1
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
2
|
Doyle PS, Zhou YM, Hsieh I, Greenbaum DC, McKerrow JH, Engel JC. The Trypanosoma cruzi protease cruzain mediates immune evasion. PLoS Pathog 2011; 7:e1002139. [PMID: 21909255 PMCID: PMC3164631 DOI: 10.1371/journal.ppat.1002139] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/11/2011] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas' disease. Novel chemotherapy with the drug K11777 targets the major cysteine protease cruzain and disrupts amastigote intracellular development. Nevertheless, the biological role of the protease in infection and pathogenesis remains unclear as cruzain gene knockout failed due to genetic redundancy. A role for the T. cruzi cysteine protease cruzain in immune evasion was elucidated in a comparative study of parental wild type- and cruzain-deficient parasites. Wild type T. cruzi did not activate host macrophages during early infection (<60 min) and no increase in ∼P iκB was detected. The signaling factor NF-κB P65 colocalized with cruzain on the cell surface of intracellular wild type parasites, and was proteolytically cleaved. No significant IL-12 expression occurred in macrophages infected with wild type T. cruzi and treated with LPS and BFA, confirming impairment of macrophage activation pathways. In contrast, cruzain-deficient parasites induced macrophage activation, detectable iκB phosphorylation, and nuclear NF-κB P65 localization. These parasites were unable to develop intracellularly and survive within macrophages. IL 12 expression levels in macrophages infected with cruzain-deficient T. cruzi were comparable to LPS activated controls. Thus cruzain hinders macrophage activation during the early (<60 min) stages of infection, by interruption of the NF-κB P65 mediated signaling pathway. These early events allow T. cruzi survival and replication, and may lead to the spread of infection in acute Chagas' disease.
Collapse
Affiliation(s)
- Patricia S. Doyle
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Yuan M. Zhou
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Ivy Hsieh
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Doron C. Greenbaum
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - James H. McKerrow
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| | - Juan C. Engel
- Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
| |
Collapse
|
3
|
Cerecetto H, González M. Synthetic Medicinal Chemistry in Chagas' Disease: Compounds at The Final Stage of "Hit-To-Lead" Phase. Pharmaceuticals (Basel) 2010; 3:810-838. [PMID: 27713281 PMCID: PMC4034012 DOI: 10.3390/ph3040810] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 11/16/2022] Open
Abstract
Chagas' disease, or American trypanosomosiasis, has been the most relevant illness produced by protozoa in Latin America. Synthetic medicinal chemistry efforts have provided an extensive number of chemodiverse hits at the "active-to-hit" stage. However, only a more limited number of these have been studied in vivo in models of Chagas' disease. Herein, we survey some of the cantidates able to surpass the "hit-to-lead" stage discussing their limitations or merit to enter in clinical trials in the short term.
Collapse
Affiliation(s)
- Hugo Cerecetto
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Mercedes González
- Laboratorio de Química Orgánica, Instituto de Química Biológica-Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| |
Collapse
|
4
|
Campos FM, Liarte DB, Mortara RA, Romanha AJ, Murta SM. Characterization of a gene encoding alcohol dehydrogenase in benznidazole-susceptible and -resistant populations of Trypanosoma cruzi. Acta Trop 2009; 111:56-63. [PMID: 19426664 DOI: 10.1016/j.actatropica.2009.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 01/29/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
Alcohol dehydrogenases (ADH) are a class of oxidoreductases that catalyse the reversible oxidation of ethanol to acetaldehyde. In the human parasite Trypanosoma cruzi the TcADH gene was identified through microarray analysis as having reduced transcription in an in vitro induced benznidazole (BZ)-resistant population. In the present study, we have extended these results by characterizing the TcADH gene from 11 strains of T. cruzi that were either susceptible or naturally resistant to benznidazole and nifurtimox or had in vivo selected or in vitro induced resistance to BZ. Sequence comparisons showed that TcADH was more similar to prokaryotic ADHs than to orthologs identified Leishmania spp. Immunolocalisation using confocal microscopy revealed that TcADH is present in the kinetoplast region and along the parasite body, consistent with the mitochondrial localization predicted by sequence analysis. Northern blots showed a 1.9kb transcript with similar signal intensity in all T. cruzi samples analysed, except for the in vitro selected resistant population, where transcript levels were 2-fold lower. These findings were confirmed by quantitative real-time PCR. In Western blot analysis, anti-TcADH polyclonal antisera recognised a 42kDa protein in all T. cruzi strains tested. The level of expression of this polypeptide was approximately 2-fold lower in the in vitro induced benznidazole-resistant strain, than in the susceptible parental strain. The chromosomal location of the TcADH gene was variable, but was not associated with the zymodeme or with the drug resistance phenotype. The data presented here show that the TcADH enzyme has a decreased level of expression in the in vitro induced BZ-resistant T. cruzi population, a situation that has not been observed in the in vivo selected BZ-resistant and naturally resistant strains.
Collapse
|
5
|
Shigihara T, Hashimoto M, Shindo N, Aoki T. Transcriptome profile of Trypanosoma cruzi-infected cells: simultaneous up- and down-regulation of proliferation inhibitors and promoters. Parasitol Res 2007; 102:715-22. [PMID: 18058129 DOI: 10.1007/s00436-007-0819-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 11/21/2007] [Indexed: 01/09/2023]
Abstract
As Trypanosoma cruzi, the etiological agent of Chagas disease, multiplies in the cytoplasm of nucleated host cells, infection with this parasite is highly likely to affect host cells. We performed an exhaustive transcriptome analysis of T. cruzi-infected HeLa cells using an oligonucleotide microarray containing probes for greater than 47,000 human gene transcripts. In comparison with uninfected cells, those infected with T. cruzi showed greater than threefold up-regulation of 41 genes and greater than threefold down-regulation of 23 genes. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) of selected, differentially expressed genes confirmed the microarray data. Many of these up- and down-regulated genes were related to cellular proliferation, including seven up-regulated genes encoding proliferation inhibitors and three down-regulated genes encoding proliferation promoters, strongly suggesting that T. cruzi infection inhibits host cell proliferation, which may allow more time for T. cruzi to replicate and produce its intracellular nests. These findings provide new insight into the molecular mechanisms by which intracellular T. cruzi infection influences the host cell, leading to pathogenicity.
Collapse
Affiliation(s)
- Takako Shigihara
- Division of Molecular and Biochemical Research, Biomedical Research Center, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | |
Collapse
|