1
|
Coghlan A, Partridge FA, Duque-Correa MA, Rinaldi G, Clare S, Seymour L, Brandt C, Mkandawire TT, McCarthy C, Holroyd N, Nick M, Brown AE, Tonitiwong S, Sattelle DB, Berriman M. A drug repurposing screen for whipworms informed by comparative genomics. PLoS Negl Trop Dis 2023; 17:e0011205. [PMID: 37669291 PMCID: PMC10503962 DOI: 10.1371/journal.pntd.0011205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/15/2023] [Accepted: 07/06/2023] [Indexed: 09/07/2023] Open
Abstract
Hundreds of millions of people worldwide are infected with the whipworm Trichuris trichiura. Novel treatments are urgently needed as current drugs, such as albendazole, have relatively low efficacy. We have investigated whether drugs approved for other human diseases could be repurposed as novel anti-whipworm drugs. In a previous comparative genomics analysis, we identified 409 drugs approved for human use that we predicted to target parasitic worm proteins. Here we tested these ex vivo by assessing motility of adult worms of Trichuris muris, the murine whipworm, an established model for human whipworm research. We identified 14 compounds with EC50 values of ≤50 μM against T. muris ex vivo, and selected nine for testing in vivo. However, the best worm burden reduction seen in mice was just 19%. The high number of ex vivo hits against T. muris shows that we were successful at predicting parasite proteins that could be targeted by approved drugs. In contrast, the low efficacy of these compounds in mice suggest challenges due to their chemical properties (e.g. lipophilicity, polarity, molecular weight) and pharmacokinetics (e.g. absorption, distribution, metabolism, and excretion) that may (i) promote absorption by the host gastrointestinal tract, thereby reducing availability to the worms embedded in the large intestine, and/or (ii) restrict drug uptake by the worms. This indicates that identifying structural analogues that have reduced absorption by the host, and increased uptake by worms, may be necessary for successful drug development against whipworms.
Collapse
Affiliation(s)
- Avril Coghlan
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Frederick A. Partridge
- University College London, London, United Kingdom
- School of Life Sciences, University of Westminster, London, United Kingdom
| | | | | | - Simon Clare
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Lisa Seymour
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | | | | | - Nancy Holroyd
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Marina Nick
- University College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
2
|
Adel Madbouly N, Emam M, Ayman M, Ayman M, Rabia I, El Amir A. In vitro and in vivo impacts of nifedipine and diltiazem on praziquantel chemotherapy in murine Schistosoma mansoni. Exp Parasitol 2022; 236-237:108256. [DOI: 10.1016/j.exppara.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
|
3
|
McCusker P, Chan JD. Anti-schistosomal action of the calcium channel agonist FPL-64176. Int J Parasitol Drugs Drug Resist 2019; 11:30-38. [PMID: 31561039 PMCID: PMC6796685 DOI: 10.1016/j.ijpddr.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
Subversion of parasite neuromuscular function is a key strategy for anthelmintic drug development. Schistosome Ca2+ signaling has been an area of particular interest for decades, with a specific focus on L-type voltage-gated Ca2+ channels (Cavs). However, the study of these channels has been technically challenging. One barrier is the lack of pharmacological probes that are active on flatworms, since the dihydropyridine (DHP) based ligands typically used to study Cavs are relatively ineffective on schistosomes. Here, we have characterized the effect of a structurally distinct putative L-type Cav agonist, FPL-64176, on schistosomes cultured ex vivo and in an in vivo murine model of infection. Unlike DHPs, FPL-64176 evokes rapid and sustained contractile paralysis of adult Schistosoma mansoni reminiscent of the anthelmintic praziquantel. This is accompanied by tegument disruption and an arrest of mitotic activity in somatic stem cells and germ line tissues. Interestingly, this strong ex vivo phenotype was temperature dependent, with FPL-64176 treatment being less potent at 37 °C than 23 °C. However, FPL-64176 caused intra-tegument lesions at the basement membrane of worms cultured ex vivo under both conditions, as well as an in vivo hepatic shift of parasites from the mesenteric vasculature of infected mice to the liver. Gene expression profiling of worms harvested following in vivo FPL-64176 exposure reveals differences in transcripts associated with muscle and extracellular matrix function, as well as female reproduction, which is consistent with the worm phenotypes observed following ex vivo drug treatment. These data advance FPL-64176 as a useful tool to study schistosome Ca2+ signaling, and the benzoyl pyrrole core as a hit compound that may be optimized to develop new parasite-selective leads.
Collapse
Affiliation(s)
- Paul McCusker
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John D Chan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Emmons-Bell M, Durant F, Tung A, Pietak A, Miller K, Kane A, Martyniuk CJ, Davidian D, Morokuma J, Levin M. Regenerative Adaptation to Electrochemical Perturbation in Planaria: A Molecular Analysis of Physiological Plasticity. iScience 2019; 22:147-165. [PMID: 31765995 PMCID: PMC6881696 DOI: 10.1016/j.isci.2019.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/01/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022] Open
Abstract
Anatomical homeostasis results from dynamic interactions between gene expression, physiology, and the external environment. Owing to its complexity, this cellular and organism-level phenotypic plasticity is still poorly understood. We establish planarian regeneration as a model for acquired tolerance to environments that alter endogenous physiology. Exposure to barium chloride (BaCl2) results in a rapid degeneration of anterior tissue in Dugesia japonica. Remarkably, continued exposure to fresh solution of BaCl2 results in regeneration of heads that are insensitive to BaCl2. RNA-seq revealed transcriptional changes in BaCl2-adapted heads that suggests a model of adaptation to excitotoxicity. Loss-of-function experiments confirmed several predictions: blockage of chloride and calcium channels allowed heads to survive initial BaCl2 exposure, inducing adaptation without prior exposure, whereas blockade of TRPM channels reversed adaptation. Such highly adaptive plasticity may represent an attractive target for biomedical strategies in a wide range of applications beyond its immediate relevance to excitotoxicity preconditioning. Exposure to BaCl2 causes the heads of Dugesia japonica to degenerate Prolonged exposure to BaCl2 results in regeneration of a BaCl2-insensitive head Ion channel expression is altered in the head to compensate for excitotoxic stress TRPMa is upregulated in BaCl2-treated animals; blocking TRPM prevents adaptation
Collapse
Affiliation(s)
- Maya Emmons-Bell
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Fallon Durant
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Angela Tung
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Alexis Pietak
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Kelsie Miller
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Anna Kane
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Devon Davidian
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Junji Morokuma
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
5
|
Xiao SH, Sun J, Chen MG. Pharmacological and immunological effects of praziquantel against Schistosoma japonicum: a scoping review of experimental studies. Infect Dis Poverty 2018; 7:9. [PMID: 29409536 PMCID: PMC5801800 DOI: 10.1186/s40249-018-0391-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/19/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Chemotherapy for schistosomiasis has been around for 100 years. During the past century, great efforts have been made to develop new antischistosomal drugs from antimonials to nonantimonials, and some of these have been used extensively in clinical treatment. With the exception of a few drugs, such as oxamniquine and metrifonate, most of the antischistosomals developed in the pre-praziquantel period have variable limitations with respect to safety and efficacy. Although oxamniquine and metrifonate have been used for schistosomiasis control, they are only effective against Schistosoma mansoni and S. haematobium, respectively. Currently, praziquantel is the only drug used for treatment of all five species of human schistosomes. In this review, the pharmacological and immunological effects of praziquantel against S. japonicum are summarized and discussed. MAIN TEXT From the end of the 1970s until the 2000s, scientists have conducted a series of experimental studies on the effects of praziquantel against S. japonicum. These have included examining its unique pharmacological action on schistosomes, the characteristics in susceptibility of the different developmental stages of schistosomes to the drug, the relationship between plasma concentration of the drug and efficacy, the impact of host factors on cidal action of the drug, prevention and early treatment of schistosomal infection, as well as praziquantel-resistant schistosomiasis. CONCLUSION The effects of praziquantel against S. japonicum, as elucidated by the experimental studies that are reviewed in this paper, may have some reference significance for the development of new antischistosomals.
Collapse
Affiliation(s)
- Shu-Hua Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China.
| | - Jun Sun
- Institute for Infectious Disease and Vaccine Development, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Ming-Gang Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025, People's Republic of China
| |
Collapse
|
6
|
Purinergic signaling in schistosomal infection. Biomed J 2016; 39:316-325. [PMID: 27884378 PMCID: PMC6138794 DOI: 10.1016/j.bj.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 01/06/2023] Open
Abstract
Human schistosomiasis is a chronic inflammatory disease caused by blood fluke worms belonging to the genus Schistosoma. Health metrics indicate that the disease is related to an elevated number of years lost-to-disability and years lost-to-life. Schistosomiasis is an intravascular disease that is related to a Th1 and Th2 immune response polarization, and the degree of polarization affects the outcome of the disease. The purinergic system is composed of adenosine and nucleotides acting as key messenger molecules. Moreover, nucleotide-transforming enzymes and cell-surface purinergic receptors are obligatory partners of this purinergic signaling. In mammalian cells, purinergic signaling modulates innate immune responses and inflammation among other functions; conversely purinergic signaling may also be modulated by inflammatory mediators. Moreover, schistosomes also express some enzymes of the purinergic system, and it is possible that worms modulate host purinergic signaling. Current data obtained in murine models of schistosomiasis support the notion that the host purinergic system is altered by the disease. The dysfunction of adenosine receptors, metabotropic P2Y and ionotropic P2X7 receptors, and NTPDases likely contributes to disease morbidity.
Collapse
|
7
|
Nor B, Young ND, Korhonen PK, Hall RS, Tan P, Lonie A, Gasser RB. Pipeline for the identification and classification of ion channels in parasitic flatworms. Parasit Vectors 2016; 9:155. [PMID: 26983991 PMCID: PMC4794918 DOI: 10.1186/s13071-016-1428-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/05/2016] [Indexed: 01/05/2023] Open
Abstract
Background Ion channels are well characterised in model organisms, principally because of the availability of functional genomic tools and datasets for these species. This contrasts the situation, for example, for parasites of humans and animals, whose genomic and biological uniqueness means that many genes and their products cannot be annotated. As ion channels are recognised as important drug targets in mammals, the accurate identification and classification of parasite channels could provide major prospects for defining unique targets for designing novel and specific anti-parasite therapies. Here, we established a reliable bioinformatic pipeline for the identification and classification of ion channels encoded in the genome of the cancer-causing liver fluke Opisthorchis viverrini, and extended its application to related flatworms affecting humans. Methods We built an ion channel identification + classification pipeline (called MuSICC), employing an optimised support vector machine (SVM) model and using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) classification system. Ion channel proteins were first identified and grouped according to amino acid sequence similarity to classified ion channels and the presence and number of ion channel-like conserved and transmembrane domains. Predicted ion channels were then classified to sub-family using a SVM model, trained using ion channel features. Results Following an evaluation of this pipeline (MuSICC), which demonstrated a classification sensitivity of 95.2 % and accuracy of 70.5 % for known ion channels, we applied it to effectively identify and classify ion channels in selected parasitic flatworms. Conclusions MuSICC provides a practical and effective tool for the identification and classification of ion channels of parasitic flatworms, and should be applicable to a broad range of organisms that are evolutionarily distant from taxa whose ion channels are functionally characterised. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1428-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bahiyah Nor
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ross S Hall
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, 138672, Republic of Singapore
| | - Andrew Lonie
- Victorian Life Sciences Computation Initiative (VLSCI), The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
8
|
Parker-Manuel SJ, Hahnel S, Grevelding CG. Inhibition of Schistosoma mansoni ether-a-go-go related gene-encoded potassium channels leads to hypermotility and impaired egg production. Exp Parasitol 2015; 158:48-54. [PMID: 26188142 DOI: 10.1016/j.exppara.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 11/19/2022]
Abstract
The purpose of this work was to investigate the effect of ether-a-go-go related gene (ERG) potassium channel inhibition on Schistosoma mansoni. Use of dofetilide to block the schistosome ERGs resulted in a striking 'corkscrew' effect. The worms were unable to control their motility; they were hypermotile. The treated worms produced abnormal eggs, some of which consisted of little more than a spine. One of the S. mansoni ERGs (SmERGs), Smp_161140, was chosen for further study by RNAi. The transcript was knocked down to 50% compared to the controls. These RNAi-treated worms demonstrated seizure-like movements. In S. mansoni, as in other organisms, ERG channels seem to play a role in regulating muscle excitability. This work shows that egg production can be greatly reduced by effectively targeting muscle coordination in these important parasites.
Collapse
Affiliation(s)
- S J Parker-Manuel
- Institute of Parasitology, Justus-Liebig-University Giessen, Germany.
| | - S Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - C G Grevelding
- Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
9
|
Silva-Moraes V, Couto FFB, Vasconcelos MM, Araújo N, Coelho PMZ, Katz N, Grenfell RFQ. Antischistosomal activity of a calcium channel antagonist on schistosomula and adult Schistosoma mansoni worms. Mem Inst Oswaldo Cruz 2013; 108:600-4. [PMID: 23903976 PMCID: PMC3970602 DOI: 10.1590/0074-0276108052013011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/18/2012] [Indexed: 12/29/2022] Open
Abstract
Current schistosomiasis control strategies are largely based on chemotherapeutic agents and a limited number of drugs are available today. Praziquantel (PZQ) is the only drug currently used in schistosomiasis control programs. Unfortunately, this drug shows poor efficacy in patients during the earliest infection phases. The effects of PZQ appear to operate on the voltage-operated Ca2+ channels, which are located on the external Schistosoma mansoni membrane. Because some Ca2+ channels have dihydropyridine drug class (a class that includes nifedipine) sensitivity, an in vitro analysis using a calcium channel antagonist (clinically used for cardiovascular hypertension) was performed to determine the antischistosomal effects of nifedipine on schistosomula and adult worm cultures. Nifedipine demonstrated antischistosomal activity against schistosomula and significantly reduced viability at all of the concentrations used alone or in combination with PZQ. In contrast, PZQ did not show significant efficacy when used alone. Adult worms were also affected by nifedipine after a 24 h incubation and exhibited impaired motility, several lesions on the tegument and intense contractility. These data support the idea of Ca2+ channels subunits as drug targets and favour alternative therapeutic schemes when drug resistance has been reported. In this paper, strong arguments encouraging drug research are presented, with a focus on exploring schistosomal Ca2+ channels.
Collapse
Affiliation(s)
- Vanessa Silva-Moraes
- Laboratório de Esquistossomose, Centro de Pesquisas René
Rachou-Fiocruz, Belo Horizonte, MG, Brasil
- Universidade Federal de São João Del Rey, Divinópolis, MG, Brasil
| | | | | | - Neusa Araújo
- Laboratório de Esquistossomose, Centro de Pesquisas René
Rachou-Fiocruz, Belo Horizonte, MG, Brasil
| | - Paulo Marcos Zech Coelho
- Laboratório de Esquistossomose, Centro de Pesquisas René
Rachou-Fiocruz, Belo Horizonte, MG, Brasil
| | - Naftale Katz
- Laboratório de Esquistossomose, Centro de Pesquisas René
Rachou-Fiocruz, Belo Horizonte, MG, Brasil
| | - Rafaella Fortini Queiroz Grenfell
- Laboratório de Esquistossomose, Centro de Pesquisas René
Rachou-Fiocruz, Belo Horizonte, MG, Brasil
- Escola de Farmácia, Universidade de Itaúna, Itaúna, MG, Brasil
| |
Collapse
|
10
|
Chan JD, Zarowiecki M, Marchant JS. Ca²⁺ channels and praziquantel: a view from the free world. Parasitol Int 2012; 62:619-28. [PMID: 23246536 DOI: 10.1016/j.parint.2012.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/06/2012] [Indexed: 01/22/2023]
Abstract
Targeting the cellular Ca(2+) channels and pumps that underpin parasite Ca(2+) homeostasis may realize novel antihelmintic agents. Indeed, the antischistosomal drug praziquantel (PZQ) is a key clinical agent that has been proposed to work in this manner. Heterologous expression data has implicated an action of PZQ on voltage-operated Ca(2+) channels, although the relevant in vivo target of this drug has remained undefined over three decades of clinical use. The purpose of this review is to bring new perspective to this issue by discussing the potential utility of free-living planarian flatworms for providing new insight into the mechanism of PZQ action. First, we discuss in vivo functional genetic data from the planarian system that broadly supports the molecular data collected in heterologous systems and the 'Ca(2+) hypothesis' of PZQ action. On the basis of these similarities we highlight our current knowledge of platyhelminth voltage operated Ca(2+) channels, their unique molecular pharmacology and the downstream functional PZQ interactome engaged by dysregulation of Ca(2+) influx that has potential to yield novel antischistosomal targets. Overall the broad dataset underscores a common theme of PZQ-evoked disruptions of Ca(2+) homeostasis in trematodes, cestodes and turbellarians, and showcases the utility of the planarian model for deriving insight into drug action and targets in parasitic flatworms.
Collapse
Affiliation(s)
- John D Chan
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA; The Stem Cell Institute, University of Minnesota Medical School, MN 55455, USA
| | | | | |
Collapse
|
11
|
Salvador-Recatalà V, Greenberg RM. Calcium channels of schistosomes: unresolved questions and unexpected answers. ACTA ACUST UNITED AC 2011; 1:85-93. [PMID: 22347719 DOI: 10.1002/wmts.19] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parasitic flatworms of the genus Schistosoma are the causative agents of schistosomiasis, a highly prevalent, neglected tropical disease that causes significant morbidity in hundreds of millions of people worldwide. The current treatment of choice against schistosomiasis is praziquantel (PZQ), which is known to affect Ca(2+) homeostasis in schistosomes, but which has an undefined molecular target and mode of action. PZQ is the only available antischistosomal drug in most parts of the world, making reports of PZQ resistance particularly troubling. Voltage-gated Ca(2+) (Ca(v)) channels have been proposed as possible targets for PZQ, and, given their central role in the neuromuscular system, may also serve as targets for new anthelmintic therapeutics. Indeed, ion channels constitute the majority of targets for current anthelmintics. Ca(v) channel subunits from schistosomes and other platyhelminths have several unique properties that make them attractive as potential drug targets, and that could also provide insights into structure-function relationships in, and evolution of, Ca(v) channels.
Collapse
|
12
|
Prole DL, Taylor CW. Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. PLoS One 2011; 6:e26218. [PMID: 22022573 PMCID: PMC3194816 DOI: 10.1371/journal.pone.0026218] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/22/2011] [Indexed: 11/29/2022] Open
Abstract
Ca2+ channels regulate many crucial processes within cells and their abnormal activity can be damaging to cell survival, suggesting that they might represent attractive therapeutic targets in pathogenic organisms. Parasitic diseases such as malaria, leishmaniasis, trypanosomiasis and schistosomiasis are responsible for millions of deaths each year worldwide. The genomes of many pathogenic parasites have recently been sequenced, opening the way for rational design of targeted therapies. We analyzed genomes of pathogenic protozoan parasites as well as the genome of Schistosoma mansoni, and show the existence within them of genes encoding homologues of mammalian intracellular Ca2+ release channels: inositol 1,4,5-trisphosphate receptors (IP3Rs), ryanodine receptors (RyRs), two-pore Ca2+ channels (TPCs) and intracellular transient receptor potential (Trp) channels. The genomes of Trypanosoma, Leishmania and S. mansoni parasites encode IP3R/RyR and Trp channel homologues, and that of S. mansoni additionally encodes a TPC homologue. In contrast, apicomplexan parasites lack genes encoding IP3R/RyR homologues and possess only genes encoding TPC and Trp channel homologues (Toxoplasma gondii) or Trp channel homologues alone. The genomes of parasites also encode homologues of mammalian Ca2+influx channels, including voltage-gated Ca2+ channels and plasma membrane Trp channels. The genome of S. mansoni also encodes Orai Ca2+ channel and STIM Ca2+ sensor homologues, suggesting that store-operated Ca2+ entry may occur in this parasite. Many anti-parasitic agents alter parasite Ca2+ homeostasis and some are known modulators of mammalian Ca2+ channels, suggesting that parasite Ca2+ channel homologues might be the targets of some current anti-parasitic drugs. Differences between human and parasite Ca2+ channels suggest that pathogen-specific targeting of these channels may be an attractive therapeutic prospect.
Collapse
Affiliation(s)
- David L Prole
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
13
|
Salvador-Recatalà V, Greenberg RM. The N terminus of a schistosome beta subunit regulates inactivation and current density of a Cav2 channel. J Biol Chem 2010; 285:35878-88. [PMID: 20826800 DOI: 10.1074/jbc.m110.144725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The β subunit of high voltage-activated Ca(2+) (Ca(v)) channels targets the pore-forming α(1) subunit to the plasma membrane and tunes the biophysical phenotype of the Ca(v) channel complex. We used a combination of molecular biology and whole-cell patch clamp to investigate the functional role of a long N-terminal polyacidic motif (NPAM) in a Ca(v)β subunit of the human parasite Schistosoma mansoni (β(Sm)), a motif that does not occur in other known Ca(v)β subunits. When expressed in human embryonic kidney cells stably expressing Ca(v)2.3, β(Sm) accelerates Ca(2+)/calmodulin-independent inactivation of Ca(v)2.3. Deleting the first 44 amino acids of β(Sm), a region that includes NPAM, significantly slows the predominant time constant of inactivation (τ(fast)) under conditions that prevent Ca(2+)/CaM-dependent inactivation (β(Sm): τ(fast) = 66 ms; β(SmΔ2-44): τ(fast) = 111 ms, p < 0.01). Interestingly, deleting the amino acids that are N-terminal to NPAM (2-24 or 2-17) results in faster inactivation than with an intact N terminus (τ(fast) = 42 ms with β(SmΔ2-17); τ(fast) = 40 ms with β(SmΔ2-24), p < 0.01). This suggests that NPAM is the structural determinant for accelerating Ca(2+)/calmodulin-independent inactivation. We also created three chimeric subunits that contain the first 44 amino acids of β(Sm) attached to mammalian β(1b), β(2a), and β(3) subunits. For any given mammalian β subunit, inactivation was faster if it contained the N terminus of β(Sm) than if it did not. Co-expression of the mammalian α(2)δ-1 subunit resulted in doubling of the inactivation rate, but the effects of NPAM persisted. Thus, it appears that the schistosome Ca(v) channel complex has acquired a new function that likely contributes to reducing the amount of Ca(2+) that enters the cells in vivo. This feature is of potential interest as a target for new antihelminthics.
Collapse
Affiliation(s)
- Vicenta Salvador-Recatalà
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
14
|
FMRFamide-like peptides (FLPs) enhance voltage-gated calcium currents to elicit muscle contraction in the human parasite Schistosoma mansoni. PLoS Negl Trop Dis 2010; 4:e790. [PMID: 20706630 PMCID: PMC2919380 DOI: 10.1371/journal.pntd.0000790] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 07/12/2010] [Indexed: 11/23/2022] Open
Abstract
Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway. Schistosomiasis (bilharzia) is caused by infection with trematodes of the genus Schistosoma. The disease afflicts over 200 million people, with the bulk of the disease burden focused in some of the world's poorest countries. Schistosomiasis control rests largely on chemotherapy with a single drug, praziquantel, a precarious situation calling for the discovery and development of new antischistosomal agents. One hindrance to the discovery of new drugs is a deficiency of knowledge regarding some basic biological processes of these parasitic worms. Here, we take significant steps toward the elucidation of signaling and pathways involved in schistosome neuromuscular control, a central biological function with proven vulnerability to chemotherapeutic intervention. Neuropeptides are known to be important in flatworm muscle control and here we find that FMRFamide-like peptides act to contract schistosome muscle by enhancing calcium influx through voltage-operated calcium channels. We also found that the receptor for the myoexcitatory neuropeptides uses a protein kinase C pathway to stimulate the voltage-operated calcium channels. Understanding the molecules involved in the neuromuscular physiology of these worms helps to identify potentially useful targets for a new generation of antischistosomal drugs.
Collapse
|
15
|
Nogi T, Zhang D, Chan JD, Marchant JS. A novel biological activity of praziquantel requiring voltage-operated Ca2+ channel beta subunits: subversion of flatworm regenerative polarity. PLoS Negl Trop Dis 2009; 3:e464. [PMID: 19554083 PMCID: PMC2694594 DOI: 10.1371/journal.pntd.0000464] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 05/22/2009] [Indexed: 11/29/2022] Open
Abstract
Background Approximately 200 million people worldwide harbour parasitic flatworm infections that cause schistosomiasis. A single drug—praziquantel (PZQ)—has served as the mainstay pharmacotherapy for schistosome infections since the 1980s. However, the relevant in vivo target(s) of praziquantel remain undefined. Methods and Findings Here, we provide fresh perspective on the molecular basis of praziquantel efficacy in vivo consequent to the discovery of a remarkable action of PZQ on regeneration in a species of free-living flatworm (Dugesia japonica). Specifically, PZQ caused a robust (100% penetrance) and complete duplication of the entire anterior-posterior axis during flatworm regeneration to yield two-headed organisms with duplicated, integrated central nervous and organ systems. Exploiting this phenotype as a readout for proteins impacting praziquantel efficacy, we demonstrate that PZQ-evoked bipolarity was selectively ablated by in vivo RNAi of voltage-operated calcium channel (VOCC) β subunits, but not by knockdown of a VOCC α subunit. At higher doses of PZQ, knockdown of VOCC β subunits also conferred resistance to PZQ in lethality assays. Conclusions This study identifies a new biological activity of the antischistosomal drug praziquantel on regenerative polarity in a species of free-living flatworm. Ablation of the bipolar regenerative phenotype evoked by PZQ via in vivo RNAi of VOCC β subunits provides the first genetic evidence implicating a molecular target crucial for in vivo PZQ activity and supports the ‘VOCC hypothesis’ of PZQ efficacy. Further, in terms of regenerative biology and Ca2+ signaling, these data highlight a novel role for voltage-operated Ca2+ entry in regulating in vivo stem cell differentiation and regenerative patterning. Praziquantel is the major drug used to treat people infected with parasitic worms that cause the neglected tropical disease schistosomiasis. Despite being in widespread clinical use, it is surprising that scientists have not identified how praziquantel works to kill pathogenic schistosomes. This lack of pathobiological insight is a major roadblock to the directed design of new drugs to treat schistosomiasis, as the relevant in vivo target molecule/pathway of praziquantel remains undefined. In this report, we have discovered a new biological activity of praziquantel that enables us to bring a unique chemical genetic perspective to the problem of identifying molecules needed for in vivo praziquantel efficacy. Specifically, we show that praziquantel miscues regenerative patterning in a species of free-living flatworm to yield bipolar (two-headed) organisms. By using this phenotype to screen for molecules underpinning this activity, we provide in vivo support for the ‘Ca2+ channel hypothesis’ of PZQ efficacy, and show that manipulation of specific subunits of voltage-gated Ca2+ channels prevent this effect, and lessen praziquantel-mediated toxicity. These data provide further impetus to studying the role of these proteins in schistosome pharmacotherapy.
Collapse
Affiliation(s)
- Taisaku Nogi
- Department of Pharmacology and The Stem Cell Institute, University of Minnesota Medical School, Minnesota, United States of America
| | - Dan Zhang
- Department of Pharmacology and The Stem Cell Institute, University of Minnesota Medical School, Minnesota, United States of America
| | - John D. Chan
- Department of Pharmacology and The Stem Cell Institute, University of Minnesota Medical School, Minnesota, United States of America
| | - Jonathan S. Marchant
- Department of Pharmacology and The Stem Cell Institute, University of Minnesota Medical School, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
16
|
Thibaut JPB, Monteiro LM, Leite LCC, Menezes CMS, Lima LM, Noël F. The effects of 3-methylclonazepam on Schistosoma mansoni musculature are not mediated by benzodiazepine receptors. Eur J Pharmacol 2009; 606:9-16. [PMID: 19374857 DOI: 10.1016/j.ejphar.2009.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/19/2008] [Accepted: 01/09/2009] [Indexed: 11/28/2022]
Abstract
Schistosomiasis is one of the most prevalent infectious diseases worldwide and classified as a neglected disease for which there is an urgent need for searching new drug candidates. According to TDR/WHO, existing leads with proven schistosomicidal activity, like meclonazepam, might be the objects of further exploration. Here, we decided to investigate if the benzodiazepine binding sites that we recently characterized in adult Schistosoma mansoni could represent the molecular target of meclonazepam for its effect on worm motility and morphological appearance. The EC(50) of meclonazepam for its contracturant effect is 10-20 times lower than its IC(50) for binding to the worm benzodiazepine binding sites. On the contrary, benzodiazepines like flunitrazepam and diazepam have affinities at least 50 times higher than meclonazepam for these binding sites but did not induce contraction of the worms. We also confirmed the existence of a great similarity between the appearance, kinetics, Emax and external calcium dependency of the contractile effect of praziquantel and meclonazepam. Based on computer-aided molecular modeling calculations, we verified that a certain structural similarity exists between the active enantiomers of both drugs. We further proposed the hypothesis of common pharmacophoric elements including amide and imine subunits and the asymmetric carbons of S-(+)-meclozepam and R-(-)-praziquantel. As a whole, the present data indicate that the contracturant effect of meclonazepam is not a result of its binding to the worm benzodiazepine binding sites but that it shares some basic transduction pathway with praziquantel, even if not through identical molecular targets or binding sites.
Collapse
Affiliation(s)
- Jean Pierre Barros Thibaut
- Departamento de Farmacologia Básica e Clínica, Instituto de Ciências Biomédicas-Bloco J do CCS, Ilha do Fundão, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Lv ZY, Yang LL, Hu SM, Sun X, He HJ, He SJ, Li ZY, Zhou YP, Fung MC, Yu XB, Zheng HQ, Cao AL, Wu ZD. Expression profile, localization of an 8-kDa calcium-binding protein from Schistosoma japonicum (SjCa8), and vaccine potential of recombinant SjCa8 (rSjCa8) against infections in mice. Parasitol Res 2008; 104:733-43. [PMID: 19015878 DOI: 10.1007/s00436-008-1249-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 10/21/2008] [Indexed: 11/29/2022]
Abstract
Researches on genes expressed in a cercarial stage-specific manner may help us understand the molecular events and functions during schistosome invasion of skin. A genomic clone encoding 8-kDa calcium-binding protein (SjCa8) specifically expressed in cercariae and skin-stage schistosomulum (transformed within 3 h) was obtained from cercariae. Recombinant protein was expressed in vector pET32a (+) and purified using a Ni-NTA purification system. The target protein SjCa8 was determined by matrix-assisted laser desorption/ionization time-of-flight (TOF)/TOF mass spectrometer after thrombin digestion and dialysis. Reverse transcriptase polymerase chain reaction and Western blot revealed SjCa8 can be detected in cercaria and skin-stage schistosomulum but not lung-stage schistosomulum, adult, or egg and was localized to head gland, penetration gland tubes, and penetration glands where Ca(2+) was abundant, and the cercarial tegument (but not tegument of tail) and body-tail junction. Furthermore, SjCa8 was interestingly detected in cercarial secretions. The characterization of SjCa8 indicated that it may undergo structural and physiological modifications, including repair of the surface membrane, changes in permeability that account for the loss of water tolerance, activities of calcium-depending enzymes, and immune signaling, etc. Furthermore, vaccination with rSjCa8 plus adjuvant induced protective effect with 50.39% worm reduction rate and significantly high hepatic and intestine egg reduction rates (54.16%, 50.63%, respectively), which is possibly mediated through an apparent induction of Th1-type immune response for strikingly high level of IgG2a and IgG2b developed in immunized C57BL/6 mice.
Collapse
Affiliation(s)
- Zhi-Yue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd road, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pica-Mattoccia L, Orsini T, Basso A, Festucci A, Liberti P, Guidi A, Marcatto-Maggi AL, Nobre-Santana S, Troiani AR, Cioli D, Valle C. Schistosoma mansoni: Lack of correlation between praziquantel-induced intra-worm calcium influx and parasite death. Exp Parasitol 2008; 119:332-5. [DOI: 10.1016/j.exppara.2008.03.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 11/16/2022]
|
19
|
Kusel JR, Al-Adhami BH, Doenhoff MJ. The schistosome in the mammalian host: understanding the mechanisms of adaptation. Parasitology 2007; 134:1477-526. [PMID: 17572930 DOI: 10.1017/s0031182007002971] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SUMMARYIn this review, we envisage the host environment, not as a hostile one, since the schistosome thrives there, but as one in which the relationship between the two organisms consists of constant communication, through signalling mechanisms involving sense organs, surface glycocalyx, surface membrane and internal organs of the parasite, with host fluids and cells. The surface and secretions of the schistosome egg have very different properties from those of other parasite stages, but adapted for the dispersal of the eggs and for the preservation of host liver function. We draw from studies of mammalian cells and other organisms to indicate how further work might be carried out on the signalling function of the surface glycocalyx, the raft structure of the surface and existence of pores in the surface membrane, the repair of the surface membrane, the role of the membrane structure in ion channel function (including recent work on the actin cytoskeleton and calcium channels) and the possible role of P-glycoproteins in the adaptation of the parasite to its environment. We are speculative in some areas, such as the suggestions that variability in surface properties of schistosomes may relate to the existence of membrane rafts and that parasite communities may exhibit quorum sensing. This speculative approach is adopted with the hope that future work on the whole organisms and their interactions will be encouraged.
Collapse
Affiliation(s)
- J R Kusel
- Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | |
Collapse
|
20
|
Abstract
Evaluation of: Pica-Mattoccia L, Valle C, Basso A et al.: Cytochalasin D abolishes the schistosomicidal activity of praziquantel. Exp. Parasitol. 115(4), 344–351 (2007). Parasitic flatworms of the genus Schistosoma are the causative agents of schistosomiasis, a widespread tropical disease that affects hundreds of millions of people worldwide. The current drug of choice against schistosomiasis is praziquantel. For some time, it has been known that praziquantel disrupts calcium homeostasis within the parasite. However, in the three decades since its introduction, the precise mode of praziquantel action has remained undefined. In this report, Pica-Mattoccia and colleagues use pharmacological agents to help further dissect the molecular target of this drug.
Collapse
|
21
|
Pica-Mattoccia L, Valle C, Basso A, Troiani AR, Vigorosi F, Liberti P, Festucci A, Cioli D. Cytochalasin D abolishes the schistosomicidal activity of praziquantel. Exp Parasitol 2006; 115:344-51. [PMID: 17083933 DOI: 10.1016/j.exppara.2006.09.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 09/22/2006] [Accepted: 09/23/2006] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that calcium channels of schistosomes are the targets for the action of praziquantel, we subjected schistosomes in vitro to pharmacological agents capable of interfering with the functioning of calcium channels. After 1-h exposure to these agents, praziquantel was added and incubation continued overnight. Worms were then washed, resuspended in drug-free medium and observed during the following 7-10 days. About 50% of schistosomes pre-exposed to the calcium channel blockers nicardipine and nifedipine were able to survive a praziquantel concentration (3 microM) that normally killed the majority of adult male worms. Since the organization of the actin cytoskeleton controls the activity of calcium channels in a number of different systems, we also pre-exposed schistosomes to the actin depolymerizing agent cytochalasin D. This treatment rendered the parasites completely refractory to the effects of very high praziquantel levels (up to 36 microM). These results are consistent with the hypothesis that schistosome calcium channels are involved in the mechanism of action of praziquantel.
Collapse
|