1
|
Chayé MAM, Gasan TA, Ozir-Fazalalikhan A, Scheenstra MR, Zawistowska-Deniziak A, van Hengel ORJ, Gentenaar M, Manurung MD, Harvey MR, Codée JDC, Chiodo F, Heijke AM, Kalinowska A, van Diepen A, Hensbergen PJ, Yazdanbakhsh M, Guigas B, Hokke CH, Smits HH. Schistosoma mansoni egg-derived thioredoxin and Sm14 drive the development of IL-10 producing regulatory B cells. PLoS Negl Trop Dis 2023; 17:e0011344. [PMID: 37363916 DOI: 10.1371/journal.pntd.0011344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
During chronic schistosome infections, a complex regulatory network is induced to regulate the host immune system, in which IL-10-producing regulatory B (Breg) cells play a significant role. Schistosoma mansoni soluble egg antigens (SEA) are bound and internalized by B cells and induce both human and mouse IL-10 producing Breg cells. To identify Breg-inducing proteins in SEA, we fractionated SEA by size exclusion chromatography and found 6 fractions able to induce IL-10 production by B cells (out of 18) in the high, medium and low molecular weight (MW) range. The high MW fractions were rich in heavily glycosylated molecules, including multi-fucosylated proteins. Using SEA glycoproteins purified by affinity chromatography and synthetic glycans coupled to gold nanoparticles, we investigated the role of these glycan structures in inducing IL-10 production by B cells. Then, we performed proteomics analysis on active low MW fractions and identified a number of proteins with putative immunomodulatory properties, notably thioredoxin (SmTrx1) and the fatty acid binding protein Sm14. Subsequent splenic murine B cell stimulations and hock immunizations with recombinant SmTrx1 and Sm14 showed their ability to dose-dependently induce IL-10 production by B cells both in vitro and in vivo. Identification of unique Breg cells-inducing molecules may pave the way to innovative therapeutic strategies for inflammatory and auto-immune diseases.
Collapse
Affiliation(s)
- Mathilde A M Chayé
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A Gasan
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Maaike R Scheenstra
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Zawistowska-Deniziak
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Immunology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Oscar R J van Hengel
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Max Gentenaar
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mikhael D Manurung
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael R Harvey
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Fabrizio Chiodo
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Italian National Research Council, Institute of Biomolecular Chemistry, Pozzuoli, Italy
| | - Anouk M Heijke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alicja Kalinowska
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Genetic and Molecular Characterization of the Immortalized Murine Hepatic Stellate Cell Line GRX. Cells 2022; 11:cells11091504. [PMID: 35563813 PMCID: PMC9102025 DOI: 10.3390/cells11091504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
The murine cell line GRX has been introduced as an experimental tool to study aspects of hepatic stellate cell biology. It was established from livers of C3H/HeN mice that were infected with cercariae of Schistosoma mansoni. Although these cells display a myofibroblast phenotype, they can accumulate intracellular lipids and acquire a fat-storing lipocyte phenotype when treated with retinol, insulin, and indomethacin. We have performed genetic characterization of GRX and established a multi-loci short tandem repeat (STR) signature for this cell line that includes 18 mouse STR markers. Karyotyping further revealed that this cell line has a complex genotype with various chromosomal aberrations. Transmission electron microscopy revealed that GRX cells produce large quantities of viral particles belonging to the gammaretroviral genus of the Retroviridae family as assessed by next generation mRNA sequencing and Western blot analysis. Rolling-circle-enhanced-enzyme-activity detection (REEAD) revealed the absence of retroviral integrase activity in cell culture supernatants, most likely as a result of tetherin-mediated trapping of viral particles at the cell surface. Furthermore, staining against schistosome gut-associated circulating anodic antigens and cercarial O- and GSL-glycans showed that the cell line lacks S. mansoni-specific glycostructures. Our findings will now help to fulfill the recommendations for cellular authentications required by many granting agencies and scientific journals when working with GRX cells. Moreover, the definition of a characteristic STR profile will increase the value of GRX cells in research and provides an important benchmark to identify intra-laboratory cell line heterogeneity, discriminate between different mouse cell lines, and to avoid misinterpretation of experimental findings by usage of misidentified or cross-contaminated cells.
Collapse
|
3
|
van Noort K, Nguyen DL, Kriechbaumer V, Hawes C, Hokke CH, Schots A, Wilbers RHP. Functional characterization of Schistosoma mansoni fucosyltransferases in Nicotiana benthamiana plants. Sci Rep 2020; 10:18528. [PMID: 33116178 PMCID: PMC7595089 DOI: 10.1038/s41598-020-74485-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites secrete a wide variety of immunomodulatory proteins and lipids to dampen host immune responses. Many of these immunomodulatory compounds are modified with complex sugar structures (or glycans), which play an important role at the host-parasite interface. As an example, the human blood fluke Schistosoma mansoni produces highly fucosylated glycan structures on glycoproteins and glycolipids. Up to 20 different S. mansoni fucosyltransferase (SmFucT) genes can be found in genome databases, but thus far only one enzyme has been functionally characterized. To unravel the synthesis of highly fucosylated N-glycans by S. mansoni, we examined the ability of ten selected SmFucTs to modify N-glycans upon transient expression in Nicotiana benthamiana plants. All enzymes were localized in the plant Golgi apparatus, which allowed us to identify the SmFucTs involved in core fucosylation and the synthesis of complex antennary glycan motifs. This knowledge provides a starting point for investigations into the role of specific fucosylated glycan motifs of schistosomes in parasite-host interactions. The functionally characterized SmFucTs can also be applied to synthesize complex N-glycan structures on recombinant proteins to study their contribution to immunomodulation. Furthermore, this plant expression system will fuel the development of helminth glycoproteins for pharmaceutical applications or novel anti-helminth vaccines.
Collapse
Affiliation(s)
- Kim van Noort
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Dieu-Linh Nguyen
- Department of Parasitology, Leiden University Medical Center, Albinusdreef, 2333 ZA, Leiden, The Netherlands
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chris Hawes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Center, Albinusdreef, 2333 ZA, Leiden, The Netherlands
| | - Arjen Schots
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Ruud H P Wilbers
- Laboratory of Nematology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
5
|
Yang YYM, Li XH, Brzezicka K, Reichardt NC, Wilson RA, van Diepen A, Hokke CH. Specific anti-glycan antibodies are sustained during and after parasite clearance in Schistosoma japonicum-infected rhesus macaques. PLoS Negl Trop Dis 2017; 11:e0005339. [PMID: 28151933 PMCID: PMC5308859 DOI: 10.1371/journal.pntd.0005339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 01/18/2017] [Indexed: 12/20/2022] Open
Abstract
Background Human immunity to Schistosoma infection requires many years of exposure, and multiple infections and treatments to develop. Unlike humans, rhesus macaques clear an established schistosome infection naturally at the same time acquiring immunity towards re-infection. In macaques, schistosome egg production decreases after 8 weeks post-infection and by week 22, physiological impairment of the worm caused by unclarified antibody-mediated processes is observed. Since strong antibody responses have been observed against schistosome glycan antigens in human and animal infections, we here investigate if anti-glycan antibodies are associated with immunity against schistosome infections in macaques. Methods We used a microarray containing a large repertoire of glycoprotein- and glycolipid-derived glycans from different schistosome life stages to analyse anti-glycan serum IgG and IgM from S. japonicum-infected macaques during the course of infection and self-cure. We also used an in vitro schistosomula assay to investigate whether macaque sera containing anti-glycan antibodies can kill schistosomula. Conclusions/significance Antibody responses towards schistosome glycans at week 4 post-infection were dominated by IgM while IgG was high at week 8. The profound increase in IgG was observed mainly for antibodies towards a large subset of glycans that contain (multi-)fucosylated terminal GalNAcβ1-4GlcNAc (LDN), and Galβ1-4(Fucα1–3)GlcNAc (LeX) motifs. In general, glycans with a higher degree of fucosylation gave rise to stronger antibody responses than non-fucosylated glycans. Interestingly, even though many IgG and IgM responses had declined by week 22 post-infection, IgG towards O-glycans with highly fucosylated LDN motifs remained. When incubating macaque serum with schistosomula in vitro, schistosomula death was positively correlated with the duration of infection of macaques; macaque serum taken 22 weeks post-infection caused most schistosomula to die, suggesting the presence of potentially protective antibodies. We hypothesize that IgGs against highly fucosylated LDN motifs that remain when the worms deteriorate are associated with infection clearance and the resistance to re-infection in macaques. Schistosomes express many glycan antigens to which antibodies are raised by the infected host. These glycans may therefore form potential vaccine targets. Unlike humans where the disease persists chronically if not treated, schistosome-infected rhesus macaques are able to elicit a self-cure process naturally. To find out if anti-glycan responses could contribute to the natural clearance process, we followed the dynamics of anti-glycan serum antibodies in Schistosoma-infected macaques in a longitudinal study starting from the onset of infection until 22 weeks post-infection, when the macaques had eliminated most of the parasites. We found that sera of macaques taken after 22 weeks of infection contained high IgG titres towards specific schistosome glycan epitopes highly abundant on schistosome larvae. Moreover, infected macaque serum at week 22 was able to kill schistosomula in vitro. Our results suggest that anti-glycan antibodies play an important role in the self-cure process and the acquired resistance to re-infection in Schistosoma infected macaques.
Collapse
Affiliation(s)
- Y. Y. Michelle Yang
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Xiao Hong Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, and Key Laboratory of Parasitology and Vector Biology, Ministry of Health, Shanghai, China
| | | | | | - R. Alan Wilson
- Centre for Immunology & Infection, Department of Biology, University of York, York, United Kingdom
| | - Angela van Diepen
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis H. Hokke
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
- * E-mail:
| |
Collapse
|
6
|
Hokke CH, van Diepen A. Helminth glycomics - glycan repertoires and host-parasite interactions. Mol Biochem Parasitol 2016; 215:47-57. [PMID: 27939587 DOI: 10.1016/j.molbiopara.2016.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/18/2016] [Accepted: 12/01/2016] [Indexed: 01/12/2023]
Abstract
Glycoproteins and glycolipids of parasitic helminths play important roles in biology and host-parasite interaction. This review discusses recent helminth glycomics studies that have been expanding our insights into the glycan repertoire of helminths. Structural data are integrated with biological and immunological observations to highlight how glycomics advances our understanding of the critical roles that glycans and glycan motifs play in helminth infection biology. Prospects and challenges in helminth glycomics and glycobiology are discussed.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Angela van Diepen
- Parasite Glycobiology Group, Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Identification of Antigenic Glycans from Schistosoma mansoni by Using a Shotgun Egg Glycan Microarray. Infect Immun 2016; 84:1371-1386. [PMID: 26883596 DOI: 10.1128/iai.01349-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/12/2016] [Indexed: 01/01/2023] Open
Abstract
Infection of mammals by the parasitic helminth Schistosoma mansoni induces antibodies to glycan antigens in worms and eggs, but the differential nature of the immune response among infected mammals is poorly understood. To better define these responses, we used a shotgun glycomics approach in which N-glycans from schistosome egg glycoproteins were prepared, derivatized, separated, and used to generate an egg shotgun glycan microarray. This array was interrogated with sera from infected mice, rhesus monkeys, and humans and with glycan-binding proteins and antibodies to gather information about the structures of antigenic glycans, which also were analyzed by mass spectrometry. A major glycan antigen targeted by IgG from different infected species is the FLDNF epitope [Fucα3GalNAcβ4(Fucα3)GlcNAc-R], which is also recognized by the IgG monoclonal antibody F2D2. The FLDNF antigen is expressed by all life stages of the parasite in mammalian hosts, and F2D2 can kill schistosomula in vitro in a complement-dependent manner. Different antisera also recognized other glycan determinants, including core β-xylose and highly fucosylated glycans. Thus, the natural shotgun glycan microarray of schistosome eggs is useful in identifying antigenic glycans and in developing new anti-glycan reagents that may have diagnostic applications and contribute to developing new vaccines against schistosomiasis.
Collapse
|
8
|
Mickum ML, Rojsajjakul T, Yu Y, Cummings RD. Schistosoma mansoni α1,3-fucosyltransferase-F generates the Lewis X antigen. Glycobiology 2015; 26:270-85. [PMID: 26582608 DOI: 10.1093/glycob/cwv103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/01/2015] [Indexed: 02/03/2023] Open
Abstract
Genetic evidence suggests that the Schistosoma mansoni genome contains six genes that encode α1,3-fucosyltransferases (smFuTs). To date, the activities and specificities of these putative fucosyltransferases are unknown. As Schistosoma express a variety of fucosylated glycans, including the Lewis X antigen Galβ1-4(Fucα1-3)GlcNAcβ-R, it is likely that this family of genes encode enzymes that are partly responsible for the generation of those structures. Here, we report the molecular cloning of fucosyltransferase-F (smFuT-F) from S. mansoni, as a soluble, green fluorescent protein fusion protein and its acceptor specificity. The gene smFuT-F was expressed in HEK freestyle cells, purified by affinity chromatography, and analyzed toward a broad panel of glycan acceptors. The enzyme product of smFuT-F effectively utilizes a type II chain acceptor Galβ1-4GlcNAc-R, but notably not the LDN sequence GalNAcβ1-4GlcNAc-R, to generate Lewis X type-glycans, and smFuT-F transcripts are present in all intramammalian life stages.
Collapse
Affiliation(s)
- Megan L Mickum
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Teerapat Rojsajjakul
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Ying Yu
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry and the Emory Glycomics Center, Emory University School of Medicine, Atlanta, GA, USA Beth Israel Deaconess Medical Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Smit CH, Homann A, van Hensbergen VP, Schramm G, Haas H, van Diepen A, Hokke CH. Surface expression patterns of defined glycan antigens change duringSchistosoma mansonicercarial transformation and development of schistosomula. Glycobiology 2015; 25:1465-79. [DOI: 10.1093/glycob/cwv066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
|
10
|
Smit CH, van Diepen A, Nguyen DL, Wuhrer M, Hoffmann KF, Deelder AM, Hokke CH. Glycomic Analysis of Life Stages of the Human Parasite Schistosoma mansoni Reveals Developmental Expression Profiles of Functional and Antigenic Glycan Motifs. Mol Cell Proteomics 2015; 14:1750-69. [PMID: 25883177 PMCID: PMC4587318 DOI: 10.1074/mcp.m115.048280] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/30/2022] Open
Abstract
Glycans present on glycoproteins and glycolipids of the major human parasite Schistosoma mansoni induce innate as well as adaptive immune responses in the host. To be able to study the molecular characteristics of schistosome infections it is therefore required to determine the expression profiles of glycans and antigenic glycan-motifs during a range of critical stages of the complex schistosome lifecycle. We performed a longitudinal profiling study covering schistosome glycosylation throughout worm- and egg-development using a mass spectrometry-based glycomics approach. Our study revealed that during worm development N-glycans with Galβ1–4(Fucα1–3)GlcNAc (LeX) and core-xylose motifs were rapidly lost after cercariae to schistosomula transformation, whereas GalNAcβ1–4GlcNAc (LDN)-motifs gradually became abundant and predominated in adult worms. LeX-motifs were present on glycolipids up to 2 weeks of schistosomula development, whereas glycolipids with mono- and multifucosylated LDN-motifs remained present up to the adult worm stage. In contrast, expression of complex O-glycans diminished to undetectable levels within days after transformation. During egg development, a rich diversity of N-glycans with fucosylated motifs was expressed, but with α3-core fucose and a high degree of multifucosylated antennae only in mature eggs and miracidia. N-glycan antennae were exclusively LDN-based in miracidia. O-glycans in the mature eggs were also diverse and contained LeX- and multifucosylated LDN, but none of these were associated with miracidia in which we detected only the Galβ1–3(Galβ1–6)GalNAc core glycan. Immature eggs also exhibited short O-glycan core structures only, suggesting that complex fucosylated O-glycans of schistosome eggs are derived primarily from glycoproteins produced by the subshell envelope in the developed egg. Lipid glycans with multifucosylated GlcNAc repeats were present throughout egg development, but with the longer highly fucosylated stretches enriched in mature eggs and miracidia. This global analysis of the developing schistosome's glycome provides new insights into how stage-specifically expressed glycans may contribute to different aspects of schistosome-host interactions.
Collapse
Affiliation(s)
- Cornelis H Smit
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Angela van Diepen
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - D Linh Nguyen
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- §Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Karl F Hoffmann
- ¶Institute of Biological Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais Campus, Aberystwyth SY23 3FG, United Kingdom
| | - André M Deelder
- §Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Cornelis H Hokke
- From the ‡Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
11
|
van Diepen A, van der Plas AJ, Kozak RP, Royle L, Dunne DW, Hokke CH. Development of a Schistosoma mansoni shotgun O-glycan microarray and application to the discovery of new antigenic schistosome glycan motifs. Int J Parasitol 2015; 45:465-75. [PMID: 25819714 DOI: 10.1016/j.ijpara.2015.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/05/2023]
Abstract
Upon infection with Schistosoma, antibody responses are mounted that are largely directed against glycans. Over the last few years significant progress has been made in characterising the antigenic properties of N-glycans of Schistosoma mansoni. Despite also being abundantly expressed by schistosomes, much less is understood about O-glycans and antibody responses to these have not yet been systematically analysed. Antibody binding to schistosome glycans can be analysed efficiently and quantitatively using glycan microarrays, but O-glycan array construction and exploration is lagging behind because no universal O-glycanase is available, and release of O-glycans has been dependent on chemical methods. Recently, a modified hydrazinolysis method has been developed that allows the release of O-glycans with free reducing termini and limited degradation, and we applied this method to obtain O-glycans from different S. mansoni life stages. Two-dimensional HPLC separation of 2-aminobenzoic acid-labelled O-glycans generated 362 O-glycan-containing fractions that were printed on an epoxide-modified glass slide, thereby generating the first shotgun O-glycan microarray containing naturally occurring schistosome O-glycans. Monoclonal antibodies and mass spectrometry showed that the O-glycan microarray contains well-known antigenic glycan motifs as well as numerous other, potentially novel, antibody targets. Incubations of the microarrays with sera from Schistosoma-infected humans showed substantial antibody responses to O-glycans in addition to those observed to the previously investigated N- and glycosphingolipid glycans. This underlines the importance of the inclusion of these often schistosome-specific O-glycans in glycan antigen studies and indicates that O-glycans contain novel antigenic motifs that have potential for use in diagnostic methods and studies aiming at the discovery of vaccine targets.
Collapse
Affiliation(s)
- Angela van Diepen
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | - Arend-Jan van der Plas
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Louise Royle
- Ludger Ltd., Culham Science Centre, Oxfordshire OX14 3EB, UK
| | - David W Dunne
- Department of Pathology, University of Cambridge, UK
| | - Cornelis H Hokke
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Mickum ML, Prasanphanich NS, Heimburg-Molinaro J, Leon KE, Cummings RD. Deciphering the glycogenome of schistosomes. Front Genet 2014; 5:262. [PMID: 25147556 PMCID: PMC4122909 DOI: 10.3389/fgene.2014.00262] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/15/2014] [Indexed: 11/16/2022] Open
Abstract
Schistosoma mansoni and other Schistosoma sp. are multicellular parasitic helminths (worms) that infect humans and mammals worldwide. Infection by these parasites, which results in developmental maturation and sexual differentiation of the worms over a period of 5–6 weeks, induces antibodies to glycan antigens expressed in surface and secreted glycoproteins and glycolipids. There is growing interest in defining these unusual parasite-synthesized glycan antigens and using them to understand immune responses, their roles in immunomodulation, and in using glycan antigens as potential vaccine targets. A key problem in this area, however, has been the lack of information about the enzymes involved in elaborating the complex repertoire of glycans represented by the schistosome glycome. Recent availability of the nuclear genome sequences for Schistosoma sp. has created the opportunity to define the glycogenome, which represents the specific genes and cognate enzymes that generate the glycome. Here we describe the current state of information in regard to the schistosome glycogenome and glycome and highlight the important classes of glycans and glycogenes that may be important in their generation.
Collapse
Affiliation(s)
- Megan L Mickum
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Nina S Prasanphanich
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | | | - Kristoffer E Leon
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
13
|
Prasanphanich NS, Luyai AE, Song X, Heimburg-Molinaro J, Mandalasi M, Mickum M, Smith DF, Nyame AK, Cummings RD. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite. Glycobiology 2014; 24:619-37. [PMID: 24727440 PMCID: PMC4038251 DOI: 10.1093/glycob/cwu027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022] Open
Abstract
Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies.
Collapse
Affiliation(s)
- Nina Salinger Prasanphanich
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Anthony E Luyai
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Xuezheng Song
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Jamie Heimburg-Molinaro
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - Msano Mandalasi
- Department of Natural Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Megan Mickum
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - David F Smith
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | - A Kwame Nyame
- Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| | - Richard D Cummings
- Emory University Glycomics Center, 4024 O. Wayne Rollins Research Building, 1510 Clifton Rd., Atlanta, GA 30322, USA Department of Biochemistry, Emory University School of Medicine, O. Wayne Rollins Research Center, 1510 Clifton Road, Suite 4001, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Wang S, Hu W. Development of "-omics" research in Schistosoma spp. and -omics-based new diagnostic tools for schistosomiasis. Front Microbiol 2014; 5:313. [PMID: 25018752 PMCID: PMC4072072 DOI: 10.3389/fmicb.2014.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 12/02/2022] Open
Abstract
Schistosomiasis, caused by dioecious flatworms in the genus Schistosoma, is torturing people from many developing countries nowadays and frequently leads to severe morbidity and mortality of the patients. Praziquantel based chemotherapy and morbidity control for this disease adopted currently necessitate viable and efficient diagnostic technologies. Fortunately, those “-omics” researches, which rely on high-throughput experimental technologies to produce massive amounts of informative data, have substantially contributed to the exploitation and innovation of diagnostic tools of schistosomiasis. In its first section, this review provides a concise conclusion on the progresses pertaining to schistosomal “-omics” researches to date, followed by a comprehensive section on the diagnostic methods of schistosomiasis, especially those innovative ones based on the detection of antibodies, antigens, nucleic acids, and metabolites with a focus on those achievements inspired by “-omics” researches. Finally, suggestions about the design of future diagnostic tools of schistosomiasis are proposed, in order to better harness those data produced by “-omics” studies.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China
| | - Wei Hu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China ; Key Laboratory of Parasite and Vector Biology of Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention Shanghai, China
| |
Collapse
|
15
|
Prasanphanich NS, Mickum ML, Heimburg-Molinaro J, Cummings RD. Glycoconjugates in host-helminth interactions. Front Immunol 2013; 4:240. [PMID: 24009607 PMCID: PMC3755266 DOI: 10.3389/fimmu.2013.00240] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022] Open
Abstract
Helminths are multicellular parasitic worms that comprise a major class of human pathogens and cause an immense amount of suffering worldwide. Helminths possess an abundance of complex and unique glycoconjugates that interact with both the innate and adaptive arms of immunity in definitive and intermediate hosts. These glycoconjugates represent a major untapped reservoir of immunomodulatory compounds, which have the potential to treat autoimmune and inflammatory disorders, and antigenic glycans, which could be exploited as vaccines and diagnostics. This review will survey current knowledge of the interactions between helminth glycans and host immunity and highlight the gaps in our understanding which are relevant to advancing therapeutics, vaccine development, and diagnostics.
Collapse
Affiliation(s)
- Nina Salinger Prasanphanich
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Megan L. Mickum
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Heimburg-Molinaro
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D. Cummings
- Department of Biochemistry, Glycomics Center of Emory University, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Peterson NA, Anderson TK, Wu XJ, Yoshino TP. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the enzymes involved in GDP-L-fucose synthesis and Golgi import. Parasit Vectors 2013; 6:201. [PMID: 23835114 PMCID: PMC3718619 DOI: 10.1186/1756-3305-6-201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/15/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Carbohydrate structures of surface-expressed and secreted/excreted glycoconjugates of the human blood fluke Schistosoma mansoni are key determinants that mediate host-parasite interactions in both snail and mammalian hosts. Fucose is a major constituent of these immunologically important glycans, and recent studies have sought to characterize fucosylation-associated enzymes, including the Golgi-localized fucosyltransferases that catalyze the transfer of L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. Importantly, GDP-L-fucose is the only nucleotide-sugar donor used by fucosyltransferases and its availability represents a bottleneck in fucosyl-glycotope expression. METHODS A homology-based genome-wide bioinformatics approach was used to identify and molecularly characterize the enzymes that contribute to GDP-L-fucose synthesis and Golgi import in S. mansoni. Putative functions were further investigated through molecular phylogenetic and immunocytochemical analyses. RESULTS We identified homologs of GDP-D-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase-4-reductase (GMER), which constitute a de novo pathway for GDP-L-fucose synthesis, in addition to a GDP-L-fucose transporter (GFT) that putatively imports cytosolic GDP-L-fucose into the Golgi. In silico primary sequence analyses identified characteristic Rossman loop and short-chain dehydrogenase/reductase motifs in GMD and GMER as well as 10 transmembrane domains in GFT. All genes are alternatively spliced, generating variants of unknown function. Observed quantitative differences in steady-state transcript levels between miracidia and primary sporocysts may contribute to differential glycotope expression in early larval development. Additionally, analyses of protein expression suggest the occurrence of cytosolic GMD and GMER in the ciliated epidermal plates and tegument of miracidia and primary sporocysts, respectively, which is consistent with previous localization of highly fucosylated glycotopes. CONCLUSIONS This study is the first to identify and characterize three key genes that are putatively involved in the synthesis and Golgi import of GDP-L-fucose in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, molecular phylogenetics, and developmental expression in intramolluscan larval stages.
Collapse
Affiliation(s)
- Nathan A Peterson
- Current address: Department of Entomology, College of Agricultural and Life Sciences, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Tavis K Anderson
- Current address: Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Xiao-Jun Wu
- Current address: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2115 Observatory Drive, Madison, WI 53706, USA
| | - Timothy P Yoshino
- Current address: Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, 2115 Observatory Drive, Madison, WI 53706, USA
| |
Collapse
|
17
|
Peterson NA, Anderson TK, Yoshino TP. In silico analysis of the fucosylation-associated genome of the human blood fluke Schistosoma mansoni: cloning and characterization of the fucosyltransferase multigene family. PLoS One 2013; 8:e63299. [PMID: 23696810 PMCID: PMC3655985 DOI: 10.1371/journal.pone.0063299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 03/30/2013] [Indexed: 01/09/2023] Open
Abstract
Fucosylated glycans of the parasitic flatworm Schistosoma mansoni play key roles in its development and immunobiology. In the present study we used a genome-wide homology-based bioinformatics approach to search for genes that contribute to fucosylated glycan expression in S. mansoni, specifically the α2-, α3-, and α6-fucosyltransferases (FucTs), which transfer L-fucose from a GDP-L-fucose donor to an oligosaccharide acceptor. We identified and in silico characterized several novel schistosome FucT homologs, including six α3-FucTs and six α6-FucTs, as well as two protein O-FucTs that catalyze the unrelated transfer of L-fucose to serine and threonine residues of epidermal growth factor- and thrombospondin-type repeats. No α2-FucTs were observed. Primary sequence analyses identified key conserved FucT motifs as well as characteristic transmembrane domains, consistent with their putative roles as fucosyltransferases. Most genes exhibit alternative splicing, with multiple transcript variants generated. A phylogenetic analysis demonstrated that schistosome α3- and α6-FucTs form monophyletic clades within their respective gene families, suggesting multiple gene duplications following the separation of the schistosome lineage from the main evolutionary tree. Quantitative decreases in steady-state transcript levels of some FucTs during early larval development suggest a possible mechanism for differential expression of fucosylated glycans in schistosomes. This study systematically identifies the complete repertoire of FucT homologs in S. mansoni and provides fundamental information regarding their genomic organization, genetic variation, developmental expression, and evolutionary history.
Collapse
Affiliation(s)
- Nathan A. Peterson
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Timothy P. Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Turner JD, Meurs L, Dool P, Bourke CD, Mbow M, Dièye TN, Mboup S, Polman K, Mountford AP. Schistosome infection is associated with enhanced whole-blood IL-10 secretion in response to cercarial excretory/secretory products. Parasite Immunol 2013; 35:147-56. [DOI: 10.1111/pim.12028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/15/2013] [Indexed: 01/21/2023]
Affiliation(s)
- J. D. Turner
- Department of Biology; Centre for Immunology and Infection; University of York; York; UK
| | - L. Meurs
- Department of Biomedical Sciences; Institute of Tropical Medicine; Antwerp; Belgium
| | - P. Dool
- Department of Biology; Centre for Immunology and Infection; University of York; York; UK
| | - C. D. Bourke
- Department of Biology; Centre for Immunology and Infection; University of York; York; UK
| | - M. Mbow
- Immunology Unit of the Laboratory of Bacteriology and Virology of Aristide Le Dantec University Hospital; Dakar; Senegal
| | - T. N. Dièye
- Immunology Unit of the Laboratory of Bacteriology and Virology of Aristide Le Dantec University Hospital; Dakar; Senegal
| | - S. Mboup
- Immunology Unit of the Laboratory of Bacteriology and Virology of Aristide Le Dantec University Hospital; Dakar; Senegal
| | - K. Polman
- Department of Biomedical Sciences; Institute of Tropical Medicine; Antwerp; Belgium
| | - A. P. Mountford
- Department of Biology; Centre for Immunology and Infection; University of York; York; UK
| |
Collapse
|
19
|
Yoshino TP, Wu XJ, Gonzalez LA, Hokke CH. Circulating Biomphalaria glabrata hemocyte subpopulations possess shared schistosome glycans and receptors capable of binding larval glycoconjugates. Exp Parasitol 2013; 133:28-36. [PMID: 23085445 PMCID: PMC3647354 DOI: 10.1016/j.exppara.2012.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/25/2012] [Accepted: 10/02/2012] [Indexed: 11/21/2022]
Abstract
Host lectin-like recognition molecules may play an important role in innate resistance in Biomphalaria glabrata snails to larval schistosome infection, thus implicating parasite-expressed glycans as putative ligands for these lectin receptors. While host lectins may utilize specific glycan structures for parasite recognition, it also has been hypothesized that the parasite may use this system to evade immune detection by mimicking naturally-expressed host glycans, resulting in reduced immunorecognition capacity. By employing immunocytochemical (ICC) and Western blot assays using schistosome glycan-specific monoclonal antibodies (mABs) we sought to identify specific glycan epitopes (glycotopes) shared in common between larval Schistosoma mansoni and B. glabrata hemocytes, the primary immune effector cells in snails. Results confirmed the presence of selected larval glycotopes on subpopulations of hemocytes by ICC and association with numerous hemocyte proteins by Western blot analyses, including a trimannosyl core N-glycan (TriMan), and two fucosylated lacdiNAc (LDN) variants, F-LDN and F-LDN-F. Snail strain differences were seen in the prevalence of constitutively expressed F-LDN on hemocytes, and in the patterns of protein immunoreactivity with these mABs. In contrast, there was little to no hemocyte reactivity with mABs for Lewis X (LeX), LDN, LDN-F or LDN-DF. When intact hemocytes were exposed to larval transformation products (LTPs), distinct cell subpopulations displayed weak (LeX, LDN-DF) to moderate (LDN, LDN-F) glycotope reactivity by ICC, including snail strain differences in the prevalence of LDN-reactive cellular subsets. Far-Western blot analyses of the hemocytes following exposure to larval transformation proteins (LTPs) also revealed multiple mAB-reactive hemocyte protein bands for LeX, LDN, LDN-F, and LDN-DF. These results demonstrate the existence of complex patterns of shared larval glycan constitutively expressed on hemocytes and their proteins, as well as the ability of hemocytes to acquire shared glycans by the selective binding of parasite-released LTP. Unraveling the functional significance of these naturally expressed and acquired shared glycans on specific hemocyte populations represents an important challenge for future investigations.
Collapse
Affiliation(s)
- Timothy P Yoshino
- Department of Pathobiological Sciences, University of Wisconsin, School of Veterinary Medicine, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
20
|
Smith H, Doenhoff M, Aitken C, Bailey W, Ji M, Dawson E, Gilis H, Spence G, Alexander C, van Gool T. Comparison of Schistosoma mansoni soluble cercarial antigens and soluble egg antigens for serodiagnosing schistosome infections. PLoS Negl Trop Dis 2012; 6:e1815. [PMID: 23029577 PMCID: PMC3441401 DOI: 10.1371/journal.pntd.0001815] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 07/30/2012] [Indexed: 12/25/2022] Open
Abstract
A Schistosoma mansoni cercarial antigen preparation (cercarial transformation fluid – SmCTF) was evaluated for detection of anti-schistosome antibodies in human sera in 4 collaborating laboratories. The performance of SmCTF was compared with that of S. mansoni egg antigens (SmSEA) in an indirect enzyme-immunoassay (ELISA) antigen assay, the latter being used routinely in 3 of the 4 participating laboratories to diagnose S. mansoni and S. haematobium infections. In the fourth laboratory the performance of SmCTF was compared with that of S. japonicum egg antigens (SjSEA) in ELISA for detection of anti-S. japonicum antibodies. In all 4 laboratories the results given by SmCTF in ELISA were very similar to those given by the antigen preparation routinely used in the respective laboratory to detect anti-schistosome antibodies in human infection sera. In so far as the ELISA results from SmCTF are thus so little different from those given by schistosome egg antigens and also cheaper to produce, the former is a potentially useful new diagnostic aid for schistosomiasis. Diagnosis of schistosomiasis is problematic since no method is yet available that gives both 100% sensitivity and 100% specificity. The method traditionally used is microscopy, but because of inherent insensitivity this technique often wrongly diagnoses patients as uninfected. Use of serological assays involving detection of specific antibodies is now increasing since the putative sensitivity of these tests is much higher than that of other alternative methods of diagnosis. They are routinely used in travellers' medicine clinics where often only light infections are encountered which microscopy is not sensitive enough to detect. ELISA incorporating schistosome soluble egg antigens (SEA) is often the antibody-detection test of choice. The use of the SEA-ELISA for diagnosis of schistosomiasis in developing countries is however restricted since SEA is relatively expensive to produce. Here we investigated whether a cheaper alternative S. mansoni antigenic preparation derived from schistosome cercariae (SmCTF) could potentially replace SEA in ELISA. Our results demonstrate that SmCTF performs equivalently to S. mansoni SEA for the diagnosis of both S. mansoni and S. haematobium infections, and that SmCTF is also as good as S. japonicum SEA for the diagnosis of schistosomiasis japonica. We discuss how even more affordable and practical diagnostic aids for schistosomiasis might be developed.
Collapse
Affiliation(s)
- Huw Smith
- Scottish Parasite Diagnostic Reference Laboratory, Department of Bacteriology, Stobhill Hospital, Glasgow, Scotland
| | - Mike Doenhoff
- School of Biology, University of Nottingham, University Park, Nottingham, United Kingdom
- * E-mail:
| | - Cara Aitken
- Scottish Parasite Diagnostic Reference Laboratory, Department of Bacteriology, Stobhill Hospital, Glasgow, Scotland
| | - Wendi Bailey
- Diagnostic Parasitology Laboratory, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Minjun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Emily Dawson
- School of Biology, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Henk Gilis
- Parasitology Section, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Grant Spence
- Scottish Parasite Diagnostic Reference Laboratory, Department of Bacteriology, Stobhill Hospital, Glasgow, Scotland
| | - Claire Alexander
- Scottish Parasite Diagnostic Reference Laboratory, Department of Bacteriology, Stobhill Hospital, Glasgow, Scotland
| | - Tom van Gool
- Parasitology Section, Department of Medical Microbiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Yoshino TP, Wu XJ, Liu H, Gonzalez LA, Deelder AM, Hokke CH. Glycotope sharing between snail hemolymph and larval schistosomes: larval transformation products alter shared glycan patterns of plasma proteins. PLoS Negl Trop Dis 2012; 6:e1569. [PMID: 22448293 PMCID: PMC3308936 DOI: 10.1371/journal.pntd.0001569] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 02/04/2012] [Indexed: 12/19/2022] Open
Abstract
Recent evidence supports the involvement of inducible, highly diverse lectin-like recognition molecules in snail hemocyte-mediated responses to larval Schistosoma mansoni. Because host lectins likely are involved in initial parasite recognition, we sought to identify specific carbohydrate structures (glycans) shared between larval S. mansoni and its host Biomphalaria glabrata to address possible mechanisms of immune avoidance through mimicry of elements associated with the host immunoreactivity. A panel of monoclonal antibodies (mABs) to specific S. mansoni glycans was used to identify the distribution and abundance of shared glycan epitopes (glycotopes) on plasma glycoproteins from B. glabrata strains that differ in their susceptibilities to infection by S. mansoni. In addition, a major aim of this study was to determine if larval transformation products (LTPs) could bind to plasma proteins, and thereby alter the glycotopes exposed on plasma proteins in a snail strain-specific fashion. Plasma fractions (< 100 kDa/> 100 kDa) from susceptible (NMRI) and resistant (BS-90) snail strains were subjected to SDS-PAGE and immunoblot analyses using mAB to LacdiNAc (LDN), fucosylated LDN variants, Lewis X and trimannosyl core glycans. Results confirmed a high degree of glycan sharing, with NMRI plasma exhibiting a greater distribution/abundance of LDN, F-LDN and F-LDN-F than BS-90 plasma (< 100 kDa fraction). Pretreatment of blotted proteins with LTPs significantly altered the reactivity of specific mABs to shared glycotopes on blots, mainly through the binding of LTPs to plasma proteins resulting in either glycotope blocking or increased glycotope attachment to plasma. Many LTP-mediated changes in shared glycans were snail-strain specific, especially those in the < 100 kDa fraction for NMRI plasma proteins, and for BS-90, mainly those in the > 100 kDa fraction. Our data suggest that differential binding of S. mansoni LTPs to plasma proteins of susceptible and resistant B. glabrata strains may significantly impact early anti-larval immune reactivity, and in turn, compatibility, in this parasite-host system.
Collapse
Affiliation(s)
- Timothy P Yoshino
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Schistosome infections in humans are characterized by the development of chronic disease and high re-infection rates after treatment due to the slow development of immunity. It appears that anti-schistosome antibodies are at least partially mediating protective mechanisms. Efforts to develop a vaccine based on immunization with surface-exposed or secreted larval or worm proteins are ongoing. Schistosomes also express a large number of glycans as part of their glycoprotein and glycolipid repertoire, and antibody responses to those glycans are mounted by the infected host. This observation raises the question if glycans might also form novel vaccine targets for immune intervention in schistosomiasis. This review summarizes current knowledge of antibody responses and immunity in experimental and natural infections with Schistosoma, the expression profiles of schistosome glycans (the glycome), and antibody responses to individual antigenic glycan motifs. Future directions to study anti-glycan responses in schistosomiasis in more detail in order to address more precisely the possible role of glycans in antibody-mediated immunity are discussed.
Collapse
|
23
|
Frank S, van Die I, Geyer R. Structural characterization of Schistosoma mansoni adult worm glycosphingolipids reveals pronounced differences with those of cercariae. Glycobiology 2012; 22:676-95. [DOI: 10.1093/glycob/cws004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
24
|
Meevissen MHJ, Yazdanbakhsh M, Hokke CH. Schistosoma mansoni egg glycoproteins and C-type lectins of host immune cells: molecular partners that shape immune responses. Exp Parasitol 2011; 132:14-21. [PMID: 21616068 DOI: 10.1016/j.exppara.2011.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023]
Abstract
Schistosome eggs and egg-derived molecules are potent immunomodulatory agents. There is increasing evidence that the interplay between egg glycoproteins and host C-type lectins plays an important role in shaping immune responses during schistosomiasis. As most experiments in this field so far have been performed using complex protein/glycoprotein mixtures or synthetic model glycoconjugates, it is still largely unclear which individual moieties of schistosome eggs are immunologically active. In this review we will discuss molecular aspects of Schistosoma mansoni egg glycoproteins, their interactions with C-type lectins, and the relevance to schistosome egg immunobiology.
Collapse
Affiliation(s)
- Moniek H J Meevissen
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
25
|
Meevissen MHJ, Balog CIA, Koeleman CAM, Doenhoff MJ, Schramm G, Haas H, Deelder AM, Wuhrer M, Hokke CH. Targeted glycoproteomic analysis reveals that kappa-5 is a major, uniquely glycosylated component of Schistosoma mansoni egg antigens. Mol Cell Proteomics 2011; 10:M110.005710. [PMID: 21372247 DOI: 10.1074/mcp.m110.005710] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycans present on glycoproteins from the eggs of the parasite Schistosoma mansoni are mediators of various immune responses of the human host, including T-cell modulation and granuloma formation, and they are the target of glycan-specific antibodies. Here we have analyzed the glycosylation of kappa-5, a major glycoprotein antigen from S. mansoni eggs using a targeted approach of lectin purification followed by mass spectrometry of glycopeptides as well as released glycans. We demonstrate that kappa-5 has four fully occupied N-glycosylation sites carrying unique triantennary glycans composed of a difucosylated and xylosylated core region, and immunogenic GalNAcβ1-4GlcNAc (LDN) termini. Furthermore, we show that the kappa-5 specific IgE antibodies in sera of S. mansoni-infected individuals are directed against the core region of the kappa-5 glycans. Whereas two previously analyzed immunomodulatory egg glycoproteins, IPSE/alpha-1 and omega-1, both express diantennary N-glycans with a difucosylated core and one or two Galβ1-4(Fucα1-3)GlcNAc (Lewis X) antennae, the kappa-5 glycosylation appears unique among the major soluble egg antigens of S. mansoni. The distinct structural and antigenic properties of kappa-5 glycans suggest a specific role for kappa-5 in schistosome egg immunogenicity.
Collapse
Affiliation(s)
- Moniek H J Meevissen
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dewalick S, Bexkens ML, van Balkom BWM, Wu YP, Smit CH, Hokke CH, de Groot PG, Heck AJR, Tielens AGM, van Hellemond JJ. The proteome of the insoluble Schistosoma mansoni eggshell skeleton. Int J Parasitol 2011; 41:523-32. [PMID: 21236260 DOI: 10.1016/j.ijpara.2010.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022]
Abstract
In schistosomiasis, the majority of symptoms of the disease is caused by the eggs that are trapped in the liver. These eggs elicit an immune reaction that leads to the formation of granulomas. The eggshell, which is a rigid insoluble structure built from cross-linked proteins, is the site of direct interaction between the egg and the immune system. However, the exact protein composition of the insoluble eggshell was previously unknown. To identify the proteins of the eggshell of Schistosoma mansoni we performed LC-MS/MS analysis, immunostaining and amino acid analysis on eggshell fragments. For this, eggshell protein skeleton was prepared by thoroughly cleaning eggshells in a four-step stripping procedure of increasing strength including urea and SDS to remove all material that is not covalently linked to the eggshell itself, but is part of the inside of the egg, such as Reynold's layer, von Lichtenberg's envelope and the miracidium. We identified 45 proteins of which the majority are non-structural proteins and non-specific for eggs, but are house-keeping proteins that are present in large quantities in worms and miracidia. Some of these proteins are known to be immunogenic, such as HSP70, GST and enolase. In addition, a number of schistosome-specific proteins with unknown function and no homology to any known annotated protein were found to be incorporated in the eggshell. Schistosome-specific glycoconjugates were also shown to be present on the eggshell protein skeleton. This study also confirmed that the putative eggshell protein p14 contributes largely to the eggshell. Together, these results give new insights into eggshell composition as well as eggshell formation. Those proteins that are present at the site and time of eggshell formation are incorporated in the cross-linked eggshell and this cross-linking does no longer occur when the miracidium starts secreting proteins.
Collapse
Affiliation(s)
- Saskia Dewalick
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
N-Glycosylation patterns of hemolymph glycoproteins from Biomphalaria glabrata strains expressing different susceptibility to Schistosoma mansoni infection. Exp Parasitol 2010; 126:592-602. [DOI: 10.1016/j.exppara.2010.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/28/2010] [Accepted: 06/15/2010] [Indexed: 11/23/2022]
|
28
|
Ligand identification of carbohydrate-binding proteins employing a biotinylated glycan binding assay and tandem mass spectrometry. Anal Biochem 2010; 406:132-40. [DOI: 10.1016/j.ab.2010.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/22/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022]
|
29
|
In vitro manipulation of gene expression in larval Schistosoma: a model for postgenomic approaches in Trematoda. Parasitology 2009; 137:463-83. [PMID: 19961646 DOI: 10.1017/s0031182009991302] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
With rapid developments in DNA and protein sequencing technologies, combined with powerful bioinformatics tools, a continued acceleration of gene identification in parasitic helminths is predicted, potentially leading to discovery of new drug and vaccine targets, enhanced diagnostics and insights into the complex biology underlying host-parasite interactions. For the schistosome blood flukes, with the recent completion of genome sequencing and comprehensive transcriptomic datasets, there has accumulated massive amounts of gene sequence data, for which, in the vast majority of cases, little is known about actual functions within the intact organism. In this review we attempt to bring together traditional in vitro cultivation approaches and recent emergent technologies of molecular genomics, transcriptomics and genetic manipulation to illustrate the considerable progress made in our understanding of trematode gene expression and function during development of the intramolluscan larval stages. Using several prominent trematode families (Schistosomatidae, Fasciolidae, Echinostomatidae), we have focused on the current status of in vitro larval isolation/cultivation as a source of valuable raw material supporting gene discovery efforts in model digeneans that include whole genome sequencing, transcript and protein expression profiling during larval development, and progress made in the in vitro manipulation of genes and their expression in larval trematodes using transgenic and RNA interference (RNAi) approaches.
Collapse
|
30
|
Wang Y, Da'Dara AA, Thomas PG, Harn DA. Dendritic cells activated by an anti-inflammatory agent induce CD4(+) T helper type 2 responses without impairing CD8(+) memory and effector cytotoxic T-lymphocyte responses. Immunology 2009; 129:406-17. [PMID: 19922421 DOI: 10.1111/j.1365-2567.2009.03193.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prevalence of pro-inflammatory diseases is rising in developed country populations. The increase in these diseases has fuelled the search for new, immune suppressive, anti-inflammatory therapies, which do not impact, or minimally impact, CD4(+) and/or CD8(+) T-cell-mediated immunity. The goal of this study was to determine if antigen-presenting cells (APCs) activated by the anti-inflammatory oligosaccharide, lacto-N-fucopentaose III (LNFPIII), would have an impaired ability to drive CD4(+) T helper (Th) or CD8(+) memory and effector T-cell responses. To investigate this we activated splenic dendritic cells (SDCs) with LNFPIII and examined their ability to drive antigen-specific CD4(+) Th, and CD8(+) memory and cytotoxic T-cell (CTL) responses compared with lipopolysaccharide (LPS) -stimulated SDCs. The LNFPIII-activated SDCs had altered co-stimulatory molecule expression compared with LPS-stimulated SDCs, while the levels of SDC chemokines following activation by either compound were similar. LNFPIII-activated SDCs produced significantly lower levels of interleukin-12 but surprisingly higher levels of interleukin-6 than LPS-activated SDCs. Similar to previous studies using bone-marrow-derived DCs, LNFPIII-activated SDCs induced strong Th2 responses in vivo and ex vivo. LNFPIII activation of APCs was independent of the Toll-interleukin-1 receptor adaptor myeloid differentiating factor 88. Importantly, LNFPIII-matured DCs induced CD8(+) memory and effector CTL responses similar to those driven by LPS-matured DCs, including the frequency of interferon-gamma-producing CD8(+) T cells and induction of CTL effectors. Treatment of APCs by the anti-inflammatory glycan LNFPIII did not impair their ability to drive CD8(+) effector and memory cell-mediated immunity.
Collapse
Affiliation(s)
- Yang Wang
- School of Biochemistry & Molecular Biology, Australian National University, Linnaeus Way, Canberra, Australia
| | | | | | | |
Collapse
|
31
|
Peterson NA, Hokke CH, Deelder AM, Yoshino TP. Glycotope analysis in miracidia and primary sporocysts of Schistosoma mansoni: differential expression during the miracidium-to-sporocyst transformation. Int J Parasitol 2009; 39:1331-44. [PMID: 19545571 DOI: 10.1016/j.ijpara.2009.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 01/25/2023]
Abstract
Fucosylated carbohydrate epitopes (glycotopes) expressed by larval and adult schistosomes are thought to modulate the host immune response and possibly mediate parasite evasion in intermediate and definitive hosts. While previous studies showed glycotope expression is developmentally and stage-specifically regulated, relatively little is known regarding their occurrence in miracidia and primary sporocysts. In this study, previously defined monoclonal antibodies were used in confocal laser scanning microscopy, standard epifluorescence microscopy and Western blot analyses to investigate the developmental expression of the following glycotopes in miracidia and primary sporocysts of Schistosoma mansoni: GalNAcbeta1-4GlcNAc (LDN), GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LDN-F), Fucalpha1-3GalNAcbeta1-4GlcNAc (F-LDN), Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc (F-LDN-F), GalNAcbeta1-4(Fucalpha1-2Fucalpha1-3)GlcNAc (LDN-DF), Fucalpha1-2Fucalpha1-3GalNAcbeta1-4(Fucalpha1-2Fucalpha1-3)GlcNAc (DF-LDN-DF), Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis X) and the truncated trimannosyl N-glycan Manalpha1-3(Manalpha1-6)Manbeta1-4GlcNAcbeta1-4GlcNAcbeta1-Asn (TriMan). All but Lewis X were variously expressed by miracidia and sporocysts of S. mansoni. Most notably, alpha3-fucosylated LDN (F-LDN, F-LDN-F, LDN-F) was prominently expressed on the larval surface and amongst glycoproteins released during larval transformation and early sporocyst development, possibly implying a role for these glycotopes in snail-schistosome interactions. Interestingly, Fucalpha2Fucalpha3-subsituted LDN (LDN-DF, DF-LDN-DF) and LDN-F were heterogeneously surface-expressed on individuals of a given larval population, particularly amongst miracidia. In contrast, LDN and TriMan primarily localised in internal somatic tissues and exhibited only minor surface expression. Immunoblots indicate that glycotopes occur on overlapping but distinct protein sets in both larval stages, further demonstrating the underlying complexity of schistosome glycosylation. Additionally, sharing of specific larval glycotopes with Biomphalaria glabrata suggests an evolutionary convergence of carbohydrate expression between schistosomes and their snail host.
Collapse
Affiliation(s)
- Nathan A Peterson
- Department of Pathobiological Sciences, University of Wisconsin - Madison, School of Veterinary Medicine, 2115 Observatory Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
32
|
Mansour MH, Abdul-Salam F. Characterization of fucose-binding lectins in rock- and mud-dwelling snails inhabiting Kuwait Bay. Immunobiology 2009; 214:77-85. [DOI: 10.1016/j.imbio.2008.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 02/29/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
|
33
|
KARIUKI TM, FARAH IO, WILSON RA, COULSON PS. Antibodies elicited by the secretions from schistosome cercariae and eggs are predominantly against glycan epitopes. Parasite Immunol 2008; 30:554-62. [DOI: 10.1111/j.1365-3024.2008.01054.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Localization of carbohydrate determinants common toBiomphalaria glabrataas well as to sporocysts and miracidia ofSchistosoma mansoni. Parasitology 2008; 135:931-42. [DOI: 10.1017/s0031182008004514] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe presence of antigenic carbohydrate epitopes shared byBiomphalaria glabrataas well as by the sporocysts and miracidia representing snail-pathogenic larval stages ofSchistosoma mansoniwas assayed by immunohistochemical staining of paraformaldehyde-fixed tissues. To this end, both polyclonal rabbit antiserum raised against soluble egg antigens (SEA) ofS. mansoniand monoclonal antibodies recognizing the carbohydrate epitopes LDN [GalNAc(β1-4)GlcNAc(β1-)], F-LDN [Fuc(α1-3)GalNAc(β1-4)GlcNAc(β1-)], LDN-F [GalNAc(β1-4)[Fuc(α1-3)]GlcNAc(β1-)], LDN-DF [GalNAc(β1-4)[Fuc(α1-2)Fuc(α1-3)]GlcNAc(β1-)] and Lewis X [Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-)] were used. Intriguingly, anti-SEA serum as well as anti-F-LDN antibodies displayed significant binding in the foot region, anterior tissue and the hepatopancreas of uninfected snails, whereas the Lewis X epitope was only weakly detectable in the latter tissue. In contrast, increased binding of antibodies recognizing LDN, LDN-F and LDN-DF was observed in infected snail tissue, in particular in regions involved in sporocystogenesis, in addition to an enhanced binding of anti-SEA serum and antibodies reacting with F-LDN. A pronounced expression of most of these carbohydrate antigens was also observed at the surface of miracidia. Hence, the detection of shared carbohydrate determinants in uninfected snail tissue, sporocysts and miracidia may support the hypothesis of carbohydrate-based molecular mimicry as a survival strategy ofS. mansoni.
Collapse
|
35
|
Paschinger K, Gutternigg M, Rendić D, Wilson IBH. The N-glycosylation pattern of Caenorhabditis elegans. Carbohydr Res 2007; 343:2041-9. [PMID: 18226806 DOI: 10.1016/j.carres.2007.12.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 12/07/2007] [Accepted: 12/17/2007] [Indexed: 01/21/2023]
Abstract
Determining the exact nature of N-glycosylation in Caenorhabditis elegans, a nematode worm and genetic model organism, has proved to have been an unexpected challenge in recent years; a wide range of modifications of its N-linked oligosaccharides have been proposed on the basis of structural and genomic analysis. Particularly mass spectrometric studies by a number of groups, as well as the characterisation of recombinant enzymes, have highlighted those aspects of N-glycosylation that are conserved in animals, those which are seemingly unique to this species and those which are shared with parasitic nematodes. These data, of importance for therapeutic developments, are reviewed.
Collapse
Affiliation(s)
- Katharina Paschinger
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria.
| | | | | | | |
Collapse
|
36
|
Detection of Schistosoma mansoni eggs in feces through their interaction with paramagnetic beads in a magnetic field. PLoS Negl Trop Dis 2007; 1:e73. [PMID: 18060086 PMCID: PMC2100366 DOI: 10.1371/journal.pntd.0000073] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 07/25/2007] [Indexed: 12/03/2022] Open
Abstract
Background Diagnosis of intestinal schistosomiasis in low endemic areas is a problem because often control measures have reduced egg burdens in feces to below the detection limits of classical coproparasitological methods. Evaluation of molecular methods is hindered by the absence of an established standard with maximum sensitivity and specificity. One strategy to optimize method performance, where eggs are rare events, is to examine large amounts of feces. A novel diagnostic method for isolation of Schistosoma mansoni eggs in feces, and an initial evaluation of its performance is reported here. Methodology/Principal Findings Known amounts of S. mansoni eggs were seeded into 30 g of normal human feces and subjected to a sequence of spontaneous sedimentation, sieving, Ritchie method, incubation and isolation through interaction with paramagnetic beads. Preliminary tests demonstrated the efficacy of lectins as ligands, but they also indicated that the paramagnetic beads alone were sufficient to isolate the eggs under a magnetic field through an unknown mechanism. Eggs were identified by microscopic inspection, with a sensitivity of 100% at 1.3 eggs per gram of feces (epg). Sensitivity gradually decreased to 25% at a concentration of 0.1 epg. In a preliminary application of the new method to the investigation of a recently established focus in southern Brazil, approximately 3 times more eggs were detected than with the thick-smear Kato-Katz method. Conclusions/Significance The novel S. mansoni detection method may significantly improve diagnosis of infections with low burdens in areas of recent introduction of the parasite, areas under successful control of transmission, or in infected travelers. It may also improve the evaluation of new treatments and vaccines. Schistosomiasis mansoni is a parasitic infection that affects approximately 200 million people, mainly in the tropics. The worms live inside the veins of intestines and liver and produce eggs that are eliminated within feces. If the eggs reach water, a ciliated larva is released and enters snails to develop into a larva infective to man and other vertebrates. Most infections evolve without overt disease, but severe intestinal, hepatic, pulmonary and cerebro-medulary dysfunctions may occur after many years. Definitive diagnosis is made through the identification of eggs in stool. Classical diagnostic methods fail to detect infection when the number of eggs is low (e.g., in areas where control measures have decreased the intensity of infection or in the case of light infections in travelers who have had only brief exposure). A new and very sensitive method is reported here, in which eggs are isolated from large amounts of feces through their interaction with magnetic beads. After incubation with the fecal sediment, eggs co-migrate with the beads towards a magnet attached to the test tube. This improvement in diagnostic methodology will strengthen efforts to control schistosomiasis.
Collapse
|
37
|
Jang-Lee J, Curwen RS, Ashton PD, Tissot B, Mathieson W, Panico M, Dell A, Wilson RA, Haslam SM. Glycomics Analysis of Schistosoma mansoni Egg and Cercarial Secretions. Mol Cell Proteomics 2007; 6:1485-99. [PMID: 17550893 DOI: 10.1074/mcp.m700004-mcp200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The parasitic helminth Schistosoma mansoni is a major public health concern in many developing countries. Glycoconjugates, and in particular the carbohydrate component of these products, represent the main immunogenic challenge to the host and could therefore represent one of the crucial determinants for successful parasite establishment. Here we report a comparative glycomics analysis of the N- and O-glycans derived from glycoproteins present in S. mansoni egg (egg-secreted protein) and cercarial (0-3-h released protein) secretions by a combination of mass spectrometric techniques. Our results show that S. mansoni secrete glycoproteins with glycosylation patterns that are complex and stage-specific. Cercarial stage secretions were dominated by N-glycans that were core-xylosylated, whereas N-glycans from egg secretions were predominantly core-difucosylated. O-Glycan core structures from cercarial secretions primarily consisted of the core sequence Galbeta1-->3(Galbeta1-->6)GalNAc, whereas egg-secreted O-glycans carried the mucin-type core 1 (Galbeta1-->3GalNAc) and 2 (Galbeta1-->3(GlcNAcbeta1-->6)GalNAc) structures. Additionally we identified a novel O-glycan core in both secretions in which a Gal residue is linked to the protein. Terminal structures of N- and O-glycans contained high levels of fucose and include stage-specific structures. These glycan structures identified in S. mansoni secretions are potentially antigenic motifs and ligands for carbohydrate-binding proteins of the host immune system.
Collapse
Affiliation(s)
- Jihye Jang-Lee
- Division of Molecular Biosciences, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Meyer S, Tefsen B, Imberty A, Geyer R, van Die I. The C-type lectin L-SIGN differentially recognizes glycan antigens on egg glycosphingolipids and soluble egg glycoproteins from Schistosoma mansoni. Glycobiology 2007; 17:1104-19. [PMID: 17621595 PMCID: PMC7537643 DOI: 10.1093/glycob/cwm073] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recognition of pathogen-derived carbohydrate constituents by antigen presenting cells is an important step in the induction of protective immunity. Here we investigated the interaction of L-SIGN (liver/lymph node specific ICAM-3-grabbing nonintegrin), a C-type lectin that functions as antigen receptor on human liver sinusoidal endothelial cells, with egg-derived glycan antigens of the parasitic trematode Schistosoma mansoni. Our data demonstrate that L-SIGN binds both schistosomal soluble egg antigens (SEA) and egg glycosphingolipids, and can mediate internalization of SEA by L-SIGN expressing cells. Binding and internalization of SEA was strongly reduced after treatment of SEA with endoglycosidase H, whereas defucosylation affected neither binding nor internalization. These data indicate that L-SIGN predominantly interacts with oligomannosidic N-glycans of SEA. In contrast, binding to egg glycosphingolipids was completely abolished after defucosylation. Our data show that L-SIGN binds to a glycosphingolipid fraction containing fucosylated species with compositions of Hex(1)HexNAc(5-7)dHex(3-6)Cer, as evidenced by mass spectrometry. The L-SIGN "gain of function" mutant Ser363Val, which binds fucosylated Lewis antigens, did not bind to this fucosylated egg glycosphingolipid fraction, suggesting that L-SIGN displays different modes in binding fucoses of egg glycosphingolipids and Lewis antigens, respectively. Molecular modeling studies indicate that the preferred binding mode of L-SIGN to the respective fucosylated egg glycosphingolipid oligosaccharides involves a Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc tetrasaccharide at the nonreducing end. In conclusion, our data indicate that L-SIGN recognizes both oligomannosidic N-glycans and multiply fucosylated carbohydrate motifs within Schistosoma egg antigens, which demonstrates that L-SIGN has a broad but specific glycan recognition profile.
Collapse
MESH Headings
- Animals
- Antigens, Helminth/immunology
- Antigens, Helminth/metabolism
- Carbohydrate Sequence
- Cell Adhesion/immunology
- Cell Adhesion Molecules/chemistry
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Crystallography, X-Ray
- Endothelial Cells/immunology
- Endothelial Cells/metabolism
- Enzyme-Linked Immunosorbent Assay
- Female
- Fucose/metabolism
- Glycoproteins/immunology
- Glycoproteins/metabolism
- Glycoside Hydrolases/pharmacology
- Glycosphingolipids/immunology
- Glycosphingolipids/metabolism
- Glycosylation
- Humans
- K562 Cells
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Models, Molecular
- Molecular Sequence Data
- Ovum/immunology
- Polysaccharides/immunology
- Polysaccharides/metabolism
- Protein Conformation
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Schistosoma mansoni/immunology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Sandra Meyer
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Anne Imberty
- Centre de Recherches sur les Macromolecules Végétales, CNRS (affiliated withUniversité Joseph Fourier), 38041 Grenoble, Cedex 09, France
| | - Rudolf Geyer
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
- To whom correspondence should be addressed: Tel: +31-2-04-44-81-57; Fax: +31-2-04-44-81-44; e-mail:
| |
Collapse
|
39
|
Kusel JR, Al-Adhami BH, Doenhoff MJ. The schistosome in the mammalian host: understanding the mechanisms of adaptation. Parasitology 2007; 134:1477-526. [PMID: 17572930 DOI: 10.1017/s0031182007002971] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARYIn this review, we envisage the host environment, not as a hostile one, since the schistosome thrives there, but as one in which the relationship between the two organisms consists of constant communication, through signalling mechanisms involving sense organs, surface glycocalyx, surface membrane and internal organs of the parasite, with host fluids and cells. The surface and secretions of the schistosome egg have very different properties from those of other parasite stages, but adapted for the dispersal of the eggs and for the preservation of host liver function. We draw from studies of mammalian cells and other organisms to indicate how further work might be carried out on the signalling function of the surface glycocalyx, the raft structure of the surface and existence of pores in the surface membrane, the repair of the surface membrane, the role of the membrane structure in ion channel function (including recent work on the actin cytoskeleton and calcium channels) and the possible role of P-glycoproteins in the adaptation of the parasite to its environment. We are speculative in some areas, such as the suggestions that variability in surface properties of schistosomes may relate to the existence of membrane rafts and that parasite communities may exhibit quorum sensing. This speculative approach is adopted with the hope that future work on the whole organisms and their interactions will be encouraged.
Collapse
Affiliation(s)
- J R Kusel
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
40
|
Hokke CH, Fitzpatrick JM, Hoffmann KF. Integrating transcriptome, proteome and glycome analyses of Schistosoma biology. Trends Parasitol 2007; 23:165-74. [PMID: 17336161 DOI: 10.1016/j.pt.2007.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/10/2007] [Accepted: 02/14/2007] [Indexed: 01/11/2023]
Abstract
Publication of the transcriptomes of Schistosoma mansoni and Schistosoma japonicum, in conjunction with the sequencing and assembly of their genomes, has generated a comprehensive picture of Schistosoma transcriptional and genomic diversity. Subsequently, researchers who study conjugal and developmental biology, tegumental composition and larval or egg, secretory and excretory products have used these data, in combination with the latest '-omics' technologies, to extend large-scale screens of the schistosome transcriptome, proteome and glycome. In this article, we review these postgenomic investigations and contend that the generated datasets provide a plethora of novel drug, vaccine and immunomodulatory targets that might be useful for developing new antischistosome agents.
Collapse
Affiliation(s)
- Cornelis H Hokke
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
41
|
Ramajo-Hernández A, Oleaga A, Ramajo-Martín V, Pérez-Sánchez R. Carbohydrate profiling and protein identification of tegumental and excreted/secreted glycoproteins of adult Schistosoma bovis worms. Vet Parasitol 2007; 144:45-60. [PMID: 17055171 DOI: 10.1016/j.vetpar.2006.09.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/19/2006] [Accepted: 09/21/2006] [Indexed: 11/24/2022]
Abstract
Schistosoma bovis is a parasite of wild and domestic ruminants that is broadly distributed throughout many tropical and temperate regions of the old world. S. bovis causes severe health problems and significant economic losses in livestock, but in contrast to human schistosomes, S. bovis has been little investigated at a molecular level. Since schistosome glycans and glycoproteins can play important roles in the host-parasite interplay, the aims of the present work were: (i) to characterize the glycans expressed by adult S. bovis worms on their excreted/secreted (ES) and tegumental (TG) glycoproteins and (ii) to identify their carrier protein backbones by mass spectrometry. Using a panel of lectins and monoclonal and polyclonal anti-glycan antibodies, we observed: (i) the absence of sialic acid in S. bovis; (ii) the presence of complex-type N-glycans and LDN antennae on ES glycoproteins; (iii) the presence of glycans containing the Fucalpha1-2Galbeta motif in many TG glycoproteins, and (iv) the presence of glycans containing the Fucalpha1-3GlcNAc motif on many ES and TG glycoproteins but, simultaneously, the absence of the F-LDN(-F) glycans from both the ES and TG glycoproteins. Interestingly, we also found the Lewis(X) and Lewis(Y) antigens co-expressed on several TG isoforms of ATP:guanidino kinase and glyceraldehyde-3-phosphate dehydrogenase. Finally, by ELISA we observed the presence of antibodies against Lewis(X), Lewis(Y) and F-LDN(-F) in the sera of sheep experimentally infected with S. bovis.
Collapse
|
42
|
Abstract
The asparagine-linked carbohydrate moieties of plant and insect glycoproteins are the most abundant environmental immune determinants. They are the structural basis of what is known as cross-reactive carbohydrate determinants (CCDs). Despite some structural variation, the two main motifs are the xylose and the core-3-linked fucose, which form the essential part of two independent epitopes. Plants contain both epitopes, insect glycoproteins only fucose. These epitopes and other fucosylated determinants are also found in helminth parasites where they exert remarkable immunomodulatory effects. About 20% or more of allergic patients generate specific anti-glycan IgE, which is often accompanied by IgG. Even though antibody-binding glycoproteins are widespread in pollens, foods and insect venoms, CCDs do not appear to cause clinical symptoms in most, if not all patients. When IgE binding is solely due to CCDs, a glycoprotein allergen thus can be rated as clinical irrelevant allergen. Low binding affinity between IgE and plant N-glycans now drops out as a plausible explanation for the benign nature of CCDs. This rather may result from blocking antibodies induced by an incidental 'immune therapy' ('glyco-specific immune therapy') exerted by everyday contact with plant materials, e.g. fruits or vegetables. The need to detect and suppress anti-CCD IgE without interference from peptide epitopes can be best met by artificial glycoprotein allergens. Hydroxyproline-linked arabinose (single beta-arabinofuranosyl residues) has been identified as a new IgE-binding carbohydrate epitope in the major mugwort allergen. However, currently the occurrence of this O-glycan determinant appears to be rather restricted.
Collapse
Affiliation(s)
- Friedrich Altmann
- Divison of Biochemistry, Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria.
| |
Collapse
|
43
|
Lehr T, Geyer H, Maass K, Doenhoff MJ, Geyer R. Structural characterization of N-glycans from the freshwater snail Biomphalaria glabrata cross-reacting with Schistosoma mansoni glycoconjugates. Glycobiology 2006; 17:82-103. [PMID: 16971380 DOI: 10.1093/glycob/cwl048] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The human parasitic trematode Schistosoma mansoni has a complex life cycle that includes the freshwater snail Biomphalaria glabrata as intermediate host. Within each stage, the parasite synthesizes a wide array of glycoconjugates, exhibiting, in part, unique carbohydrate structures. In addition, the parasite expresses definitive host-like sugar epitopes, such as Lewis X determinants, supporting the concept of carbohydrate-mediated molecular mimicry as an invasion and survival strategy. In the present study, we investigated whether common carbohydrate determinants occur also at the level of the intermediate host. To this end, a structural characterization of hemolymph glycoprotein-N-glycans of B. glabrata was performed. N-glycans were released from tryptic glycopeptides and labeled with 2-aminopyridine. Sugar chains serologically cross-reacting with S. mansoni glycoconjugates were isolated by immunoaffinity chromatography using a polyclonal antiserum directed against schistosomal egg antigens and fractionated by Aleuria aurantia lectin affinity chromatography and high-performance liquid chromatography. Obtained glycans were analyzed by different mass spectrometric techniques as well as by monosaccharide constituent and linkage analysis. The results revealed a highly heterogeneous oligosaccharide pattern. Cross-reacting species represented about 5% of the total glycans and exhibited a terminal Fuc(alpha1-3)GalNAc unit, a (1-2)-linked xylosyl residue, or both types of structural motifs. In conclusion, our study demonstrates the presence of common carbohydrate epitopes also at the level of S. mansoni and its intermediate host.
Collapse
Affiliation(s)
- Tobias Lehr
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
44
|
van Riet E, Wuhrer M, Wahyuni S, Retra K, Deelder AM, Tielens AGM, van der Kleij D, Yazdanbakhsh M. Antibody responses to Ascaris-derived proteins and glycolipids: the role of phosphorylcholine. Parasite Immunol 2006; 28:363-71. [PMID: 16879308 DOI: 10.1111/j.1365-3024.2006.00844.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to proteins, glycolipids can be targets of antibody responses and contribute to host-pathogen interaction. Following the structural analysis of Ascaris lumbricoides-derived glycolipids, the antibody responses of a group of children with no, light and heavy infections were analysed. The role of the phosphorylcholine moiety, present on Ascaris glycoproteins and glycolipids, in antibody reactivity of these infected individuals was determined. Children carrying heavy infections showed highest IgG reactivity to glycolipids compared to lightly or non-infected children. Substantial IgG antibody reactivity to both (glyco)proteins and glycolipids was found to be directed to the phosphorylcholine moiety as determined by either removal of this group or a competition assay. This was most pronounced for glycolipids, where removal of the phosphorylcholine moieties by hydrofluoric acid treatment abrogated IgG antibody reactivity. Measurement of IgG4 and IgE isotypes showed no IgG4 reactivity to Ascaris glycolipids, but raised IgE responses were detected in subjects with light or no Ascaris infections, suggesting that IgE responses to glycolipids may play a role in controlling parasite burden. Differences found in antibody profiles to glycolipids and (glyco)proteins, indicate that these different classes of compounds may have distinct roles in shaping of and interacting with humoral immune responses.
Collapse
Affiliation(s)
- E van Riet
- Department of Parasitology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Wuhrer M, Koeleman CAM, Fitzpatrick JM, Hoffmann KF, Deelder AM, Hokke CH. Gender-specific expression of complex-type N-glycans in schistosomes. Glycobiology 2006; 16:991-1006. [PMID: 16825488 DOI: 10.1093/glycob/cwl020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sex-specific gene expression by Schistosoma mansoni worms has been demonstrated at the transcriptome as well as the proteome levels. In view of the important role of glycans in the biology of schistosomes and the interaction with their human host, we have investigated the sex-specific protein glycosylation. Mass spectrometric profiling and structural characterization of PNGase F-released N-glycans revealed the following gender-specific glycosylation patterns: Complex-type N-glycans of females mainly carried Gal(beta1-4)GlcNAc (LacNAc) and Gal(beta1-4)[Fuc(alpha1-3)]GlcNAc (Lewis x) antennae structures, whereas GalNAc(beta1-4)GlcNAc- (LacdiNAc; LDN) and GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc (LDN-F) were prevalent in N-glycans from males. LDN(-F) motifs were found to occur as repeats on the antennae of large N-glycans that contained up to seven LDN(-F) units. The female complex-type glycans were mostly di-antennary and tri-antennary, whereas male structures were predominantly of the mono-antennary and di-antennary type. Oligomannosidic N-glycans were expressed at similar levels in females and males. The localization of the sex-biased glycan motifs was studied by immunofluorescence microscopy using defined anti-glycan monoclonal antibodies (mAbs). The Lewis x element was strongly expressed in the gut of both males and females, but with respect to tegument localization, the females expressed this structure, while Lewis x seemed to be almost completely absent from the male tegument. The expression of LDN-F was predominantly detected in the parenchyma of both male and female worms as well as in the tegument of the male ventral cavity facing the female. LDN was detected in the tegument of male and female worms at similar levels. The sex-specific expression and differential localization of these antigenic glycan motifs in schistosomes may play a role in male-female interactions during conjugal biology and may lead to a differential immune reaction of the host to the two sexes.
Collapse
Affiliation(s)
- Manfred Wuhrer
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
Wuhrer M, Balog CIA, Catalina MI, Jones FM, Schramm G, Haas H, Doenhoff MJ, Dunne DW, Deelder AM, Hokke CH. IPSE/alpha-1, a major secretory glycoprotein antigen from schistosome eggs, expresses the Lewis X motif on core-difucosylated N-glycans. FEBS J 2006; 273:2276-92. [PMID: 16650003 DOI: 10.1111/j.1742-4658.2006.05242.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Schistosomes are parasitic flatworms that infect millions of people in (sub)tropical areas around the world. Glycoconjugates of schistosomes play a critical role in the interaction of the different developmental stages of the parasite with the host. In particular, glycosylated components of the eggs produced by the adult worm pairs living in the bloodstream are strongly immunogenic. We have investigated the glycosylation of interleukin-4-inducing factor from schistosome eggs (IPSE/alpha-1), a major secretory egg antigen from Schistosoma mansoni that triggers interleukin-4 production in human basophils, by MS analysis of tryptic glycopeptides. Nanoscale LC-MS(/MS) and MALDI-TOF(/TOF)-MS studies combined with enzymatic degradations showed that monomeric IPSE/alpha-1 contains two N-glycosylation sites, which are each occupied for a large proportion with core-difucosylated diantennary glycans that carry one or more Lewis X motifs. Lewis X has been reported as a major immunogenic glycan element of schistosomes. This is the first report both on the expression of Lewis X on a specific schistosome egg protein and on a protein-specific glycosylation analysis of schistosome eggs.
Collapse
Affiliation(s)
- Manfred Wuhrer
- Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wuhrer M, Koeleman CAM, Deelder AM, Hokke CH. Repeats of LacdiNAc and fucosylated LacdiNAc on N-glycans of the human parasite Schistosoma mansoni. FEBS J 2006; 273:347-61. [PMID: 16403022 DOI: 10.1111/j.1742-4658.2005.05068.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Glycans from glycoproteins of the worm stage of the human parasite Schistosoma mansoni were enzymatically released, fluorescently labelled and analysed using various mass spectrometric and chromatographic methods. A family of 28 mainly core-alpha1-6-fucosylated, diantennary N-glycans of composition Hex(3-4)HexNAc(6-12)Fuc(1-6) was found to carry dimers of N,N'-diacetyllactosediamine [LacdiNAc or LDN; GalNAc(beta1-4)GlcNAc(beta1-] with or without fucose alpha1-3-linked to the N-acetylglucosamine residues in the antennae {GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-3)GalNAc(beta1-4)[+/-Fuc(alpha1-3)]GlcNAc(beta1-}. To date, oligomeric LDN and oligomeric fucosylated LDN (LDNF) have been found only on N-glycans from mammalian cells engineered to express Caenorhabditis elegansbeta4-GalNAc transferase and human alpha3-fucosyltransferase IX [Z. S. Kawar et al. (2005) J Biol Chem280, 12810-12819]. It now appears that LDN(F) repeats can also occur in a natural system such as the schistosome parasite. Like monomeric LDN and LDNF, the dimeric LDN(F) moieties found here are expected to be targets of humoral and cellular immune responses during schistosome infection.
Collapse
Affiliation(s)
- Manfred Wuhrer
- Biomolecular Mass Spectrometry Unit, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Jenkins SJ, Hewitson JP, Jenkins GR, Mountford AP. Modulation of the host's immune response by schistosome larvae. Parasite Immunol 2005; 27:385-93. [PMID: 16179032 PMCID: PMC1825761 DOI: 10.1111/j.1365-3024.2005.00789.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Schistosomes appear to have evolved several strategies to down-regulate the host's immune response in order to promote their own survival. For the host, down-regulation is also beneficial as it can limit the extent of pathology. It is widely accepted that schistosomes modulate the immune response during the chronic phase of infection after egg deposition has started. However, there is increasing evidence that modulation of the immune response can occur much earlier at the time infective cercariae penetrate the host skin. In this review, we explore the various lines of evidence that excretory/secretory (ES) molecules from cercariae down-regulate the host's immune response. We highlight the immunological factors that are produced and may be involved in regulating the immune system (e.g. IL-10, and eicosanoids), as well as speculating on possible mechanisms of immune modulation (e.g. mast-cell activation, T-cell apoptosis, and/or the skewed activation of antigen-presenting cells [APCs]). Finally, we draw attention to several molecules of schistosome origin that have the potential to stimulate the regulatory response (e.g. glycans) and link these to potential host receptors (e.g. TLRs and C-type lectins).
Collapse
Affiliation(s)
- S J Jenkins
- Department of Biology, University of York, York YO10 5YW, UK
| | | | | | | |
Collapse
|
49
|
Geyer H, Wuhrer M, Resemann A, Geyer R. Identification and Characterization of Keyhole Limpet Hemocyanin N-Glycans Mediating Cross-reactivity with Schistosoma mansoni. J Biol Chem 2005; 280:40731-48. [PMID: 16135511 DOI: 10.1074/jbc.m505985200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keyhole limpet hemocyanin (KLH) of the mollusc Megathura crenulata is known to serologically cross-react with Schistosoma mansoni glycoconjugates in a carbohydrate-dependent manner. To elucidate the structural basis for this cross-reactivity, KLH glycans were released from tryptic glycopeptides and fluorescently labeled. Cross-reacting glycans were identified using a polyclonal antiserum reacting with soluble S. mansoni egg antigens, isolated by a three-dimensional fractionation scheme and analyzed by different mass spectrometric techniques as well as linkage analysis and exoglycosidase treatment. The results revealed that cross-reacting species comprise approximately 4.5% of released glycans. They all represent novel types of N-glycans with a Fuc(alpha1-3)GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAc motif, which is known to occur also in schistosomal glycoconjugates. The tetrasaccharide unit is attached to the 3-linked antenna of a trimannosyl core, which can be further decorated by galactosyl residues, a xylose residue in 2-position of the central mannose and/or a fucose at the innermost N-acetylglucosamine. This study provides for the first time detailed structural data on the KLH carbohydrate entities responsible for cross-reactivity with glycoconjugates from S. mansoni.
Collapse
Affiliation(s)
- Hildegard Geyer
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
50
|
Van de Vijver KK, Deelder AM, Jacobs W, Van Marck EA, Hokke CH. LacdiNAc- and LacNAc-containing glycans induce granulomas in an in vivo model for schistosome egg-induced hepatic granuloma formation. Glycobiology 2005; 16:237-43. [PMID: 16282603 DOI: 10.1093/glycob/cwj058] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Schistosomes, major parasitic helminths, express numerous glycoconjugates that provoke humoral and cellular immune responses in the infected human host. The main pathology in schistosomiasis is due to the formation of granulomas around tissue-trapped eggs and the resulting organ damage. By using a mouse model of induction of granulomas by hepatic implantation of antigen-coated beads, it has been determined that the glycan part of schistosomal soluble egg antigens (SEA) initiates granulomogenesis. To identify which individual glycan elements in this complex SEA mixture are granulomogenic, we have tested in the same mouse model conjugates of various synthetic oligosaccharides characteristic for schistosome eggs, including GalNAcbeta1-4GlcNAc (LacdiNAc, LDN), Galbeta1-4(Fucalpha1-3)GlcNAc (Lewisx), Fucalpha1-2Fucalpha1-3GlcNAc (DF-Gn), and Fucalpha1-3GalNAcbeta1-4(Fucalpha1-3)GlcNAc (F-LDN-F). Ribonuclease (RNase) A and B, and different fetuin glycoforms were included as controls. Only beads that carry glycoconjugates with terminal LacdiNAc or Galbeta1-4GlcNAc (LacNAc, LN) elements gave rise to granulomas, with macrophage, lymphocyte, and eosinophil levels similar to the granulomatous lesions caused by schistosome eggs in a natural infection. Uncoated beads, and beads coated with fucosylated glycoconjugates or glycoconjugates lacking terminally exposed Gal or GalNAc, only attracted a monolayer of macrophages. These results indicate that the formation of hepatic granulomas is triggered specifically by glycoconjugates which carry terminal LacNAc or LacdiNAc, both constituents of the schistosome egg.
Collapse
Affiliation(s)
- Koen K Van de Vijver
- Department of Pathology, Antwerp University, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | | | | | | | | |
Collapse
|