1
|
Earls KN, Oyen KJ. Metabolic rate does not scale with body size or activity in some tick species. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:869-885. [PMID: 39287719 DOI: 10.1007/s10493-024-00958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024]
Abstract
Respiration in ticks is highly efficient and exceptionally low. Ticks can survive years between bloodmeals by having low activity and respiration to conserve energetic resources. Our objective was to compare metabolic (VCO2) and activity rates across 6 tick species. We predicted that VCO2 would be different among species and scale linearly with activity and body mass. Activity and CO2 production were measured for 32 h in 6 tick species: Dermacentor andersoni, D. variabilis, Haemaphysalis longicornis, Rhipicephalus appendiculatus, R. microplus, and R. sanguineus. Individual ticks were measured for 30 min three times to ensure breathing occurred. Absolute and mass-specific VCO2, total activity, body mass, and ventilation patterns were compared among species. As expected, ticks did not always breathe during the 30-minute measurements, especially R. sanguineus. Ventilation patterns differed among species with R. microplus having primarily cyclic patterns and R. appendiculatus having discontinuous gas exchange. VCO2 did not scale with body mass in most species. Haemaphysalis longicornis and R. sanguineus had the lowest VCO2; however, H. longicornis was the second most active species. Life history, including questing behavior and range expansion, could be contributing to differences between species. For instance, H. longicornis had exceptionally low metabolic rates despite above average activity levels, suggesting an energetic advantage which may underlie recently documented range expansions in North America. Our results demonstrate how ticks utilize energetic resources to maximize longevity. Future research describing questing behavior and distribution modeling may help explain differences in metabolic rates and activity and impacts on life history traits.
Collapse
Affiliation(s)
- Kayla N Earls
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Kennan J Oyen
- Animal Diseases Research Unit, Department of Agriculture, Agricultural Research Service, 3003 ADBF, Pullman, WA, 99164-6630, USA.
| |
Collapse
|
2
|
Li S, Wang J, Tian X, Toufeeq S, Huang W. Immunometabolic regulation during the presence of microorganisms and parasitoids in insects. Front Immunol 2023; 14:905467. [PMID: 37818375 PMCID: PMC10560992 DOI: 10.3389/fimmu.2023.905467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Multicellular organisms live in environments containing diverse nutrients and a wide variety of microbial communities. On the one hand, the immune response of organisms can protect from the intrusion of exogenous microorganisms. On the other hand, the dynamic coordination of anabolism and catabolism of organisms is a necessary factor for growth and reproduction. Since the production of an immune response is an energy-intensive process, the activation of immune cells is accompanied by metabolic transformations that enable the rapid production of ATP and new biomolecules. In insects, the coordination of immunity and metabolism is the basis for insects to cope with environmental challenges and ensure normal growth, development and reproduction. During the activation of insect immune tissues by pathogenic microorganisms, not only the utilization of organic resources can be enhanced, but also the activated immune cells can usurp the nutrients of non-immune tissues by generating signals. At the same time, insects also have symbiotic bacteria in their body, which can affect insect physiology through immune-metabolic regulation. This paper reviews the research progress of insect immune-metabolism regulation from the perspective of insect tissues, such as fat body, gut and hemocytes. The effects of microorganisms (pathogenic bacteria/non-pathogenic bacteria) and parasitoids on immune-metabolism were elaborated here, which provide guidance to uncover immunometabolism mechanisms in insects and mammals. This work also provides insights to utilize immune-metabolism for the formulation of pest control strategies.
Collapse
Affiliation(s)
- Shirong Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Jing Wang
- College of Life Sciences, Shangrao Normal University, Shangrao, China
| | - Xing Tian
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi, China
| | - Shahzad Toufeeq
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wuren Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Guégan M, Martin E, Tran Van V, Fel B, Hay AE, Simon L, Butin N, Bellvert F, Haichar FEZ, Valiente Moro C. Mosquito sex and mycobiota contribute to fructose metabolism in the Asian tiger mosquito Aedes albopictus. MICROBIOME 2022; 10:138. [PMID: 36038937 PMCID: PMC9425969 DOI: 10.1186/s40168-022-01325-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/11/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Plant floral nectars contain natural sugars such as fructose, which are a primary energy resource for adult mosquitoes. Despite the importance of carbohydrates for mosquito metabolism, a limited knowledge is available about the pathways involved in sugar assimilation by mosquitoes and their associated microbiota. To this end, we used 13C-metabolomic and stable isotope probing approaches coupled to high-throughput sequencing to reveal fructose-related mosquito metabolic pathways and the dynamics of the active gut microbiota following fructose ingestion. RESULTS Our results revealed significant differences in metabolic pathways between males and females, highlighting different modes of central carbon metabolism regulation. Competitive and synergistic interactions of diverse fungal taxa were identified within the active mycobiota following fructose ingestion. In addition, we identified potential cross-feeding interactions between this. Interestingly, there is a strong correlation between several active fungal taxa and the presence of fructose-derived metabolites. CONCLUSIONS Altogether, our results provide novel insights into mosquito carbohydrate metabolism and demonstrate that dietary fructose as it relates to mosquito sex is an important determinant of mosquito metabolism; our results also further highlight the key role of active mycobiota interactions in regulating the process of fructose assimilation in mosquitoes. This study opens new avenues for future research on mosquito-microbiota trophic interactions related to plant nectar-derived sugars. Video abstract.
Collapse
Affiliation(s)
- Morgane Guégan
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Edwige Martin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Van Tran Van
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Benjamin Fel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Anne-Emmanuelle Hay
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
| | - Laurent Simon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Noémie Butin
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Floriant Bellvert
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Feth El Zahar Haichar
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France
- INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon, 10 rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France.
| |
Collapse
|
4
|
Natural infection by the protozoan Leptomonas wallacei impacts the morphology, physiology, reproduction, and lifespan of the insect Oncopeltus fasciatus. Sci Rep 2019; 9:17468. [PMID: 31767875 PMCID: PMC6877526 DOI: 10.1038/s41598-019-53678-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/05/2019] [Indexed: 11/20/2022] Open
Abstract
Trypanosomatids are protozoan parasites that infect thousands of globally dispersed hosts, potentially affecting their physiology. Several species of trypanosomatids are commonly found in phytophagous insects. Leptomonas wallacei is a gut-restricted insect trypanosomatid only retrieved from Oncopeltus fasciatus. The insects get infected by coprophagy and transovum transmission of L. wallacei cysts. The main goal of the present study was to investigate the effects of a natural infection by L. wallacei on the hemipteran insect O. fasciatus, by comparing infected and uninfected individuals in a controlled environment. The L. wallacei-infected individuals showed reduced lifespan and morphological alterations. Also, we demonstrated a higher infection burden in females than in males. The infection caused by L. wallacei reduced host reproductive fitness by negatively impacting egg load, oviposition, and eclosion, and promoting an increase in egg reabsorption. Moreover, we associated the egg reabsorption observed in infected females, with a decrease in the intersex gene expression. Finally, we suggest alterations in population dynamics induced by L. wallacei infection using a mathematical model. Collectively, our findings demonstrated that L. wallacei infection negatively affected the physiology of O. fasciatus, which suggests that L. wallacei potentially has a vast ecological impact on host population growth.
Collapse
|
5
|
Sanz-Aguilar A, Payo-Payo A, Rotger A, Yousfi L, Moutailler S, Beck C, Dumarest M, Igual JM, Miranda MÁ, Viñas Torres M, Picorelli V, Gamble A, Boulinier T. Infestation of small seabirds by Ornithodoros maritimus ticks: Effects on chick body condition, reproduction and associated infectious agents. Ticks Tick Borne Dis 2019; 11:101281. [PMID: 31473099 DOI: 10.1016/j.ttbdis.2019.101281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/16/2019] [Accepted: 08/23/2019] [Indexed: 01/25/2023]
Abstract
Ticks can negatively affect their host by direct effects as blood feeding causing anaemia or discomfort, or by pathogen transmission. Consequently, ticks can have an important role in the population dynamics of their hosts. However, specific studies on the demographic effects of tick infestation on seabirds are still scarce. Seabird ticks have also the potential to be responsible for the circulation of little known tick-borne agents, which could have implications for non-seabird species. Here, we report the results of investigations on potential associations between soft tick Ornithodoros maritimus load and reproductive parameters of storm petrels Hydrobates pelagicus breeding in a large colony in a cave of Espartar Island, in the Balearic archipelago. We also investigated by molecular analyses the potential viral and bacterial pathogens associated with O. maritimus ticks present at the colony. Lower nestling survival was recorded in the most infested area, deep in the cave, compared to the area near the entrance. The parasite load was negatively associated with the body condition of the nestlings. One pool of ticks tested positive for West Nile virus and 4 pools tested positive for a Borrelia species which was determined by targeted nested PCR to have a 99% sequence identity with B. turicatae, a relapsing fever Borrelia. Overall, these results show that further investigations are needed to better understand the ecology and epidemiology of the interactions between ticks, pathogens and Procellariiform species.
Collapse
Affiliation(s)
- Ana Sanz-Aguilar
- Animal Demography and Ecology Unit, IMEDEA (CSIC-UIB), Miguel Marques 21, Esporles, Spain; Applied Zoology and Animal Conservation Group, University of Balearic Islands, Ctra Valldemosa km 7.5, Palma, Spain.
| | - Ana Payo-Payo
- School of Biological Sciences, Zoology Building, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Andreu Rotger
- Animal Demography and Ecology Unit, IMEDEA (CSIC-UIB), Miguel Marques 21, Esporles, Spain
| | - Lena Yousfi
- UMR BIPAR, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Sara Moutailler
- UMR BIPAR, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Cecile Beck
- UMR Virologie, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - Marine Dumarest
- UMR Virologie, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue Pierre et Marie Curie, 94700 Maisons-Alfort, France
| | - José Manuel Igual
- Animal Demography and Ecology Unit, IMEDEA (CSIC-UIB), Miguel Marques 21, Esporles, Spain
| | - Miguel Ángel Miranda
- Applied Zoology and Animal Conservation Group, University of Balearic Islands, Ctra Valldemosa km 7.5, Palma, Spain
| | - Mariana Viñas Torres
- Servei de Planificació del Medi Natural, Conselleria de Medi Ambient, Gremi Corredors 10, Palma, Spain
| | - Virginia Picorelli
- RRNN es Vedrà, es Vedranell i els illots de Ponent, Carrer de Múrcia 6, Eivissa, Spain
| | - Amandine Gamble
- CEFE CNRS Université Montpellier, Campus CNRS, Montpellier, France
| | | |
Collapse
|
6
|
Barabadi H, Alizadeh Z, Rahimi MT, Barac A, Maraolo AE, Robertson LJ, Masjedi A, Shahrivar F, Ahmadpour E. Nanobiotechnology as an emerging approach to combat malaria: A systematic review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:221-233. [DOI: 10.1016/j.nano.2019.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
|
7
|
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:31-42. [PMID: 30959109 DOI: 10.1016/j.ibmb.2019.04.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Mounting an immune response is an energy-consuming process. Activating immune functions requires the synthesis of many new molecules and the undertaking of numerous cellular tasks and it must happen rapidly. Therefore, immune cells undergo a metabolic switch, which enables the rapid production of ATP and new biomolecules. Such metabolism is very nutrient-demanding, especially of glucose and glutamine, and thus the immune response is associated with a systemic metabolic switch, redirecting nutrient flow towards immunity and away from storage and consumption by non-immune processes. The immune system during its activation becomes privileged in terms of using organismal resources and the activated immune cells usurp nutrients by producing signals which reduce the metabolism of non-immune tissues. The insect fat body plays a dual role in which it is both a metabolic organ, storing energy and providing energy to the rest of the organism, but also an organ important for humoral immunity. Therefore, the internal switch from anabolism to the production of antimicrobial peptides occurs in the fat body during infection. The mechanisms regulating metabolism during the immune response ensure adequate energy for an effective response (resistance) but they must be properly regulated because energy is not unlimited and the energy needs of the immune system thus interfere with the needs of other physiological traits. If not properly regulated, the immune response may in the end decrease fitness via decreasing disease tolerance.
Collapse
Affiliation(s)
- Tomas Dolezal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Gabriela Krejcova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Pavla Nedbalova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Paul Strasser
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
8
|
Long-term pathogenic response to Plasmodium relictum infection in Culex pipiens mosquito. PLoS One 2018; 13:e0192315. [PMID: 29401525 PMCID: PMC5798818 DOI: 10.1371/journal.pone.0192315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/22/2018] [Indexed: 11/19/2022] Open
Abstract
The transmission of Plasmodium within a vertebrate host population is strongly associated with the life history traits of its vector. Therefore the effect of malaria infection on mosquito fecundity and longevity has traditionally received a lot of attention. Several species of malaria parasites reduce mosquito fecundity, nevertheless almost all of the studies have focused only on the first gonotrophic cycle. Yet, during their lifetime, female mosquitoes go through several gonotrophic cycles, which raises the question of whether they are able to compensate the fecundity costs induced by the parasite. The impact of Plasmodium infection on female longevity is not so clear and has produced conflicting results. Here we measured the impact of Plasmodium relictum on its vector’s longevity and fecundity during three consecutive gonotrophic cycles. In accordance with previous studies, we observed a negative impact of Plasmodium infection on mosquito (Culex pipiens) fecundity in the first gonotrophic cycle. Interestingly, despite having taken two subsequent uninfected blood meals, the negative impact of malaria parasite persisted. Nevertheless no impact of infection on mosquito longevity was observed. Our results are not in line with the hypothesis that the reduction of fecundity observed in infected mosquitoes is an adaptive strategy of Plasmodium to increase the longevity of its vector. We discuss the different underlying mechanisms that may explain our results.
Collapse
|
9
|
Delhaye J, Aletti C, Glaizot O, Christe P. Exposure of the mosquito vector Culex pipiens to the malaria parasite Plasmodium relictum: effect of infected blood intake on immune and antioxidant defences, fecundity and survival. Parasit Vectors 2016; 9:616. [PMID: 27899136 PMCID: PMC5129600 DOI: 10.1186/s13071-016-1905-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/22/2016] [Indexed: 12/28/2022] Open
Abstract
Background The intake of a Plasmodium-infected blood meal may affect mosquito physiology and a series of trade-offs may occur, in particular between immune defences, reproduction and self-maintenance. We evaluated the cost of exposure to Plasmodium in the mosquito vector by investigating the effect of exposure on fecundity and survival and the implication of immune and antioxidant defences in mediating this cost. Methods We used the natural Culex pipiens-Plasmodium relictum association. We exposed female mosquitoes to increasing levels of parasites by allowing them to feed either on uninfected canaries, Serinus canaria, (unexposed mosquitoes) or on infected canaries with low (low exposure) or high (high exposure) parasitaemia. We recorded blood meal size, fecundity (laying probability and clutch size) and survival. We quantified the expression of genes involved in immune and antioxidant defences (nitric oxide synthase, NOS; superoxide dismutase, SOD; glucose-6-phosphate dehydrogenase, G6PDH). Results We found that the laying probability of exposed females decreased with increasing exposure to the parasite and with increasing SOD expression. Clutch size of exposed females was higher compared to unexposed ones for similar blood meal size and was positively correlated to the NOS expression. We found no effect of exposure on survival. After blood meal intake, SOD increased in the three groups, NOS increased in exposed females and G6PDH increased in highly exposed females only. Conclusions Our results illustrated a trade-off between fight against the parasite and reproduction and a cost of exposure which might be mediated by the investment in immune and/or antioxidant defences. They also showed that this trade-off could lead to opposed outcome, potentially depending on the vector physiological status. Finally, they highlighted that the ingestion of a Plasmodium-infected blood meal may affect mosquito life history traits in a complex way. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1905-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Delhaye
- Department of Ecology and Evolution, Biophore Unil Sorge, University of Lausanne, Lausanne, CH-1015, Switzerland.
| | - Consolée Aletti
- Department of Ecology and Evolution, Biophore Unil Sorge, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Olivier Glaizot
- Museum of Zoology, Place de la Riponne 6, Lausanne, CH-1005, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, Biophore Unil Sorge, University of Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
10
|
Kazlauskas N, Klappenbach M, Depino AM, Locatelli FF. Sickness Behavior in Honey Bees. Front Physiol 2016; 7:261. [PMID: 27445851 PMCID: PMC4924483 DOI: 10.3389/fphys.2016.00261] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/14/2016] [Indexed: 11/13/2022] Open
Abstract
During an infection, animals suffer several changes in their normal physiology and behavior which may include lethargy, appetite loss, and reduction in grooming and general movements. This set of alterations is known as sickness behavior and although it has been extensively believed to be orchestrated primarily by the immune system, a relevant role for the central nervous system has also been established. The aim of the present work is to develop a simple animal model to allow studying how the immune and the nervous systems interact coordinately during an infection. We administered a bacterial lipopolysaccharide (LPS) into the thorax of honey bees to mimic a bacterial infection, and then we evaluated a set of stereotyped behaviors of the animals that might be indicative of sickness behavior. First, we show that this immune challenge reduces the locomotor activity of the animals in a narrow time window after LPS injection. Furthermore, bees exhibit a loss of appetite 60 and 90 min after injection, but not 15 h later. We also demonstrate that LPS injection reduces spontaneous antennal movements in harnessed animals, which suggests a reduction in the motivational state of the bees. Finally, we show that the LPS injection diminishes the interaction between animals, a crucial behavior in social insects. To our knowledge these results represent the first systematic description of sickness behavior in honey bees and provide important groundwork for the study of the interaction between the immune and the neural systems in an insect model.
Collapse
Affiliation(s)
- Nadia Kazlauskas
- Instituto de Fisiología Biología Molecular y Neurociencias, University of Buenos Aires-CONICETBuenos Aires, Argentina; Departamento de Fisiología Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos AiresBuenos Aires, Argentina
| | - Martín Klappenbach
- Instituto de Fisiología Biología Molecular y Neurociencias, University of Buenos Aires-CONICETBuenos Aires, Argentina; Departamento de Fisiología Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos AiresBuenos Aires, Argentina
| | - Amaicha M Depino
- Instituto de Fisiología Biología Molecular y Neurociencias, University of Buenos Aires-CONICETBuenos Aires, Argentina; Departamento de Fisiología Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos AiresBuenos Aires, Argentina
| | - Fernando F Locatelli
- Instituto de Fisiología Biología Molecular y Neurociencias, University of Buenos Aires-CONICETBuenos Aires, Argentina; Departamento de Fisiología Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, University of Buenos AiresBuenos Aires, Argentina
| |
Collapse
|
11
|
Heterosis Increases Fertility, Fecundity, and Survival of Laboratory-Produced F1 Hybrid Males of the Malaria Mosquito Anopheles coluzzii. G3-GENES GENOMES GENETICS 2015; 5:2693-709. [PMID: 26497140 PMCID: PMC4683642 DOI: 10.1534/g3.115.021436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically-modified male mosquitoes critically depends on mating between laboratory-reared males and wild females. Unfortunately, mosquito colonization, laboratory rearing, and genetic manipulations can all negatively affect male competitiveness. Heterosis is commonly used to produce domestic animals with enhanced vigor and homogenous genetic background and could therefore potentially improve the mating performance of mass-reared male mosquitoes. Here, we produced enhanced hybrid males of the malaria mosquito Anopheles coluzzii by crossing two strains colonized >35 and 8 years ago. We compared the amount of sperm and mating plug proteins they transferred to females, as well as their insemination rate, reproductive success and longevity under various experimental conditions. Across experiments, widespread adaptations to laboratory mating were detected in the older strain. In large-group mating experiments, no overall hybrid advantage in insemination rates and the amount of sperm and accessory gland proteins transferred to females was detected. Despite higher sperm activity, hybrid males did not appear more fecund. However, individual-male mating and laboratory-swarm experiments revealed that hybrid males, while inseminating fewer females than older inbred males, were significantly more fertile, producing larger mating plugs and drastically increasing female fecundity. Heterotic males also showed increased longevity. These results validate the use of heterosis for creating hybrid males with improved fitness from long-established inbred laboratory strains. Therefore, this simple approach could facilitate disease control strategies based on male mosquito releases with important ultimate benefits to human health.
Collapse
|
12
|
Burnett KG, Burnett LE. Respiratory and Metabolic Impacts of Crustacean Immunity: Are there Implications for the Insects? Integr Comp Biol 2015. [DOI: 10.1093/icb/icv094] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Lalubin F, Delédevant A, Glaizot O, Christe P. Natural malaria infection reduces starvation resistance of nutritionally stressed mosquitoes. J Anim Ecol 2014; 83:850-7. [PMID: 24286465 DOI: 10.1111/1365-2656.12190] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/24/2013] [Indexed: 11/26/2022]
Abstract
In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly been ignored and often relied on unnatural or allopatric Plasmodium/vector associations. Here, we investigated the effects of natural avian malaria infection on both fecundity and survival of field-caught female Culex pipiens mosquitoes, individually maintained in laboratory conditions. We manipulated environmental quality by providing mosquitoes with different concentrations of glucose-feeding solution prior to submitting them to a starvation challenge. We used molecular-based methods to assess mosquitoes' infection status. We found that mosquitoes infected with Plasmodium had lower starvation resistance than uninfected ones only under low nutritional conditions. The effect of nutritional stress varied with time, with the difference of starvation resistance between optimally and suboptimally fed mosquitoes increasing from spring to summer, as shown by a significant interaction between diet treatment and months of capture. Infected and uninfected mosquitoes had similar clutch size, indicating no effect of infection on fecundity. Overall, this study suggests that avian malaria vectors may suffer Plasmodium infection costs in their natural habitat, under certain environmental conditions. This may have major implications for disease transmission in the wild.
Collapse
Affiliation(s)
- Fabrice Lalubin
- Department of Ecology and Evolution, Le Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland.,Museum of Zoology, Place de la Riponne 6, CH-1014, Lausanne, Switzerland
| | - Aline Delédevant
- Department of Ecology and Evolution, Le Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, Le Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland.,Museum of Zoology, Place de la Riponne 6, CH-1014, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, Le Biophore, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
14
|
Arnold PA, Johnson KN, White CR. Physiological and metabolic consequences of viral infection in Drosophila melanogaster. ACTA ACUST UNITED AC 2013; 216:3350-7. [PMID: 23685974 DOI: 10.1242/jeb.088138] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An extensively used model system for investigating anti-pathogen defence and innate immunity involves Drosophila C virus (DCV) and Drosophila melanogaster. While there has been a significant effort to understand infection consequences at molecular and genetic levels, an understanding of fundamental higher-level physiology of this system is lacking. Here, we investigate the metabolic rate, locomotory activity, dry mass and water content of adult male flies injected with DCV, measured over the 4 days prior to virus-induced mortality. DCV infection resulted in multiple pathologies, notably the depression of metabolic rate beginning 2 days post-infection as a response to physiological stress. Even in this depressed metabolic state, infected flies did not decrease their activity until 1 day prior to mortality, which further suggests that cellular processes and synthesis are disrupted because of viral infection. Growth rate was also reduced, indicating that energy partitioning is altered as infection progresses. Microbial infection in insects typically results in an increase in excretion; however, water appeared to be retained in DCV-infected flies. We hypothesise that this is due to a fluid intake-output imbalance due to disrupted transport signalling and a reduced rate of metabolic processing. Furthermore, infected flies had a reduced rate of respiration as a consequence of metabolic depression, which minimised water loss, and the excess mass as a result of water retention is concurrent with impaired locomotory ability. These findings contribute to developing a mechanistic understanding of how pathologies accumulate and lead to mortality in infected flies.
Collapse
Affiliation(s)
- Pieter A Arnold
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
15
|
Effects of Bartonella spp. on flea feeding and reproductive performance. Appl Environ Microbiol 2013; 79:3438-43. [PMID: 23542614 DOI: 10.1128/aem.00442-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous pathogens are transmitted from one host to another by hematophagous insect vectors. The interactions between a vector-borne organism and its vector vary in many ways, most of which are yet to be explored and identified. These interactions may play a role in the dynamics of the infection cycle. One way to evaluate these interactions is by studying the effects of the tested organism on the vector. In this study, we tested the effects of infection with Bartonella species on fitness-related variables of fleas by using Bartonella sp. strain OE 1-1, Xenopsylla ramesis fleas, and Meriones crassus jirds as a model system. Feeding parameters, including blood meal size and metabolic rate during digestion, as well as reproductive parameters, including fecundity, fertility, and life span, were compared between fleas experimentally infected with Bartonella and uninfected fleas. In addition, the developmental time, sex ratio, and body size of F1 offspring fleas were compared between the two groups. Most tested parameters did not differ between infected and uninfected fleas. However, F1 males produced by Bartonella-positive females were significantly smaller than F1 males produced by Bartonella-negative female fleas. The findings in this study suggest that bartonellae are well adapted to their flea vectors, and by minimally affecting their fitness they have evolved to better spread themselves in the natural environment.
Collapse
|
16
|
Cator LJ, Lynch PA, Read AF, Thomas MB. Do malaria parasites manipulate mosquitoes? Trends Parasitol 2012; 28:466-70. [PMID: 23044288 DOI: 10.1016/j.pt.2012.08.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/15/2012] [Accepted: 08/15/2012] [Indexed: 11/26/2022]
Abstract
Malaria parasites have been suggested to alter the behavior of mosquito vectors to increase the likelihood of transmission. Some empirical evidence supports this hypothesis, yet the role of manipulation is ignored in most epidemiological models, and behavioral differences between infected and uninfected females are not considered in the development or implementation of control measures. We suggest that this disconnect exists because the link between behavioral alteration and actual transmission in the field has yet to be demonstrated or quantified fully. We review and discuss the current evidence for manipulation, explore its potential significance for malaria transmission, and suggest ways to move this hypothesis forward from theory to potential application in malaria control.
Collapse
Affiliation(s)
- Lauren J Cator
- Center for Infectious Disease Dynamics, Department of Entomology, Pennsylvania State University, University Park, PA, USA.
| | | | | | | |
Collapse
|
17
|
Vézilier J, Nicot A, Gandon S, Rivero A. Plasmodium infection decreases fecundity and increases survival of mosquitoes. Proc Biol Sci 2012; 279:4033-41. [PMID: 22859589 DOI: 10.1098/rspb.2012.1394] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-lived mosquitoes maximize the chances of Plasmodium transmission. Yet, in spite of decades of research, the effect of Plasmodium parasites on mosquito longevity remains highly controversial. On the one hand, many studies report shorter lifespans in infected mosquitoes. On the other hand, parallel (but separate) studies show that Plasmodium reduces fecundity and imply that this is an adaptive strategy of the parasite aimed at redirecting resources towards longevity. No study till date has, however, investigated fecundity and longevity in the same individuals to see whether this prediction holds. In this study, we follow for both fecundity and longevity in Plasmodium-infected and uninfected mosquitoes using a novel, albeit natural, experimental system. We also explore whether the genetic variations that arise through the evolution of insecticide resistance modulate the effect of Plasmodium on these two life-history traits. We show that (i) a reduction in fecundity in Plasmodium-infected mosquitoes is accompanied by an increase in longevity; (ii) this increase in longevity arises through a trade-off between reproduction and survival; and (iii) in insecticide-resistant mosquitoes, the slope of this trade-off is steeper when the mosquito is infected by Plasmodium (cost of insecticide resistance).
Collapse
Affiliation(s)
- J Vézilier
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, CNRS UMR-5290, IRD, 911 Avenue Agropolis, 34394 Montpellier, France.
| | | | | | | |
Collapse
|
18
|
Huestis DL, Yaro AS, Traoré AI, Adamou A, Kassogué Y, Diallo M, Timbiné S, Dao A, Lehmann T. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. ACTA ACUST UNITED AC 2011; 214:2345-53. [PMID: 21697426 DOI: 10.1242/jeb.054668] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the Sahel, the Anopheles gambiae complex consists of Anopheles arabiensis and the M and S molecular forms of A. gambiae sensu stricto. However, the composition of these malaria vectors varies spatially and temporally throughout the region and is thought to be linked to environmental factors such as rainfall, larval site characteristics and duration of the dry season. To examine possible physiological divergence between these taxa, we measured metabolic rates of mosquitoes during the wet season in a Sahelian village in Mali. To our knowledge, this study provides the first measurements of metabolic rates of A. gambiae and A. arabiensis in the field. The mean metabolic rate of A. arabiensis was higher than that of M-form A. gambiae when accounting for the effects of female gonotrophic status, temperature and flight activity. However, after accounting for their difference in body size, no significant difference in metabolic rate was found between these two species (whilst all other factors were found to be significant). Thus, body size may be a key character that has diverged in response to ecological differences between these two species. Alternatively, these species may display additional differences in metabolic rate only during the dry season. Overall, our results indicate that changes in behavior and feeding activity provide an effective mechanism for mosquitoes to reduce their metabolic rate, and provide insight into the possible strategies employed by aestivating individuals during the dry season. We hypothesize that female mosquitoes switch to sugar feeding while in dormancy because of elevated metabolism associated with blood digestion.
Collapse
Affiliation(s)
- Diana L Huestis
- Laboratory of Malaria and Vector Research, NIAID, NIH, 12735 Twinbrook Pkwy, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Araujo RV, Maciel C, Hartfelder K, Capurro ML. Effects of Plasmodium gallinaceum on hemolymph physiology of Aedes aegypti during parasite development. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:265-273. [PMID: 21112329 DOI: 10.1016/j.jinsphys.2010.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/10/2010] [Accepted: 11/19/2010] [Indexed: 05/30/2023]
Abstract
Insect disease vectors show diminished fecundity when infected with Plasmodium. This phenomenon has already been demonstrated in laboratory models such as Aedes aegypti, Anopheles gambiae and Anopheles stephensi. This study demonstrates several changes in physiological processes of A. aegypti occurring upon infection with Plasmodium gallinaceum, such as reduced ecdysteroid levels in hemolymph as well as altered expression patterns for genes involved in vitellogenesis, lipid transport and immune response. Furthermore, we could show that P. gallinaceum infected A. aegypti presented a reduction in reproductive fitness, accompanied by an activated innate immune response and increase in lipophorin expression, with the latter possibly representing a nutritional resource for Plasmodium sporozoites.
Collapse
Affiliation(s)
- Ricardo Vieira Araujo
- Departamento de Clínica Médica, Faculdade de Medicina de São Paulo, Universidade de São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
20
|
Dietrich M, Gómez-Díaz E, McCoy KD. Worldwide distribution and diversity of seabird ticks: implications for the ecology and epidemiology of tick-borne pathogens. Vector Borne Zoonotic Dis 2010; 11:453-70. [PMID: 20874222 DOI: 10.1089/vbz.2010.0009] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ubiquity of ticks and their importance in the transmission of pathogens involved in human and livestock diseases are reflected by the growing number of studies focusing on tick ecology and the epidemiology of tick-borne pathogens. Likewise, the involvement of wild birds in dispersing pathogens and their role as reservoir hosts are now well established. However, studies on tick-bird systems have mainly focused on land birds, and the role of seabirds in the ecology and epidemiology of tick-borne pathogens is rarely considered. Seabirds typically have large population sizes, wide geographic distributions, and high mobility, which make them significant potential players in the maintenance and dispersal of disease agents at large spatial scales. They are parasitized by at least 29 tick species found across all biogeographical regions of the world. We know that these seabird-tick systems can harbor a large diversity of pathogens, although detailed studies of this diversity remain scarce. In this article, we review current knowledge on the diversity and global distribution of ticks and tick-borne pathogens associated with seabirds. We discuss the relationship between seabirds, ticks, and their pathogens and examine the interesting characteristics of these relationships from ecological and epidemiological points of view. We also highlight some future research directions required to better understand the evolution of these systems and to assess the potential role of seabirds in the epidemiology of tick-borne pathogens.
Collapse
Affiliation(s)
- Muriel Dietrich
- Génétique et Evolution des Maladies Infectieuses, UMR 2724 CNRS-IRD, Centre IRD, Montpellier, France.
| | | | | |
Collapse
|
21
|
Aboagye-Antwi F, Guindo A, Traoré AS, Hurd H, Coulibaly M, Traoré S, Tripet F. Hydric stress-dependent effects of Plasmodium falciparum infection on the survival of wild-caught Anopheles gambiae female mosquitoes. Malar J 2010; 9:243. [PMID: 20796288 PMCID: PMC2939621 DOI: 10.1186/1475-2875-9-243] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 08/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whether Plasmodium falciparum, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics. METHODS In natural mosquito populations, Plasmodium fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed Anopheles gambiae s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis. RESULTS Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of Anopheles gambiae. CONCLUSIONS Because these results suggest that infected mosquitoes may incur fitness costs under natural-like conditions, they are particularly relevant to vector control strategies aiming at boosting naturally occurring refractoriness or spreading natural or foreign genes for refractoriness using genetic drive systems in vector populations.
Collapse
Affiliation(s)
- Fred Aboagye-Antwi
- Center for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Hurd H. Evolutionary drivers of parasite-induced changes in insect life-history traits from theory to underlying mechanisms. ADVANCES IN PARASITOLOGY 2009; 68:85-110. [PMID: 19289191 DOI: 10.1016/s0065-308x(08)00604-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many hosts are able to tolerate infection by altering life-history traits that are traded-off one against another. Here the reproductive fitness of insect hosts and vectors is reviewed in the context of theories concerning evolutionary mechanisms driving such alterations. These include the concepts that changes in host reproductive fitness are by-products of infection, parasite manipulations, host adaptations, mafia-like strategies or host compensatory responses. Two models are examined in depth, a tapeworm/beetle association, Hymenolepis diminuta/Tenebrio molitor and malaria infections in anopheline mosquitoes. Parasite-induced impairment of vitellogenesis ultimately leads to a decrease in female reproductive success in both cases, though by different means. Evidence is put forwards for both a manipulator molecule of parasite origin and for host-initiated regulation. These models are backed by other examples in which mechanisms underlying fecundity reduction or fecundity compensation are explored. It is concluded that evolutionary theories must be supported by empirical evidence gained from studying molecular, biochemical and physiological mechanisms underlying changes in host life-history traits, ideally using organisms that have evolved together and that are in their natural environment.
Collapse
Affiliation(s)
- Hilary Hurd
- Institute for Science and Technology in Medicine, Centre for Applied Entomology and Parasitilogy, School of life Sciences, Keele University, United Kingdom
| |
Collapse
|
23
|
Arrighi RBG, Debierre-Grockiego F, Schwarz RT, Faye I. The immunogenic properties of protozoan glycosylphosphatidylinositols in the mosquito Anopheles gambiae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:216-223. [PMID: 18822312 DOI: 10.1016/j.dci.2008.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/19/2008] [Accepted: 08/23/2008] [Indexed: 05/26/2023]
Abstract
In contrast to humans, mosquitoes do not have an adaptive immune response to deal with pathogens, and therefore must rely on their innate immune system to deal with invaders. This facilitates the recognition of different microbes on the basis of surface components or antigens. Such antigens have been identified in various types of microbe such as bacteria and fungi, yet none has been identified in the genus protozoa, which includes pathogens such as the malaria parasite, Plasmodium falciparum and Toxoplasma gondii. This study allowed us to test the antigenic properties of protozoan glycosylphosphatidylinositol (GPI) on the mosquito immune system. We found that both P. falciparum GPI and T. gondii GPI induce the strong expression of several antimicrobial peptides following ingestion, and that as a result of the immune response against the GPIs, the number of eggs produced by the mosquito is reduced dramatically. Such effects have been associated with malaria infected mosquitoes, but never associated with a Plasmodium specific antigen. This study demonstrates that protozoan GPIs can be considered as protozoan specific immune elicitors in mosquitoes, and that P. falciparum GPI plays a critical role in the malaria parasite manipulation of the mosquito vector to facilitate its transmission.
Collapse
Affiliation(s)
- Romanico B G Arrighi
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Nunes RD, de Oliveira RL, Braz GRC. A novel method for measuring fructose ingestion by mosquitoes. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2008; 33:225-231. [PMID: 19263840 DOI: 10.3376/1081-1710-33.2.225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We adapted the Seliwanoff method to quantify fructose in mosquitoes. This method showed a minimum detection limit of 2.4 microg of fructose, and was more reliable and nearly four times more sensitive than the anthrone test. The Seliwanoffmethod was used to measure the maximum sugar intake by individual mosquitoes and to determine the digestion time of this nutrient by both Aedes aegypti and Aedes albopictus in the laboratory. Sugar intake by Ae. albopictus was up to 1.7 times higher than that of Ae. aegypti. The amount of sugar ingested by females was up to 2.5 times higher than that of males in both species. After 48 h, a fructose meal was not detected any longer in either species. The Seliwanoffmethod was applied to measure fructose content of field-collected Ae. aegypti males and females in Rio de Janeiro. Results showed that even Ae. aegypti females do feed on sugars. The standardized Seliwanoff method proved to be reliable for measuring the sugar content of individual mosquitoes and can be used wherever estimation of small quantities of fructose is needed.
Collapse
Affiliation(s)
- Rodrigo Dutra Nunes
- Laboratório de Bioquímica de Vetores de Doenças, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
25
|
Tripet F, Aboagye-Antwi F, Hurd H. Ecological immunology of mosquito-malaria interactions. Trends Parasitol 2008; 24:219-27. [PMID: 18424235 PMCID: PMC2474669 DOI: 10.1016/j.pt.2008.02.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 02/02/2008] [Accepted: 02/05/2008] [Indexed: 02/01/2023]
Abstract
More than a century after the discovery of the complex life cycle of its causative agent, malaria remains a major health problem. Understanding mosquito–malaria interactions could lead to breakthroughs in malaria control. Novel strategies, such as the design of transgenic mosquitoes refractory to Plasmodium, or design of human vaccines emulating mosquito resistance to the parasite, require extensive knowledge of processes involved in immune responses and of microevolutionary mechanisms that create and maintain variation in immune responses in wild vector populations. The recent realization of how intimately and specifically mosquitoes and Plasmodium co-evolve in Nature is driving vector molecular biologists and evolutionary ecologists to move closer to the natural setting under the common umbrella of ‘Ecological immunology’.
Collapse
Affiliation(s)
- Frédéric Tripet
- Centre for Applied Entomology and Parasitology, Huxley Building, Keele University, Newcastle, Staffordshire, UK ST5 5BG.
| | | | | |
Collapse
|
26
|
Freitak D, Wheat CW, Heckel DG, Vogel H. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol 2007; 5:56. [PMID: 18154650 PMCID: PMC2235825 DOI: 10.1186/1741-7007-5-56] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 12/21/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. RESULTS Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus). Two major immune response-related enzymatic activities responded to diets differently - phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. CONCLUSION The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni larvae are able to detect and respond to environmental microbes encountered in the diet, possibly even using midgut epithelial tissue as a sensing organ. Potential benefits of this immune system priming may outweigh the observed tradeoffs, as priming based on environmentally sensed bacterial may decrease risk of serious infection. These results show that food plant microbial communities represent a dynamic and unstudied part of the coevolutionary interactions between plants and their insect herbivores.
Collapse
Affiliation(s)
- Dalial Freitak
- Max Planck Institute for Chemical Ecology, Department of Entomology, Hans-Knoell - Strasse 8, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
27
|
Gray EM, Bradley TJ. Evidence from mosquitoes suggests that cyclic gas exchange and discontinuous gas exchange are two manifestations of a single respiratory pattern. J Exp Biol 2006; 209:1603-11. [PMID: 16621941 DOI: 10.1242/jeb.02181] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn this paper we demonstrate that the apparent pattern of gas exchange in insects, as observed using flow-through respirometry, is strongly affected by the rate of flow of air through the system. This is true not only because of the time constant of the respiratory chamber in which the insect resides, but also due to the effect of flow rate on the residence time of air as it passes through the detection chamber in the gas analyzer. It is demonstrated that insects respiring with a discontinuous gas exchange pattern can appear to be using a cyclic respiratory pattern. The effects of flow rate on the respiratory pattern discerned are illustrated using the mosquito Culiseta inornata. It is demonstrated that these mosquitoes respire discontinuously. They are among the smallest insects to date in which the discontinuous gas exchange cycle has been observed.
Collapse
Affiliation(s)
- Emilie M Gray
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 92697-2525, USA
| | | |
Collapse
|