1
|
Watanabe Y, Asada M, Inokuchi M, Kotake M, Yoshinaga T. Target Protein Expression on Tetrahymena thermophila Cell Surface Using the Signal Peptide and GPI Anchor Sequences of the Immobilization Antigen of Cryptocaryon irritans. Mol Biotechnol 2024; 66:1907-1918. [PMID: 37480447 PMCID: PMC11282128 DOI: 10.1007/s12033-023-00824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Cryptocaryoniasis, caused by Cryptocaryon irritans, is a significant threat to marine fish cultures in tropical and subtropical waters. However, controlling this disease remains a challenge. Fish infected with C. irritans acquires immunity; however, C. irritans is difficult to culture in large quantities, obstructing vaccine development using parasite cells. In this study, we established a method for expressing an arbitrary protein on the surface of Tetrahymena thermophila, a culturable ciliate, to develop a mimetic C. irritans. Fusing the signal peptide (SP) and glycosylphosphatidylinositol (GPI) anchor sequences of the immobilization antigen, a surface protein of C. irritans, to the fluorescent protein, monomeric Azami-green 1 (mAG1) of the stony coral Galaxea fascicularis, allowed protein expression on the surface and cilia of transgenic Tetrahymena cells. This technique may help develop transgenic Tetrahymena displaying parasite antigens on their cell surface, potentially contributing to the development of vaccines using "mimetic parasites".
Collapse
Affiliation(s)
- Yuho Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido, 080-8555, Japan
| | - Mayu Inokuchi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Maho Kotake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tomoyoshi Yoshinaga
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
2
|
Jiang S, Huang X, Li T, Zhang Y, Zhang J. Immune response of large yellow croaker Larimichthys crocea towards a recombinant vaccine candidate targeting the parasitic ciliate Cryptocaryon irritans. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2023:1-20. [PMID: 37361880 PMCID: PMC10169208 DOI: 10.1007/s10499-023-01131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Cryptocaryon irritans, a parasitic ciliate, pose a major threat to marine teleost fish aquaculture. So far, no effective and safe control method is available. In this study, the protective efficacy of a recombinant truncated surface antigen of C. irritans (rCiSA32.6t) for large yellow croaker (Larimichthys crocea) against the parasite challenge with a sub-lethal dose of the infective theronts was evaluated by comparing the relative percent survivals (RPS), the specific antibody titers in sera, and the expression levels of the immune-related genes among the negative or adjuvant control fish, fish intraperitoneally immunized with rCiSA32.6t. The results showed that a RPS of 50.1% in rCiSA32.6t-immunized fish was achieved in comparison to negative control fish against C. irritans. A significant increase was noted in the antigen-specific immunoglobulin M (IgM) and immunoglobulin T (IgT) antibody levels in the sera of the rCiSA32.6t-vaccinated fish. Compared to the negative control fish, quantitative real-time PCR analysis indicated that the interleukin-1beta, IgT, and IgM heavy chain mRNA level in the fish head kidney, spleen, gill, and skin tissue were upregulated post-rCiSA32.6t immunization. This study indicates that the rCiSA32.6t can provide a high level of immune protection against C. irritans infection in grouper and is therefore pursued as a candidate C. irritans vaccine.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
- Guangdong Medical Valley, Nanjiang 2Nd Road, Zhujiang Street, Nansha District, Guangzhou, 511466 Guangdong China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
| | - Ting Li
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
| | - Yinan Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
| | - Jingwei Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Qishan Campus, Fuzhou, 350117 Fujian China
| |
Collapse
|
3
|
Jiang S, Huang X. Host responses against the fish parasitizing ciliate Cryptocaryon irritans. Parasite Immunol 2023; 45:e12967. [PMID: 36606416 DOI: 10.1111/pim.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
The parasitic ciliate Cryptocaryon irritans, which infects almost all marine fish species occurring in both tropical and subtropical regions throughout the world. The disease, cryptocaryonosis, accounts for significant economic losses to the aquaculture industry. This review attempts to provide a comprehensive overview of the biology of the parasite, host-parasite interactions and both specific and non-specific host defense mechanisms are responsible for the protection of fish against challenge infections with this ciliate. Also, this article reflects the current interest in this subject area and the quest to develop an available vaccine against the disease. Due to the high frequency of clinical fish cryptocaryonosis, the study of fish immune responses to C. irritans provides an optimal experimental model for understanding immunity against extracellular protozoa.
Collapse
Affiliation(s)
- Shuiqing Jiang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohong Huang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Mo Z, Wu H, Hu Y, Lai X, Guo W, Duan Y, Dan X, Li Y. Protection of Grouper Against Cryptocaryon irritans by Immunization With Tetrahymena thermophila and Protective Cross-Reactive Antigen Identification. Front Immunol 2022; 13:891643. [PMID: 35874721 PMCID: PMC9300909 DOI: 10.3389/fimmu.2022.891643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination is an effective method to prevent Cryptocaryon irritans infection. Although some vaccines have been developed, large-scale production of these vaccines is costly. Development of a heterogenous vaccine generated by low-cost antigens is an alternative method. In the present study, grouper immunized with Tetrahymena thermophila, a free-living ciliate that easily grows in inexpensive culture media at high density, showed protective immunity against C. irritans infection. Higher immobilization against C. irritans theronts was detected in T. thermophila–immunized grouper serum, which suggested the existence of a cross-reactive antibody in the serum. By immunoprecipitation and mass spectrometry analyses, tubulin was identified as a potential cross-reactive antigen between C. irritans and T. thermophila. Recombinant T. thermophila tubulin protein (rTt-tubulin) and its antibody were prepared, and immunofluorescence showed that both C. irritans and T. thermophila cilia were stained by the anti–rTt-tubulin antibody. Grouper immunized with rTt-tubulin showed a reduced infective rate after the C. irritans challenge. An enhanced level of C. irritans–binding immunoglobulin M (IgM) antibody was detected in serum from rTt-tubulin–immunized grouper. Moreover, specific antibodies were also found in the mucus and tissue culture medium from rTt-tubulin–immunized grouper. Overall, these findings suggested that vaccination with T. thermophila elicits cross-reactive protective immunity in grouper against C. irritans, and T. thermophila may be a potential heterologous antigen for vaccine development.
Collapse
Affiliation(s)
- Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huicheng Wu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yingtong Hu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wenjie Guo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yafei Duan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- *Correspondence: Xueming Dan, ; Yanwei Li,
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- *Correspondence: Xueming Dan, ; Yanwei Li,
| |
Collapse
|
5
|
Bai Y, Zhou Z, Zhao J, Ke Q, Pu F, Wu L, Zheng W, Chi H, Gong H, Zhou T, Xu P. The Draft Genome of Cryptocaryon irritans Provides Preliminary Insights on the Phylogeny of Ciliates. Front Genet 2022; 12:808366. [PMID: 35096020 PMCID: PMC8790277 DOI: 10.3389/fgene.2021.808366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yulin Bai
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Linni Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Hui Gong
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tao Zhou
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peng Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Zheng L, Qiu J, Liu H, Shi H, Chi C, Pan Y. Molecular characterization and antiparasitic activity analysis of a novel piscidin 5-like type 4 from Larimichthys crocea. Mol Immunol 2020; 129:12-20. [PMID: 33254075 DOI: 10.1016/j.molimm.2020.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
Cryptocaryon irritans is an obligate parasitic ciliate protozoan that can infect various commercially important mariculture teleosts and cause high lethality and economic loss, especially Larimichthys crocea. Current methods of controlling or preventing this parasite with chemicals or antibiotics are widely considered to be environmentally harmful. The antiparasitic activity of some antimicrobial peptides (AMPs) attracted extensive attention of scholars. In the study, a novel piscidin 5-like type 4 (termed Lc-P5L4) excavated from comparative transcriptome of C. irritans - immuned L. crocea was identified and characterized. Sequence analysis shows the full-length cDNA of Lc-P5L4 is 539 bp containing an open reading frame (ORF) of 198 bp which encodes a peptide of 65 amino acid residues. The genome consists of three exons and two introns which exist in its ORF, and all the exon-intron boundaries are in accordance with classical GT-AG rule (GT/intron/AG). Multiple alignments indicate the signal peptides share highly conserved identity, while mature peptides are more diverse. Phylogenetic analysis displays Lc-P5L4 clusters together with other members of piscidin 5-like family. Next, quantitative Real-time PCR (qRT-PCR) detection found C. irritans infection could upregulate Lc-P5L4 expression level in all tested tissues significantly, it appeared earliest upregulation in the theronts infection stage in the head kidney; the expression contents reached to maximum level in the intestine, gill and muscle during trophonts falling off stage; while it was just upregulated during secondary bacterial infection stage in the liver and spleen. The data showed Lc-P5L4 upregulation time points were in accordance with different infection stages. With recombinant Lc-P5L4 (rLc-P5L4) obtained through Escherichia coli system, in vitro assay showed rLc-P5L4 could cause cilia deactivation, cell bodiesclumping and sticking to each other, then cell membrane rupture and contents leakage. The data illustrated Lc-P5L4 played critical roles in the immune defense against C. irritans infection, and provided another proof that piscidins exhibit multiple anti- C. irritans features.
Collapse
Affiliation(s)
- Libing Zheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Jiayin Qiu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China
| | - Huilai Shi
- Marine Fisheries Research Institute of Zhejiang, 316022, Zhoushan, China.
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, School of Marine Science and Technology, Zhejiang Ocean University, 316022, Zhoushan, China.
| | - Ying Pan
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co., Ltd, 352103, Fujian, China
| |
Collapse
|
7
|
Characterization and immune regulation role of an immobilization antigen from Cryptocaryon irritans on groupers. Sci Rep 2019; 9:1029. [PMID: 30705292 PMCID: PMC6355922 DOI: 10.1038/s41598-018-25710-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/25/2018] [Indexed: 11/08/2022] Open
Abstract
Immobilization antigens (i-antigens) are surface membrane proteins that are widely recognized to be the ideal candidates as vaccines antigens for immunization against Cryptocaryon irritans. In this study, we cloned a putative i-antigen gene from C. irritans, which was expressed in all three stages of the C. irritans life-cycle, and localized primarily to the cell surface. The recombinant GDCI3 i-antigen was expressed and purified using the free-living ciliate, Tetrahymena thermophila as an expression system. The purified recombinant protein was recognized by rabbit anti-C. irritans antiserum and was capable of eliciting immobilizing antibodies in rabbits and fish suggesting that the antigen itself was correctly folded. Following immunization and parasite challenge, groupers vaccinated with, recombinant GDCI3 i-antigen had a 25% cumulative percent survival rate compared to 8.3% for controls. Both non-specific and parasite-specific IgMs were generated in fish following immunization, with the levels of both increasing following challenge. Parasite-specific IgM in mucus could only be elicited after challenge of the GDCI3 i-antigen vaccinated groupers. To our knowledge, this is the first report using the Tetrahymena expression system to generate C. irritans i-antigens and investigate their use for fish vaccination.
Collapse
|
8
|
Analysis of genes encoding high-antigenicity polypeptides in three serotypes of Miamiensis avidus. Parasitol Int 2018; 67:196-202. [DOI: 10.1016/j.parint.2017.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/06/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
|
9
|
Ultrastructural features of the tomont of Cryptocaryon irritans (Ciliophora: Prostomatea), a parasitic ciliate of marine fishes. Parasitology 2017; 144:720-729. [DOI: 10.1017/s0031182016002651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
SUMMARYNumerous studies have been conducted on the cellular morphology of Cryptocaryon irritans. However, details regarding the tomont stage of its life cycle remain lacking. In this study, we investigated the morphology of the tomont stage throughout encystment and cell division using light and electron microscopy. Results showed that there was no secretion of encystation-specific secretory vesicles or extrusomes during formation of the cyst wall. Instead, the synthesis and construction of the C. irritans cyst wall materials may involve molecular events at the pellicle. The somatic cilia and the cytostome were present during encystment and covered by the newly formed cyst wall. New somatic cilia were continuously created between old cilia and showed various lengths during cell division, a process that was similar to morphogenesis in many free-living ciliates. During cell division inside the tomont, dividing daughter cells formed temporary cell chains with no oral primordia before separating from each other into dissociative tomite precursors. The process of cell division may not be accompanied by stomatogenesis, and new oral primordia in offspring cells likely formed before the dividing cell chains split into dissociative spherical tomites. Mitochondrial autophagy was observed in encysting C. irritans cells. Numerous endosymbionts and Golgi structures were observed in the tomont cytoplasm. Cellular metabolic activity in the C. irritans tomont was quite high, with large amounts of materials or cellular organelles potentially being synthesized and prepared for the following infective theront stage.
Collapse
|
10
|
Comparative transcriptional profile of the fish parasite Cryptocaryon irritans. Parasit Vectors 2016; 9:630. [PMID: 27923398 PMCID: PMC5142281 DOI: 10.1186/s13071-016-1919-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 11/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptocaryon irritans is an obligate ectoparasitic ciliate pathogen of marine fishes. It can infect most marine teleosts and cause heavy economic losses in aquaculture. There is currently no effective method of controlling this disease, and little information is available regarding the genes involved in its development and virulence. We aimed to investigate the distinct features of the three major life-cycle stages of C. irritans in terms of gene transcription level, and identify candidate vaccines/drug targets. We established a reference transcriptome of C. irritans by RNA-seq. METHODS Three cDNA libraries using total poly(A)+ mRNA isolated from trophonts, tomonts, and theronts was constructed and sequenced, respectively. Clean reads from the three stages were de novo assembled to generated unigene. Annotation of unigenes and transcriptomic comparison of three stages was performed. RESULTS Totals of 73.15, 62.23, and 109.57 million clean reads were generated from trophont, tomont, and theront libraries, respectively. After de novo assembly, 49,104 unigenes were obtained, including 9,253 unigenes with significant similarities to proteins from other ciliates. Transcriptomic comparisons revealed that 2,470 genes were differentially expressed among the three stages, including 2,011, 1,404, and 1,797 genes that were significantly differentially expressed in tomont/theront, tomont/trophont, and theront/trophont pairwise comparisons, respectively. Based on the results of hierarchical clustering, all differentially expressed genes (DEGs) were located in five major clusters. DEGs in clusters 1 and 2 were more highly expressed in tomonts than in other stages, DEGs in cluster 3 were dominant in the tomont and trophont stages, whereas clusters 4 and 5 included genes upregulated in the theront stage. In addition, Immobilization antigens (I-antigens) and proteases have long been considered major targets for vaccine development and potential drug targets in parasites, respectively. In the present study, nine putative I-antigens transcripts and 161 protease transcripts were found in the transcriptome of C. irritans. CONCLUSION It was concluded that DEGs enriched in tomonts were involved in cell division, to increase the number of theronts and ensure parasite continuity. DEGs enriched in theronts were associated with response to stimuli, whereas genes enriched in trophonts were related to nutrient accumulation and cell growth. In addition, the I-antigen and protease transcripts in our transcriptome could contribute to the development of vaccines or targeted drugs. Together, the results of the present study provide novel insights into the physiological processes of a marine parasitic ciliate.
Collapse
|
11
|
Lokanathan Y, Mohd-Adnan A, Kua BC, Nathan S. Cryptocaryon irritans recombinant proteins as potential antigens for sero-surveillance of cryptocaryonosis. JOURNAL OF FISH DISEASES 2016; 39:1069-1083. [PMID: 27086498 DOI: 10.1111/jfd.12474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Cryptocaryonosis is a major problem for mariculture, and the absence of suitable sero-surveillance tools for the detection of cryptocaryonosis makes it difficult to screen Cryptocaryon irritans-infected fish, particularly asymptomatic fish. In this study, we proposed a serum-based assay using selected C. irritans proteins to screen infected and asymptomatic fish. Eight highly expressed genes were chosen from an earlier study on C. irritans expressed sequence tags and ciliate glutamine codons were converted to universal glutamine codons. The chemically synthesized C. irritans genes were then expressed in an Escherichia coli expression host under optimized conditions. Five C. irritans proteins were successfully expressed in E. coli and purified by affinity chromatography. These proteins were used as antigens in an enzyme-linked immunosorbent assay (ELISA) to screen sera from experimentally immunized fish and naturally infected fish. Sera from both categories of fish reacted equally well with the expressed C. irritans recombinant proteins as well as with sonicated theronts. This study demonstrated the utility of producing ciliate recombinant proteins in a heterologous expression host. An ELISA was successfully developed to diagnose infected and asymptomatic fish using the recombinant proteins as antigens.
Collapse
Affiliation(s)
- Y Lokanathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - A Mohd-Adnan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - B-C Kua
- National Fish Health Research Centre (NaFisH), Fisheries Research Institute, Batu Maung, Penang, Malaysia
| | - S Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
12
|
Ultrastructure observation on the cells at different life history stages of Cryptocaryon irritans (Ciliophora: Prostomatea), a parasitic ciliate of marine fishes. Parasitology 2016; 143:1479-89. [DOI: 10.1017/s0031182016001074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYCells of Cryptocaryon irritans at different life history stages were studied using both light and electron microscopy. The characteristics of several organelles were revealed for the first time at the ultrastructural level. It was confirmed that the cytostome of trophonts, protomonts and theronts was surrounded by cilium–palp triplets rather than ciliary triplets. The nematodesmata underlying the circumoral dikinetids were single bundles, whereas these were always paired in Prorodontids. Toxicysts were present in late-stage tomonts and theronts, but were absent in trophonts and protomonts. We posited that toxicysts might play a role in infection and invasion of host-fish tissue by theronts. The adoral brosse was unlike that of any other family of the class Prostomatea based on its location and morphology. Membranous folds were present in trophonts, protomonts and theronts. These folds were longer and more highly developed in C. irritans than in exclusively free-living prostome ciliates suggesting that they might be linked to parasitism in C. irritans. Trophonts, protomonts and theronts had multiple contractile vacuoles. The basic ultrastructure of the contractile vacuole of C. irritans was similar to that of other kinetofragminophoran ciliates. They might play different roles in different stages of the life cycle since their ultrastructure varied among trophonts, protomonts and theronts.
Collapse
|
13
|
Zhang DL, Yu DH, Chen J, Chen C, Wang ZY. Co-expression of march5b and tlr7 in large yellow croaker Larimichthys crocea in response to Cryptocaryon irritans infection. JOURNAL OF FISH BIOLOGY 2015; 87:360-370. [PMID: 26179830 DOI: 10.1111/jfb.12726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 07/01/2014] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
In this study, molecular characteristics of march5b and co-expression of march5b and tlr7 in response to the infection of Cryptocaryon irritans in the large yellow croaker Larimichthys crocea were investigated. The full-length complementary (c)DNA of march5b was 1314 bp, including an open reading frame of 846 bp encoding a polypeptide of 281 amino acids, and the full-length genomic sequence was composed of 23,577 nucleotides, including six exons and five introns. The putative March5b protein contained a RINGv motif and four transmembrane domains. The march5b transcripts were broadly distributed in all detected tissues, with a strong expression in blood, brain and gills, and a weak expression in kidney by quantitative PCR analysis. The expression of march5b and tlr7 in the skin, gills, spleen and head kidney changed in the same manner at most time points post-primary infection with C. irritans. Significant increase was observed in the skin with march5b at days 2 and 3 by 26.10 and 6.88 fold, respectively, and with tlr7 at day 3 by 57.68 fold, when compared with the control. Their expressions, however, were decreased in the gills, especially at day 3 (march5b by 8.9%, tlr7 by 22.06%). In the spleen and head kidney, march5b and tlr7 transcripts were up-regulated early, then noticeably declined at day 3. These results suggested that march5b and tlr7 are co-expressed in response to parasite infection and March5b probably catalyses ubiquitination of some proteins of TLR7 signalling pathway.
Collapse
Affiliation(s)
- D L Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - D H Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - J Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - C Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, PR China
| | - Z Y Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| |
Collapse
|
14
|
Josepriya TA, Chien KH, Lin HY, Huang HN, Wu CJ, Song YL. Immobilization antigen vaccine adjuvanted by parasitic heat shock protein 70C confers high protection in fish against cryptocaryonosis. FISH & SHELLFISH IMMUNOLOGY 2015; 45:517-527. [PMID: 25957883 DOI: 10.1016/j.fsi.2015.04.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/18/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
The immobilization antigen (iAg) has been demonstrated as a protective immunogen against Cryptocaryon irritans infection. In this study, C-terminal domain of heat shock protein 70 cloned from C. irritans (Hsp70C) was tested for its immuno-stimulatory effects. The iAg and Hsp70C cDNAs were constructed independently in secretory forms and were encapsulated in chitosan nanoparticles. In the first immunization trial, grouper fingerlings orally intubated with iAg and iAg:Hsp70C presented 96% and 100% relative percent survival (RPS), respectively, after a lethal challenge. In the second trial, both iAg and iAg:Hsp70C groups showed 100% RPS and the skin trophont burden was significantly lowered. The iAg:Hsp70C still provides a significantly high protection of 51% RPS at 49 days post immunization, when an even more serious lethal infection occurs. RT-qPCR results showed that Hsp70C could up-regulate the expression of i) T cell markers: Cluster of Differentiation 8 alpha (CD8α) and CD4, ii) cytokine genes: Interferon gamma (IFNγ), Tumor Necrosis Factor alpha (TNFα) and Interleukin 12 p40 (IL-12/P40), iii) antibody genes: Immunoglobulin M heavy chain (IgMH) and IgTH, and iv) major histocompatibility complex (MHC-I & MHC-II), in the spleen of iAg:Hsp70C group. Furthermore, significantly high levels of iAg-specific IgM was detected in skin mucus which efficiently immobilized live theronts in iAg- and iAg:Hsp70C-immunized fish at 5 weeks post immunization. Hsp70C significantly increased the number of nonspecific CD8(+) skin leucocytes which exerted cytotoxicity against theronts, although cytotoxic activity showed no difference among the various groups. Because of this complementary cooperation of cellular and humoral immune responses, Hsp70C enhances the efficacy of iAg vaccine and constrains C. irritans infection. In view of the severe loss caused by cryptocaryonosis, application of this parasitic vaccine in farmed and ornamental fish, is worthy to be considered.
Collapse
Affiliation(s)
- T A Josepriya
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuo-Hsuan Chien
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Yun Lin
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Han-Ning Huang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan; Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Jer Wu
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Yen-Ling Song
- Department of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
15
|
Zhao F, Li YW, Pan HJ, Wu SQ, Shi CB, Luo XC, Li AX. Grass carp (Ctenopharyngodon idella) TRAF6 and TAK1: molecular cloning and expression analysis after Ichthyophthirius multifiliis infection. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1514-1523. [PMID: 23542602 DOI: 10.1016/j.fsi.2013.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Ichthyophthirius multifiliis, a pathogenic ciliate parasite, infects almost all freshwater fish species and causes significant economic losses. Tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β-activated kinase 1 (TAK1) are two important signaling molecules involved in toll-like receptor (TLR) signal transduction. To date, the roles of TRAF6 and TAK1 in host defense against fish parasites are still poorly understood. In the present study, TRAF6 (CiTRAF6) and TAK1 (CiTAK1) were identified from grass carp (Ctenopharyngodon idella). The full-length cDNA sequence of CiTRAF6 (2250 bp) includes an open reading frame (ORF) of 1629 bp, which shows a high similarity to that of Cyprinus carpio TRAF6 and encodes a putative protein of 542 amino acids containing one RING domain, two zinc fingers, one coiled-coil region, and one MATH domain. The full-length CiTAK1 cDNA sequence is 2768 bp and includes an ORF of 1626 bp that encodes a putative protein of 541 amino acids containing a conserved serine/threonine protein kinase catalytic domain and a coiled-coil region. Phylogenetic analysis showed that CiTRAF6 and CiTAK1 were clustered with TRAF6 and TAK1 of other teleosts, respectively. CiTRAF6 and CiTAK1 were both constitutively expressed in all examined tissues but with varied expression levels. The highest expressions of CiTRAF6 and CiTAK1 were in the head kidney and spleen, respectively. The expression profiles of CiTRAF6 and CiTAK1 were detected in grass carp after I. multifiliis infection. Expressions of both genes were significantly up-regulated in the skin, gill, head kidney, and spleen at most time points after infection, indicating that CiTRAF6 and CiTAK1 may play essential roles in grass carp defense against I. multifiliis.
Collapse
Affiliation(s)
- Fei Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Haizhu District, Guangzhou, Guangdong Province 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
Dan XM, Zhang TW, Li YW, Li AX. Immune responses and immune-related gene expression profile in orange-spotted grouper after immunization with Cryptocaryon irritans vaccine. FISH & SHELLFISH IMMUNOLOGY 2013; 34:885-891. [PMID: 23291105 DOI: 10.1016/j.fsi.2012.12.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 12/15/2012] [Accepted: 12/23/2012] [Indexed: 06/01/2023]
Abstract
In order to elucidate the immune-protective mechanisms of inactivated Cryptocaryon irritans vaccine, different doses of C. irritans theronts were used to immunize orange-spotted grouper (Epinephelus coioides). We measured serum immobilization titer, blood leukocyte respiratory burst activity, serum alternative complement activity, and serum lysozyme activity weekly. In addition, the expression levels of immune-related genes such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), major histocompatibility complexes I and II (MHC I and II), and transforming growth factor-β1 (TGF-β1) were determined in spleen and gills. The results showed that the immobilization titer, respiratory burst activity, and alternative complement activity of immunized fish were significantly increased, and the levels of the last two immune parameters in the high-dose vaccine group were significantly higher than in the low-dose vaccine group. Serum lysozyme activity in the high-dose vaccine group was significantly higher than in the PBS control group. Vaccination also regulated host immune-related gene expression. For example, at 2- and 3- weeks post immunization, IL-1β expression in the high-dose vaccine group spleen was significantly increased. At 4-weeks post immunization, the fish were challenged with a lethal dose of parasite, and the survival rates of high-dose vaccine group, low-dose vaccine group, PBS control group, and adjuvant control group were 80%, 40%, 0%, and 10% respectively. These results demonstrate that inactivated C. irritans vaccination improves specific and nonspecific immune responses in fish, enhancing their anti-parasite ability. These effects are vaccine antigen dose-dependent.
Collapse
Affiliation(s)
- Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong Province 510642, PR China
| | | | | | | |
Collapse
|
17
|
Huang X, Sun Z, Guo G, Zheng C, Xu Y, Yuan L, Liu C. Cloning and characterization of a surface antigen CiSA-32.6 from Cryptocaryon irritans. Exp Parasitol 2012; 130:189-94. [DOI: 10.1016/j.exppara.2012.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
|
18
|
Codon changed immobilization antigen (iAg), a potent DNA vaccine in fish against Cryptocaryon irritans infection. Vaccine 2012; 30:893-903. [DOI: 10.1016/j.vaccine.2011.11.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/16/2011] [Accepted: 11/25/2011] [Indexed: 01/17/2023]
|
19
|
LI YW, DAN XM, ZHANG TW, LUO XC, LI AX. Immune-related genes expression profile in orange-spotted grouper during exposure to Cryptocaryon irritans. Parasite Immunol 2011; 33:679-987. [DOI: 10.1111/j.1365-3024.2011.01337.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Immune protection of Mozambique tilapia (Oreochromis mossambicus) exposed to different infectious doses of ectoparasite (Cryptocaryon irritans). Parasitol Res 2011; 110:363-72. [PMID: 21739314 DOI: 10.1007/s00436-011-2500-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
The objectives of the present study were to standardize a reproducible infection procedure with Cryptocaryon irritans and to examine the effects of infectious dose level on the immune protection in Mozambique tilapia (Oreochromis mossambicus). This study demonstrated that direct enumeration of trophonts on the pectoral fin was useful to quantitatively assess immune protection against C. irritans. The number of trophonts on a pectoral fin was positively correlated with infectious dose of live theronts. Fish immunized by direct exposure under controlled laboratory conditions allowed for in depth examination of the effects of the degree of infectious dose on immune response. There was no significant positive correlation between the initial infectious dose and degree of immune responses. Mozambique tilapia initiated a strong immune protection by direct exposure with even a small number of parasites (e.g. 300 theronts per fish). Moreover, as the result of the protein analysis, we identified 28 kD proteins that could be responsible for the immobilizing antigen.
Collapse
|
21
|
Li YW, Luo XC, Dan XM, Huang XZ, Qiao W, Zhong ZP, Li AX. Orange-spotted grouper (Epinephelus coioides) TLR2, MyD88 and IL-1β involved in anti-Cryptocaryon irritans response. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1230-1240. [PMID: 21540114 DOI: 10.1016/j.fsi.2011.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 05/30/2023]
Abstract
Cryptocaryon irritans is one of the most important ectoparasites of marine fish, and can have a devastating effect on aquacultured fish populations. The role of TLR signaling pathways in anti-parasitic immune responses is poorly understood in fish. In this paper, we first cloned Epinephelus coioides MyD88 full-length cDNA (EcMyD88) and its respective gene. The open reading frame (ORF) of cDNA is 873bp encoding 291 amino acid residues. Similar to other species, the EcMyD88 gene contains of five conserved exons and four diverse introns. The constitutive expression of EcMyD88 was detected in the gill, trunk kidney, head kidney, spleen, and heart in high concentrations, while the skin, brain, liver, and muscles contained much lower titers, indicating that EcMyD88 may play a crucial role in host innate immunologic surveillance. To identify the potential role of TLR pathways in fish anti-C. irritans immune responses, we chose three important molecules involved in anti-parasite responses, TLR2, MyD88 and IL-1β to indicate TLR pathway's signal-in, signal transduction, and signal-out functions, respectively. The expression profile of these three genes was detected in grouper infected by C. irritans. Results showed these molecules each experience significant changes within the skin, gill (two infected mucosal sites), head kidney and spleen (two systematic immune organs) after C. irritans infection. These findings indicate the TLR signaling pathway may play an important role in host defense against C. irritans.
Collapse
Affiliation(s)
- Yan-Wei Li
- Key Laboratory for Aquatic Products Safety of Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Misumi I, Lewis TD, Takemura A, Leong JAC. Elicited cross-protection and specific antibodies in Mozambique tilapia (Oreochromis mossambicus) against two different immobilization serotypes of Cryptocaryon irritans isolated in Hawaii. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1152-1158. [PMID: 21385614 DOI: 10.1016/j.fsi.2011.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 05/30/2023]
Abstract
The objective of this study was to determine whether immunization of Mozambique tilapia with different Cryptocaryon irritans i-antigen serotypes elicited cross-protection against challenge infection by both serotypes. Fish were directly exposed to live theronts of isolate W1 or isolate K1, that express different surface i-antigens. There was no significant difference in the number of trophonts infecting the fish between the two isolates, W1 and K1, following primary exposure. Serum from immunized fish exposed to live theronts showed higher immobilization titres and ELISA values against homologous isolates than to heterologous isolates after the primary exposure. However, mucus antibody did not immobilize theronts although the ELISA results clearly indicated that mucus antibodies recognizing C. irritans were generated. In a study with Western blot analyses, serum antibodies recognized only an antigen of the corresponding serotype and no proteins common to both serotypes were identified. Sequence analyses of 754 bases of rDNA nucleotide sequence including complete nuclear ribosomal ITS-1-5.8S rDNA-ITS-2 region were conducted and found to be identical for W1- and K1-isolates. These findings confirmed that both isolates were members of the species, C. irritans, and that rDNA analysis would not distinguish the two isolates. In conclusion, despite the fact that the immobilization assays and ELISA detected two serotypes in vitro, challenge assays provided evidence for only one type of C. irritans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Base Sequence
- Blotting, Western/veterinary
- Ciliophora Infections/immunology
- Ciliophora Infections/parasitology
- Ciliophora Infections/veterinary
- Cross Reactions/immunology
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Fish Diseases/immunology
- Fish Diseases/parasitology
- Glycosphingolipids/immunology
- Hymenostomatida/genetics
- Hymenostomatida/immunology
- Immunization/standards
- Immunization/veterinary
- Molecular Sequence Data
- Polymerase Chain Reaction/veterinary
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/genetics
- Random Allocation
- Sequence Alignment
- Statistics, Nonparametric
- Tilapia
Collapse
Affiliation(s)
- Ichiro Misumi
- Hawai'i Institute of Marine Biology, School of Ocean & Earth Science & Technology, University of Hawai'i, PO Box 1346, Kāne'ohe, Hawai'i 96744, USA.
| | | | | | | |
Collapse
|
23
|
Wang FH, Xie MQ, Li AX. A novel protein isolated from the serum of rabbitfish (Siganus oramin) is lethal to Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2010; 29:32-41. [PMID: 20117218 DOI: 10.1016/j.fsi.2010.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/09/2010] [Accepted: 01/12/2010] [Indexed: 05/28/2023]
Abstract
The susceptibility of eight marine fish species cultured in South China were tested for infection by the parasitic ciliate, Cryptocaryon irritans, via a challenge examination and an immobilization assay. All species of fish (representing six different families) that we investigated were infected by C. irritans except the rabbitfish (Siganus oramin), which displayed resistance to C. irritans infection. The infection intensity of rabbitfish (0.92+/-0.97, p<0.05) was significantly lower while the immobilization titres of rabbitfish serum were significantly higher (44.51+/-22.98, p<0.05) than the other seven species of fish. Additionally, the serum of the rabbitfish presented a strong killing effect to C. irritans in vitro. Light microscopy, scanning electron microscopy and fluorescence microscopy confirmed that rabbitfish serum could induce the theront cilia fall off, rupture of the cell membrane because of the swell and rupture of the macronucleus. Rabbitfish serum could also induce the rupture of the trophont membrane and content efflux. Herein a novel antiparasitic protein (APP) was isolated and purified from the serum of rabbitfish (S. oramin) by using a series of salting-out, cation exchange chromatography and two step of reversed phase high performance liquid chromatography (RP-HPLC). Analysis of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that APP was a homogenous polymeric protein with an N-terminal amino acid sequence of SSVEKNLAACLRDND. Its monomeric molecular mass, determined by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometer (MALDI-TOF-TOF-MS), was found to be 61,739.87 Da. Results of homology analyses indicated that this protein was a newly discovered functional protein in the rabbitfish serum. Laser confocal fluorescence microscopy conformed that the action site of the APP was mainly on the cell membrane and nucleus of theront, which agreed with the results of light microscopy, fluorescence microscopy and scanning electron microscopy. These findings suggest that this protein may contribute considerably to the innate host defence mechanism to combat microbes of the rabbitfish.
Collapse
Affiliation(s)
- Fang-Hua Wang
- State Key Laboratory of Biocontrol, Key Laboratory for Aquatic Products Safety of Ministry of Education, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People's Republic of China
| | | | | |
Collapse
|
24
|
Lokanathan Y, Mohd-Adnan A, Wan KL, Nathan S. Transcriptome analysis of the Cryptocaryon irritans tomont stage identifies potential genes for the detection and control of cryptocaryonosis. BMC Genomics 2010; 11:76. [PMID: 20113487 PMCID: PMC2828411 DOI: 10.1186/1471-2164-11-76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/29/2010] [Indexed: 01/26/2023] Open
Abstract
Background Cryptocaryon irritans is a parasitic ciliate that causes cryptocaryonosis (white spot disease) in marine fish. Diagnosis of cryptocaryonosis often depends on the appearance of white spots on the surface of the fish, which are usually visible only during later stages of the disease. Identifying suitable biomarkers of this parasite would aid the development of diagnostic tools and control strategies for C. irritans. The C. irritans genome is virtually unexplored; therefore, we generated and analyzed expressed sequence tags (ESTs) of the parasite to identify genes that encode for surface proteins, excretory/secretory proteins and repeat-containing proteins. Results ESTs were generated from a cDNA library of C. irritans tomonts isolated from infected Asian sea bass, Lates calcarifer. Clustering of the 5356 ESTs produced 2659 unique transcripts (UTs) containing 1989 singletons and 670 consensi. BLAST analysis showed that 74% of the UTs had significant similarity (E-value < 10-5) to sequences that are currently available in the GenBank database, with more than 15% of the significant hits showing unknown function. Forty percent of the UTs had significant similarity to ciliates from the genera Tetrahymena and Paramecium. Comparative gene family analysis with related taxa showed that many protein families are conserved among the protozoans. Based on gene ontology annotation, functional groups were successfully assigned to 790 UTs. Genes encoding excretory/secretory proteins and membrane and membrane-associated proteins were identified because these proteins often function as antigens and are good antibody targets. A total of 481 UTs were classified as encoding membrane proteins, 54 were classified as encoding for membrane-bound proteins, and 155 were found to contain excretory/secretory protein-coding sequences. Amino acid repeat-containing proteins and GPI-anchored proteins were also identified as potential candidates for the development of diagnostic and control strategies for C. irritans. Conclusions We successfully discovered and examined a large portion of the previously unexplored C. irritans transcriptome and identified potential genes for the development and validation of diagnostic and control strategies for cryptocaryonosis.
Collapse
Affiliation(s)
- Yogeswaran Lokanathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | | | | | | |
Collapse
|
25
|
Molecular cloning of a putative agglutination/immobilization antigen located on the surface of a novel agglutination/immobilization serotype ofCryptocaryon irritans. Parasitology 2008; 135:1043-52. [DOI: 10.1017/s0031182008004617] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYA surface agglutination/immobilization antigen was purified from the novel agglutination/immobilization serotype (serotype G37) of the ciliated protozoanCryptocaryon irritans, a parasite of seawater fishes. Serum from fish immunized withC. irritanstheronts had agglutination/immobilization activity against therontsin vitro. However, fish and rabbit antisera raised against serotype G32 (reported previously) caused little agglutination/immobilization of serotype G37 theronts. Immunological analysis indicated that the 37 kDa theront surface membrane protein may be the agglutination/immobilization antigen of this serotype. The full-length 37 kDa antigen cDNA contained 1171 base pairs, encoding a 331–amino acid protein with hydrophobic N- and C-termini, which are characteristically found in proteins containing a C-terminal glycosylphosphatidylinositol anchor. In addition, the genetically characterized nucleotide sequences of the first internal transcribed spacer region of ribosomal DNA of these 2 serotypes were compared. The internal transcribed spacer rDNA sequence of serotype G32 was identical to that of isolates from Pingtung, Taiwan, and from the USA. On the other hand, the sequences of serotype G37 were not identical to those of anyC. irritansisolate.
Collapse
|
26
|
Characterization of highly concentrated serum lectins in spotted halibutVerasper variegatus. Parasitology 2007; 135:359-69. [DOI: 10.1017/s0031182007004027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYMannose-binding lectins were purified from flatfish spotted halibut (Verasper variegatus) serum. These lectins, which we named VVL (Verasper variegatuslectin)-α (~33 kDa) and VVL-β (~30 kDa) (VVLs), under non-reducing SDS-PAGE, were surprisingly highly concentrated in serum (1·92±0·55 mg/ml;n=5), compared with other serum lectins. Both VVLs are heterodimers comprised of 2 types of subunit via inter-subunit disulfide bonds, and one subunit of VVL-α has a N-linked sugar chain. Based on N-terminal amino acid sequences, the nucleotide sequences of one subunit of VVL cDNAs were determined by 3′- and 5′-rapid amplification of the cDNA ends. The full-length VVL subunit cDNAs contained 489 bp, encoding an open reading frame of 163 amino acids. We found that VVLs bind to an ~8 kDa ciliary surface glycoprotein (a putative agglutination/immobilization antigen that we reported previously) of the fish parasiteNeobenedenia girellae, and agglutinate this parasitein vitro.
Collapse
|