1
|
Myers BM, Stokes DC, Preston KL, Fisher RN, Vandergast AG. Quantification of threats to bats at localized spatial scales for conservation and management. PLoS One 2024; 19:e0310812. [PMID: 39383128 PMCID: PMC11463755 DOI: 10.1371/journal.pone.0310812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024] Open
Abstract
In a rapidly changing world, where species conservation needs vary by local habitat, concentrated conservation efforts at small spatial scales can be critical. Bats provide an array of value to the ecosystems they inhabit; many bat species are also of conservation concern. San Diego County, California, contains 22 of the 41 bat species that occur in the United States, 16 of which are on conservation watchlists. Thus, management of bat communities in San Diego County is a pressing need. Because bats exploit vast areas of the landscape and historical sampling strategies have shifted over time, a standardized way of prioritizing areas of the landscape for management would provide an integral asset to bat conservation. We leveraged long-term bat community survey data from sampling areas across San Diego County to prioritize areas with the most management need. We calculated two types of scores: species scores and threat scores. Species scores incorporated richness and conservation status, and threat scores included landscape level threats that bats could encounter. We found that urbanization, the presence of artificial lights, and areas sampled on unconserved land were all significantly associated with decreases in species richness. Further, using species and threat scores, each sampling area was placed into one of four conservation categories, in order from greatest to least conservation need, ranging from highest priority (high species score, high threat score) to lowest (low species score, low threat score). Additionally, we focused on sampling areas in which Townsend's big-eared bat (Corynorhinus townsendii) and/or pallid bat (Antrozous pallidus) occurred. These two species are of exceptional conservation concern in San Diego County and across the western United States. We identified urbanization, the presence of artificial lights, and areas sampled on unconserved land as threats that were all significantly associated with the absence of Townsend's big-eared bat, but not pallid bat. The strategy, methodology, and solutions proposed in our study should assist bat conservation and management efforts wherever bats occur, and can be extended to other species that require conservation attention.
Collapse
Affiliation(s)
- Brian M. Myers
- U.S. Geological Survey, Western Ecological Research Center, San Diego, California, United States of America
- Department of Biology, Eastern Oregon University, One University Boulevard, La Grande, Oregon, United States of America
| | - Drew C. Stokes
- San Diego Natural History Museum, San Diego, California, United States of America
| | - Kristine L. Preston
- U.S. Geological Survey, Western Ecological Research Center, San Diego, California, United States of America
| | - Robert N. Fisher
- U.S. Geological Survey, Western Ecological Research Center, San Diego, California, United States of America
| | - Amy G. Vandergast
- U.S. Geological Survey, Western Ecological Research Center, San Diego, California, United States of America
| |
Collapse
|
2
|
Akakçe N, Seven Erdemir Ü, Uğur Görgün A, Sert I, Sac M. Concentrations of radionuclides and trace elements in wetlands. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:971. [PMID: 39311971 DOI: 10.1007/s10661-024-13132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
Environmental risks in wetlands are considered with radionuclides and trace elements to understand pollution accumulation. In this study, we aimed to determine the levels of radiation and heavy metals in water systems and assess pollution configurations. Radionuclides (222Rn, 210Pb and 210Po) and trace elements (Ag, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mo, Ni, Pb, V and Zn) were measured to evaluate anthropogenic factors. Water pollution in wetlands was indicated by mean concentrations of 66.2 mBq/L for 222Rn, 3 mBq/L for 210Pb, 42 mBq/L for 210Po, 41 ppb for Zn, 37 ppb for Ba, 190 ppb for Fe and 481 ppb for Sr. These pollutants may be related to industrial facilities in Kırklareli city, Türkiye.
Collapse
Affiliation(s)
- Nurdan Akakçe
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Izmir, Türkiye.
- Ege University Institute of Nuclear Sciences, İzmir, Türkiye.
| | - Ümran Seven Erdemir
- Faculty of Arts and Sciences, Department of Chemistry, Bursa Uludağ University, Bursa, Türkiye
| | | | - Ilker Sert
- Ege University Institute of Nuclear Sciences, İzmir, Türkiye
| | - Murat Sac
- Ege University Institute of Nuclear Sciences, İzmir, Türkiye
| |
Collapse
|
3
|
Abstract
Abstract
Worldwide, nature-based tourism is becoming more popular and important economically. However, there is still debate regarding its impact on wildlife in protected areas. We conducted a quasi-experimental study to investigate the effects of tourism on the mammal community of Cavernas do Peruaçu National Park, a priority area for conservation in Brazil. We used camera traps to survey tourist and non-tourist trails during 2011–2017, encompassing periods before and after tourism started in the Park. We used four metrics for assessment: species richness, probability of using trails, activity levels and daily activity patterns. After tourism began in the Park there was no significant change in species richness and the probability of using tourist trails either increased or remained stable for five of the six species assessed. The rock cavy Kerodon rupestris was the only species to be displaced from tourist areas and to show reduced overall activity on tourist trails after tourism began. The ocelot Leopardus pardalis showed reduced diurnal activity on tourist trails, an indication of temporal adjustment. Overall, our results show that the initial years of visitation at the Park had limited negative impacts on the target mammal species, supporting the possibility of accommodating tourism activity and effective conservation of wildlife in the region. However, it is essential to continue monitoring in the Park because of the expected growth in tourism and potential time lags in responses of species.
Collapse
|
4
|
Mammola S, Meierhofer MB, Borges PA, Colado R, Culver DC, Deharveng L, Delić T, Di Lorenzo T, Dražina T, Ferreira RL, Fiasca B, Fišer C, Galassi DMP, Garzoli L, Gerovasileiou V, Griebler C, Halse S, Howarth FG, Isaia M, Johnson JS, Komerički A, Martínez A, Milano F, Moldovan OT, Nanni V, Nicolosi G, Niemiller ML, Pallarés S, Pavlek M, Piano E, Pipan T, Sanchez‐Fernandez D, Santangeli A, Schmidt SI, Wynne JJ, Zagmajster M, Zakšek V, Cardoso P. Towards evidence-based conservation of subterranean ecosystems. Biol Rev Camb Philos Soc 2022; 97:1476-1510. [PMID: 35315207 PMCID: PMC9545027 DOI: 10.1111/brv.12851] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History Luomus (LUOMUS)University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
| | - Paulo A.V. Borges
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| | - Raquel Colado
- Departament of Ecology and HidrologyUniversity of MurciaMurcia30100Spain
| | - David C. Culver
- Department of Environmental ScienceAmerican University4400 Massachusetts Avenue, N.WWashingtonDC20016U.S.A.
| | - Louis Deharveng
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, UPMC, EPHEMuseum National d'Histoire Naturelle, Sorbonne UniversitéParisFrance
| | - Teo Delić
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET‐CNR), National Research CouncilVia Madonna del Piano 10, 50019 Sesto FiorentinoFlorenceItaly
| | - Tvrtko Dražina
- Division of Zoology, Department of BiologyFaculty of Science, University of ZagrebRooseveltov Trg 6Zagreb10000Croatia
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Rodrigo L. Ferreira
- Center of Studies in Subterranean Biology, Biology Department, Federal University of LavrasCampus universitário s/n, Aquenta SolLavrasMG37200‐900Brazil
| | - Barbara Fiasca
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Diana M. P. Galassi
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Laura Garzoli
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Vasilis Gerovasileiou
- Department of Environment, Faculty of EnvironmentIonian University, M. Minotou‐Giannopoulou strPanagoulaZakynthos29100Greece
- Hellenic Centre for Marine Research (HCMR), Institute of Marine BiologyBiotechnology and Aquaculture (IMBBC)Thalassocosmos, GournesCrete71500Greece
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of LimnologyUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Stuart Halse
- Bennelongia Environmental Consultants5 Bishop StreetJolimontWA6014Australia
| | | | - Marco Isaia
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Joseph S. Johnson
- Department of Biological SciencesOhio University57 Oxbow TrailAthensOH45701U.S.A.
| | - Ana Komerički
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Alejandro Martínez
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Filippo Milano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Oana T. Moldovan
- Emil Racovita Institute of SpeleologyClinicilor 5Cluj‐Napoca400006Romania
- Romanian Institute of Science and TechnologySaturn 24‐26Cluj‐Napoca400504Romania
| | - Veronica Nanni
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Giuseppe Nicolosi
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Matthew L. Niemiller
- Department of Biological SciencesThe University of Alabama in Huntsville301 Sparkman Drive NWHuntsvilleAL35899U.S.A.
| | - Susana Pallarés
- Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales, CSICCalle de José Gutiérrez Abascal 2Madrid28006Spain
| | - Martina Pavlek
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
- Ruđer Bošković InstituteBijenička cesta 54Zagreb10000Croatia
| | - Elena Piano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Tanja Pipan
- ZRC SAZUKarst Research InstituteNovi trg 2Ljubljana1000Slovenia
- UNESCO Chair on Karst EducationUniversity of Nova GoricaGlavni trg 8Vipava5271Slovenia
| | | | - Andrea Santangeli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiViikinkaari 1Helsinki00014Finland
| | - Susanne I. Schmidt
- Institute of Hydrobiology, Biology Centre CASNa Sádkách 702/7České Budějovice370 05Czech Republic
- Department of Lake ResearchHelmholtz Centre for Environmental ResearchBrückstraße 3aMagdeburg39114Germany
| | - J. Judson Wynne
- Department of Biological SciencesCenter for Adaptable Western Landscapes, Box 5640, Northern Arizona UniversityFlagstaffAZ86011U.S.A.
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Valerija Zakšek
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| |
Collapse
|
5
|
Haidău C, Năstase-Bucur R, Bulzu P, Levei E, Cadar O, Mirea IC, Faur L, Fruth V, Atkinson I, Constantin S, Moldovan OT. A 16S rRNA Gene-Based Metabarcoding of Phosphate-Rich Deposits in Muierilor Cave, South-Western Carpathians. Front Microbiol 2022; 13:877481. [PMID: 35663904 PMCID: PMC9161362 DOI: 10.3389/fmicb.2022.877481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Muierilor Cave is one of Romania's most important show caves, with paleontological and archeological deposits. Recently, a new chamber was discovered in the cave, with unique yellow calcite crystals, fine-grained crusts, and black sediments. The deposits in this chamber were related to a leaking process from the upper level that contains fossil bones and a large pile of guano. Samples were taken from the new chamber and another passage to investigate the relationship between the substrate and microbial community. Chemical, mineralogical, and whole community 16S rRNA gene-based metabarcoding analyses were undertaken, and the base of the guano deposit was radiocarbon dated. Our study indicated bacteria linked to the presence of high phosphate concentration, most likely due to the nature of the substrate (hydroxyapatite). Bacteria involved in Fe, Mn, or N cycles were also found, as these elements are commonly identified in high concentrations in guano. Since no bat colonies or fossil bones were present in the new chamber, a high concentration of these elements could be sourced by organic deposits inside the cave (guano and fossil bones) even after hundreds of years of their deposition and in areas far from both deposits. Metabarcoding of the analyzed samples found that ∼0.7% of the identified bacteria are unknown to science, and ∼47% were not previously reported in caves or guano. Moreover, most of the identified human-related bacteria were not reported in caves or guano before, and some are known for their pathogenic potential. Therefore, continuous monitoring of air and floor microbiology should be considered in show caves with organic deposits containing bacteria that can threaten human health. The high number of unidentified taxa in a small sector of Muierilor Cave indicates the limited knowledge of the bacterial diversity in caves that can have potential applications in human health and biotechnology.
Collapse
Affiliation(s)
- Catalina Haidău
- Department of Biospeleology and Karst Edaphobiology, Emil Racovita Institute of Speleology, Bucureşti, Romania
| | - Ruxandra Năstase-Bucur
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
| | - Paul Bulzu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Erika Levei
- Research Institute for Analytical Instrumentation Subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Cluj-Napoca, Romania
| | - Oana Cadar
- Research Institute for Analytical Instrumentation Subsidiary, National Institute of Research and Development for Optoelectronics INOE 2000, Cluj-Napoca, Romania
| | - Ionuţ Cornel Mirea
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucureşti, Romania
| | - Luchiana Faur
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucureşti, Romania
- Faculty of Geology and Geophysics, University of Bucharest, Bucureşti, Romania
| | - Victor Fruth
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Bucuresti, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Bucuresti, Romania
| | - Silviu Constantin
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Department of Geospeleology and Paleontology, Emil Racovita Institute of Speleology, Bucureşti, Romania
- Centro Nacional Sobre la Evolucion Humana, Burgos, Spain
| | - Oana Teodora Moldovan
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
- Romanian Institute of Science and Technology, Cluj-Napoca, Romania
- Centro Nacional Sobre la Evolucion Humana, Burgos, Spain
| |
Collapse
|
6
|
Rocha R, López-Baucells A, Fernández-Llamazares Á. Ethnobiology of Bats: Exploring Human-Bat Inter-Relationships in a Rapidly Changing World. J ETHNOBIOL 2021. [DOI: 10.2993/0278-0771-41.1.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ricardo Rocha
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| | - Adrià López-Baucells
- Global Change and Conservation (GCC), Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Álvaro Fernández-Llamazares
- Global Change and Conservation (GCC), Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| |
Collapse
|
7
|
Abstract
AbstractCaves and other subterranean habitats are crucial for the survival of many bat species, but often deteriorate as a result of visits by tourists. The aim of the study was to understand the conservation challenges associated with the cave dwelling bats at Gupteswar cave tourism and pilgrimage site in eastern India and to develop conservation recommendations. I counted bat populations and monitored tourist visits once per month for 12 months during September 2016–August 2017. Roosting and breeding activities of eight species of bats, including two nationally threatened species, were recorded from five caves. The number of bats counted during the 12 survey days was 785–940 individuals. Tourism activity occurred throughout the year but was higher during local festive seasons; the maximum number of tourist entries recorded in a single day was 2,769. Installation of gated entrances, scheduling of visits to control overcrowding, restriction of access to caves with maternity colonies during breeding seasons, and minimal use of electric bulbs for illumination would minimize disturbance to the bats. Installation of educational display boards would help to create awareness of the conservation importance of bats amongst the cave visitors.
Collapse
|
8
|
Debata S, Palita SK. Distribution, population status, and threats of nationally threatened Cantor's leaf-nosed bat Hipposideros galeritus Cantor, 1846 in eastern India. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2017. [DOI: 10.1016/j.japb.2017.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
9
|
Tobin A, Chambers CL. Mixed effects of gating subterranean habitat on bats: A review. J Wildl Manage 2017. [DOI: 10.1002/jwmg.21287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abigail Tobin
- School of Forestry; Northern Arizona University; Flagstaff AZ 86011 USA
| | - Carol L. Chambers
- School of Forestry; Northern Arizona University; Flagstaff AZ 86011 USA
| |
Collapse
|
10
|
Use of Long-Term Opportunistic Surveys to Estimate Trends in Abundance of Hibernating Townsend's Big-Eared Bats. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2014. [DOI: 10.3996/022014-jfwm-012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
The advent of broad-scale threats to bats such as white-nose syndrome and climate change highlights the need for reliable baseline assessment of their populations. However, few long-term, rigorously designed assessments of bat populations exist, particularly in western North America. Consequently, results of informal monitoring efforts are often the only data available upon which to base population assessments. We evaluated whether an opportunistic collection of surveys recorded over a 22-y period could be used to assess population trend of Townsend's big-eared bats (Corynorhinus townsendii) at Lava Beds National Monument in northern California. We used records of counts of hibernating bats conducted during 1991–2012 to estimate the number of bats in 52 individual caves as well as cumulatively. Seventeen of 22 caves surveyed in four or more years had an increasing trend in the number of hibernating bats. We estimated the cumulative annual growth rate over the period to be 1.79%. Stable or increasing number of hibernating Townsend's big-eared bats may be a result of management actions taken to limit disturbance of bats during maternity and hibernation seasons. We found no evidence that annual counts depressed the number of hibernating bats, thereby broadening monitoring options and the ability to link population trends to extrinsic factors. Our results demonstrate that opportunistically collected, long-term data sets may be useful for establishing first approximations of population trends for bats.
Collapse
|
11
|
|
12
|
Protection of bats in caves opened for tourism: a reply to Furman, Çoraman & Bilgin. ORYX 2012. [DOI: 10.1017/s0030605312000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
13
|
The Effect of Tourist Visits on the Behavior of Rousettus madagascariensis (Chiroptera: Pteropodidae) in the Caves of Ankarana, Northern Madagascar. ACTA CHIROPTEROLOGICA 2012. [DOI: 10.3161/150811012x661783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|