as well as its role in the human microbiome and disease. These findings have shed light on aspects of its biology and ecology that pose far-reaching questions and illustrate how an appreciation of E. coli's natural history can expand its value as a model organism.
Collapse
Affiliation(s)
- Zachary D Blount
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States; BEACON Center for the Study of Evolution in Action, East Lansing, United States
| |
Collapse
|
5
|
De Biase D, Lund PA. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:49-88. [PMID: 26003933 DOI: 10.1016/bs.aambs.2015.03.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has a remarkable ability to survive low pH and possesses a number of different genetic systems that enable it to do this. These may be expressed constitutively, typically in stationary phase, or induced by growth under a variety of conditions. The activities of these systems have been implicated in the ability of E. coli to pass the acidic barrier of the stomach and to become established in the gastrointestinal tract, something causing serious infections. However, much of the work characterizing these systems has been done on standard laboratory strains of E. coli and under conditions which do not closely resemble those found in the human gut. Here we review what is known about acid resistance in E. coli as a model laboratory organism and in the context of its lifestyle as an inhabitant-sometimes an unwelcome one-of the human gut.
Collapse
|
6
|
Prelog M, Grif K, Decristoforo C, Würzner R, Kiechl-Kohlendorfer U, Brunner A, Zimmerhackl LB, Orth D. Tetracycline-resistant Escherichia coli strains are inherited from parents and persist in the infant's intestines in the absence of selective pressure. Eur J Pediatr 2009; 168:1181-7. [PMID: 19096873 DOI: 10.1007/s00431-008-0901-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/03/2008] [Indexed: 01/15/2023]
Abstract
The study investigated tetracycline (TC), ampicillin (AMP), cefazolin (CEF), and trimethoprim (TMP) resistance in Escherichia coli (E. coli) in the feces of 21 infants up to 6 months of age and in their parents in the absence of selective antimicrobial pressure. Clonality of strains was assessed by pulsed-field gel electrophoresis. Three infants had resistant E. coli strains in their feces identical to the mothers' from week 1 on, which persisted over weeks. From week 2 on, in another four infants, persisting resistant E. coli were found, two of them identical to the mothers'. All of these persisting E. coli strains (except one family) showed at least resistance to TC. In infants, resistant E. coli strains inherited from their mothers tended to persist over months. Therefore, the persistence of resistant E. coli and their possible capacity to cause symptomatic infection or transfer its resistance genes to other bacteria deserves more attention.
Collapse
Affiliation(s)
- Martina Prelog
- Department of Pediatrics, Medical University Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Nowrouzian F, Hesselmar B, Saalman R, Strannegard IL, Aberg N, Wold AE, Adlerberth I. Escherichia coli in infants' intestinal microflora: colonization rate, strain turnover, and virulence gene carriage. Pediatr Res 2003; 54:8-14. [PMID: 12700366 DOI: 10.1203/01.pdr.0000069843.20655.ee] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Colonization by Escherichia. coli in infants might have decreased in the last decades, owing to changes in hospital routines and family lifestyle. In this study, the E. coli flora was characterized in 70 healthy Swedish infants followed for the first year of life. E. coli was isolated from rectal swabs obtained at 3 d of age and quantified in fecal samples collected at 1, 2, 4, and 8 wk of age and at 6 and 12 mo of age. Strains were typed using random amplified polymorphic DNA, and their virulence factor genes were identified by multiplex PCR. Colonization by E. coli occurred late; only 61% of the infants were positive by 2 mo of age. The turnover of individual strains in the microflora was slow (1.5 strains per infant during 6 mo, 2.1 during 1 y). Environmental factors, such as siblings, pets, or feeding mode, did not influence colonization kinetics or strain turnover rate. Genes encoding type 1 fimbriae, P fimbriae, and hemolysin were significantly more common in E. coli strains persisting for at least 3 wk in the microflora than in transient strains. The P-fimbrial class III adhesin gene was more common in E. coli from children who had a cat in their homes than in E. coli from children without pets (p = 0.01); this adhesin type is common in E. coli from cats. The late colonization and low E. coli strain turnover rate suggest limited exposure of Swedish infants to E. coli. Our results confirm that P fimbriae and other virulence factors facilitate persistence of E. coli in the human colonic microflora.
Collapse
Affiliation(s)
- Forough Nowrouzian
- Department of Clinical Bacteriology, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
8
|
Hambraeus A, Lagerqvist-Widh A, Zettersten U, Engberg S, Sedin G, Sjöberg L. Spread of Klebsiella in a neonatal ward. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 1991; 23:189-94. [PMID: 1853167 DOI: 10.3109/00365549109023399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The colonization of infants with Klebsiella pneumoniae was prospectively studied. Samples were taken from nose, throat, umbilicus and rectum on the day of arrival and thereafter once a week. Phage typing was performed the first time K. pneumoniae was found at any of these sites. Settle plates were exposed in the incubators and in the patient rooms 5 h/day. The study lasted for 32 weeks. The first 15 weeks was a control period with no information to the staff, the following 4 weeks was a period of intervention and education and the last 13 weeks was a second control period. In all, 603 infants were investigated. The number of infants nursed per week and severity of their disease was comparable in the 3 periods. The colonization rates were 65, 34 and 58%, respectively. The acquisition of new strains was 1.4 per infant in the first and last periods, but only 0.4 in the period of intervention. Thus, colonization rates decreased only during the period of continuous education in hygiene.
Collapse
Affiliation(s)
- A Hambraeus
- Department of Clinical Bacteriology, University Hospital, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
Figueroa G, Troncoso M, Araya M, Espinoza J, Brunser O. Enteropathogen carriage by healthy individuals living in an area with poor sanitation. J Hyg (Lond) 1983; 91:499-507. [PMID: 6363528 PMCID: PMC2129327 DOI: 10.1017/s002217240006054x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Faecal carriage of bacterial enteropathogens (enteropathogenic Escherichia coli (EPEC), shigellae and salmonellae) was studied in 265 individuals: 65 infants 3-6 months of age (50 bottle-fed and 15 breast-fed), 100 school-age children 8-10 years of age and 100 adults 21-50 years of age. All were apparently healthy, did not have gastrointestinal symptoms, had not received antibiotics in the preceding fortnight and were not malnourished. Enteropathogens were isolated from the faeces of 24 individuals (9.1%). Cultures were positive for enteropathogens in 20% of the infants (both breast- and bottle-fed), 8% of school-age children and 3% of the adults. EPEC was the most frequent isolate. Twelve different serotypes were detected. The highest recoveries were E. coli 026:K60 and 044 . K74. Shigella was detected only in school-age children (2%) and salmonella only in adults (1%). Campylobacter jejuni and Yersinia enterocolitica were studied only in the school-age children: there was one isolate of each of them. Most enteropathogens isolated were susceptible to the majority of the antibiotics tested. Only four E. coli strains, isolated from bottle-fed infants, could be considered multi-resistant. Two of the strains wer E. coli 044:K74 and 020a020c:K61. The remainder were E. coli 0111:K58 and wee capable of transferring some of their antibiotic resistance traits to a recipient strain.
Collapse
|