1
|
The Anti-Amoebic Activity of a Peptidomimetic against Acanthamoeba castellanii. Microorganisms 2022; 10:microorganisms10122377. [PMID: 36557630 PMCID: PMC9782699 DOI: 10.3390/microorganisms10122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Acanthamoeba is a free-living protozoan known to cause keratitis most commonly, especially among contact lens wearers. Treatment of Acanthamoeba keratitis is challenging as Acanthamoeba can encyst from the active form, a trophozoite, into a hibernating cyst that is refractory to antibiotics and difficult to kill; therefore, there is a need for more effective anti-amoebic strategies. In this study, we have evaluated the anti-amoebic activity of the antimicrobial peptide mimic RK-758 against Acanthamoeba castellanii. RK-758 peptidomimetic was subjected to biological assays to investigate its amoebicidal, amoebistatic, anti-encystation, and anti-excystation effects on A. castellanii. The anti-amoebic activity of the peptide mimic RK-758 was compared with chlorhexidine against the Acanthamoeba castellanii ATCC30868 and Acanthamoeba castellanii 044 (a clinical strain) with the concentrations of both ranging from 125 µM down to 7.81 µM. All experiments were performed in duplicate with three independent replicates. The data were represented as mean ± SE and analysed using a two-sample t-test and two-tailed distributions. A p < 0.05 was considered statistically significant. The peptidomimetic RK-758 had anti-Acanthamoeba activity against both trophozoites and cysts in a dose-dependent manner. The RK-758 had amoebicidal and growth inhibitory activities of ≥50% at a concentration between 125 µM and 15.6 µM against the trophozoites of both Acanthamoeba strains. Inhibitory effects on the cyst formation and trophozoite re-emergence from cysts were noted at similar concentrations. Chlorhexidine had 50% activity at 7.81 µM and above against the trophozoites and cysts of both strains. In the haemolysis assay, the RK-758 lysed horse RBCs at concentrations greater than 50 µM whereas lysis occurred at concentrations greater than 125 µM for the chlorhexidine. The peptidomimetic RK-758, therefore, has activity against both the trophozoite and cyst forms of Acanthamoeba and has the potential to be further developed as an anti-microbial agent against Acanthamoeba. RK-758 may also have use as an anti-amoebic disinfectant in contact lens solutions.
Collapse
|
2
|
Akbar N, Kaman WE, Sarink M, Nazmi K, Bikker FJ, Khan NA, Siddiqui R. Novel Antiamoebic Tyrocidine-Derived Peptide against Brain-Eating Amoebae. ACS OMEGA 2022; 7:28797-28805. [PMID: 36033708 PMCID: PMC9404165 DOI: 10.1021/acsomega.2c01614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Acanthamoeba castellanii (A. castellanii) can cause Acanthamoeba keratitis, a sight-threatening infection, as well as a fatal brain infection termed granulomatous amoebic encephalitis, mostly in immunocompromised individuals. In contrast, Naegleria fowleri (N. fowleri) causes a deadly infection involving the central nervous system, recognized as primary amoebic encephalitis, mainly in individuals partaking in recreational water activities or those with nasal exposure to contaminated water. Worryingly, mortality rates due to these infections are more than 90%, suggesting the need to find alternative therapies. In this study, antiamoebic activity of a peptide based on the structure of the antibiotic tyrocidine was evaluated against A. castellanii and N. fowleri. The tyrocidine-derived peptide displayed significant amoebicidal efficacy against A. castellanii and N. fowleri. At 250 μg/mL, the peptide drastically reduced amoebae viability up to 13% and 21% after 2 h of incubation against N. fowleri and A. castellanii., whereas, after 24 h of incubation, the peptide showed 86% and 94% amoebicidal activity against A. castellanii and N. fowleri. Furthermore, amoebae pretreated with 100 μg/mL peptide inhibited 35% and 53% A. castellanii and N. fowleri, while, at 250 μg/mL, 84% and 94% A. castellanii and N. fowleri failed to adhere to human cells. Amoeba-mediated cell cytopathogenicity assays revealed 31% and 42% inhibition at 100 μg/mL, while at 250 μg/mL 75% and 86% A. castellanii and N. fowleri were inhibited. Assays revealed inhibition of encystation in both A. castellanii (58% and 93%) and N. fowleri (73% and 97%) at concentrations of 100 and 250 μg/mL respectively. Importantly, tyrocidine-derived peptide depicted minimal cytotoxicity to human cells and, thus, may be a potential candidate in the rational development of a treatment regimen against free-living amoebae infections. Future studies are necessary to elucidate the in vivo effects of tyrocidine-derived peptide against these and other pathogenic amoebae of importance.
Collapse
Affiliation(s)
- Noor Akbar
- College
of Arts and Sciences, American University
of Sharjah, University
City, Sharjah 26666, United Arab Emirates
| | - Wendy E. Kaman
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Maarten Sarink
- Erasmus MC, University Medical Center
Rotterdam, Department
of Medical Microbiology and Infectious Diseases, Wytemaweg 80, 3015
CE Rotterdam, The Netherlands
| | - Kamran Nazmi
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Floris J. Bikker
- Department
of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Naveed Ahmed Khan
- Department
of Clinical Sciences, College of Medicine, University of Sharjah, University
City, Sharjah 27272, Unites Arab Emirates
| | - Ruqaiyyah Siddiqui
- College
of Arts and Sciences, American University
of Sharjah, University
City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
3
|
Bellini NK, Thiemann OH, Reyes-Batlle M, Lorenzo-Morales J, Costa AO. A history of over 40 years of potentially pathogenic free-living amoeba studies in Brazil - a systematic review. Mem Inst Oswaldo Cruz 2022; 117:e210373. [PMID: 35792751 PMCID: PMC9252135 DOI: 10.1590/0074-02760210373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil’s Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.
Collapse
Affiliation(s)
- Natália Karla Bellini
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| | - Otavio Henrique Thiemann
- Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil.,Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brasil
| | - María Reyes-Batlle
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain
| | - Jacob Lorenzo-Morales
- Universidad de La Laguna, Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Departamento de Obstetricia, Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Red de Investigación Cooperativa en Enfermedades Tropicales, Tenerife, Islas Canarias, Spain.,Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red MP de Enfermedades Infecciosas, Madrid, Spain
| | - Adriana Oliveira Costa
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Belo Horizonte, MG, Brasil
| |
Collapse
|
4
|
Tummanapalli SS, Willcox MD. Antimicrobial resistance of ocular microbes and the role of antimicrobial peptides. Clin Exp Optom 2021; 104:295-307. [PMID: 32924208 DOI: 10.1111/cxo.13125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Isolation of antimicrobial-resistant microbes from ocular infections may be becoming more frequent. Infections caused by these microbes can be difficult to treat and lead to poor outcomes. However, new therapies are being developed which may help improve clinical outcomes. This review examines recent reports on the isolation of antibiotic-resistant microbes from ocular infections. In addition, an overview of the development of some new antibiotic therapies is given. The recent literature regarding antibiotic use and resistance, isolation of antibiotic-resistant microbes from ocular infections and the development of potential new antibiotics that can be used to treat these infections was reviewed. Ocular microbial infections are a global public health issue as they can result in vision loss which compromises quality of life. Approximately 70 per cent of ocular infections are caused by bacteria including Chlamydia trachomatis, Staphylococcus aureus, and Pseudomonas aeruginosa and fungi such as Candida albicans, Aspergillus spp. and Fusarium spp. Resistance to first-line antibiotics such as fluoroquinolones and azoles has increased, with resistance of S. aureus isolates from the USA to fluoroquinolones reaching 32 per cent of isolates and 35 per cent being methicillin-resistant (MRSA). Lower levels of MRSA (seven per cent) were isolated by an Australian study. Antimicrobial peptides, which are broad-spectrum alternatives to antibiotics, have been tested as possible new drugs. Several have shown promise in animal models of keratitis, especially treating P. aeruginosa, S. aureus or C. albicans infections. Reports of increasing resistance of ocular isolates to mainstay antibiotics are a concern, and there is evidence that for ocular surface disease this resistance translates into worse clinical outcomes. New antibiotics are being developed, but not by large pharmaceutical companies and mostly in university research laboratories and smaller biotech companies. Antimicrobial peptides show promise in treating keratitis.
Collapse
Affiliation(s)
| | - Mark Dp Willcox
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Zhang S, Fu L, Wan M, Song J, Gao L, Fang W. Peripheral Antimicrobial Peptide Gomesin Induces Membrane Protrusion, Folding, and Laceration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13233-13242. [PMID: 31510749 DOI: 10.1021/acs.langmuir.9b02175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Optical microscopy shows that the peripheral antimicrobial peptide (AMP) gomesin does not disrupt the bacterial membrane by forming stable transmembrane pores but induces lipid accumulation domains, which is followed by a sudden burst near the domains. The molecular action mechanisms of gomesin on vesicle and planar bilayer membranes are investigated in this work using coarse-grained molecular dynamics simulations. By comparing the membrane morphology and property changes induced by gomesin and the pore-forming AMP melittin, we determined that the amphiphilic shape of the AMPs is a key factor affecting the mechanism of cell death. The binding of wedge-shaped gomesin, with a small hydrophobic surface, onto the membrane induces protrusion and folding of the outer monolayer followed by sudden membrane lacerations at the axillae of the protuberances. Alternatively, cylinder-shaped melittins with comparable hydrophilic and hydrophobic surfaces destroy membranes by forming stable pores coexisting with exocytosis-like buddings and endocytosis-like invaginations. The multiple actions of AMPs on the bacterial membrane suggest diverse paradigms for designing molecular carriers for delivering drugs to the cell.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Mingwei Wan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Junjie Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| | - Weihai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry , Beijing Normal University , 19 Xin-Jie-Kou-Wai Street , Beijing 100875 , China
| |
Collapse
|
6
|
Mohammed I, Said DG, Dua HS. Human antimicrobial peptides in ocular surface defense. Prog Retin Eye Res 2017; 61:1-22. [DOI: 10.1016/j.preteyeres.2017.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023]
|
7
|
Brandt CR. Peptide therapeutics for treating ocular surface infections. J Ocul Pharmacol Ther 2014; 30:691-9. [PMID: 25250986 DOI: 10.1089/jop.2014.0089] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microbial pathogens-bacteria, viruses, fungi, and parasites-are significant causes of blindness, particularly in developing countries. For bacterial and some viral infections a number of antimicrobial drugs are available for therapy but there are fewer available for use in treating fungal and parasitic keratitis. There are also problems with current antimicrobials, such as limited efficacy and the presence of drug-resistant microbes. Thus, there is a need to develop additional drugs. Nature has given us an example of 1 potential source of new antimicrobials: antimicrobial peptides and proteins that are either present in bodily fluids and tissues constitutively or are induced upon infection. Given the nature of peptides, topical applications are the most likely use to be successful and this is ideal for treating keratitis. Such peptides would also be active against drug-resistant pathogens and might act synergistically if used in combination therapy. Hundreds of peptides with antimicrobial properties have been isolated or synthesized but only a handful have been tested against ocular pathogens and even fewer have been tested in animal models. This review summarizes the currently available information on the use of peptides to treat keratitis, outlines some of the problems that have been identified, and discusses future studies that will be needed. Most of the peptides that have been tested have shown activity at concentrations that do not warrant further development, but 1 or 2 have promising activity raising the possibility that peptides can be developed to treat keratitis.
Collapse
Affiliation(s)
- Curtis R Brandt
- Departments of Ophthalmology and Visual Sciences and Medical Microbiology and Immunology, McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
8
|
Buri MV, Domingues TM, Paredes-Gamero EJ, Casaes-Rodrigues RL, Rodrigues EG, Miranda A. Resistance to degradation and cellular distribution are important features for the antitumor activity of gomesin. PLoS One 2013; 8:e80924. [PMID: 24312251 PMCID: PMC3843672 DOI: 10.1371/journal.pone.0080924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/18/2013] [Indexed: 12/25/2022] Open
Abstract
Many reports have shown that antimicrobial peptides exhibit anticancer abilities. Gomesin (Gm) exhibits potent cytotoxic activity against cancer cells by a membrane pore formation induced after well-orchestrated intracellular mechanisms. In this report, the replacements of the Cys by Ser or Thr, and the use D-amino acids in the Gm structure were done to investigate the importance of the resistance to degradation of the molecule with its cytotoxicity. [Thr2,6,11,15]-Gm, and [Ser2,6,11,15]-Gm exhibits low cytotoxicity, and low resistance to degradation, and after 24 h are present in localized area near to the membrane. Conversely, the use of D-amino acids in the analogue [D-Thr2,6,11,15]-D-Gm confers resistance to degradation, increases its potency, and maintained this peptide spread in the cytosol similarly to what happens with Gm. Replacements of Cys by Thr and Gln by L- or D-Pro ([D-Thr2,6,11,15, Pro9]-D-Gm, and [Thr2,6,11,15, D-Pro9]-Gm), which induced a similar β-hairpin conformation, also increase their resistance to degradation, and cytotoxicity, but after 24 h they are not present spread in the cytosol, exhibiting lower cytotoxicity in comparison to Gm. Additionally, chloroquine, a lysosomal enzyme inhibitor potentiated the effect of the peptides. Furthermore, the binding and internalization of peptides was determined, but a direct correlation among these factors was not observed. However, cholesterol ablation, which increase fluidity of cellular membrane, also increase cytotoxicity and internalization of peptides. β-hairpin spatial conformation, and intracellular localization/target, and the capability of entry are important properties of gomesin cytotoxicity.
Collapse
Affiliation(s)
- Marcus V. Buri
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Tatiana M. Domingues
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Edgar J. Paredes-Gamero
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- * E-mail: (EG); (AM)
| | | | - Elaine Guadelupe Rodrigues
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- * E-mail: (EG); (AM)
| |
Collapse
|
9
|
Domingues TM, Mattei B, Seelig J, Perez KR, Miranda A, Riske KA. Interaction of the antimicrobial peptide gomesin with model membranes: a calorimetric study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8609-8618. [PMID: 23755822 DOI: 10.1021/la401596s] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gomesin is a potent cationic antimicrobial peptide (z = +6) isolated from the Brazilian spider Acanthoscurria gomesiana . The interaction of gomesin with large unilamellar vesicles composed of a 1:1 mixture of zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and anionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) phospholipids is studied with isothermal titration calorimetry (ITC). In parallel, light scattering and optical microscopy are used to assess peptide-induced vesicle aggregation. The ability of gomesin to permeabilize the membrane is examined with fluorescence spectroscopy of the leakage of 5,6-carboxyfluorescein (CF). Vesicles coated with 3 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PE-PEG) lipids are also investigated to assess the influence of peptide-induced vesicle aggregation in the activity of gomesin. The ITC and light scattering titrations are done in two ways: lipid into peptide and peptide into lipid injections. Although some differences arise between the two setups, the basic interaction of gomesin with anionic vesicles is preserved. A surface partition model combined with the Gouy-Chapman theory is put forward to fit the ITC results. The intrinsic binding constant of gomesin is found to be K ≈ 10(3) M(-1). The interaction of gomesin with anionic membranes is highly exothermic and enthalpy-driven. Binding of gomesin is virtually always accompanied by vesicle aggregation and changes in membrane permeability, leading to CF leakage. Addition of PE-PEG to the membrane strongly attenuates vesicle aggregation but does not significantly change the mode of action of gomesin. The results point to a strong interaction of gomesin with the membrane surface, causing membrane rupture without a deep penetration into the bilayer core.
Collapse
Affiliation(s)
- Tatiana M Domingues
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Rossi DC, Muñoz JE, Carvalho DD, Belmonte R, Faintuch B, Borelli P, Miranda A, Taborda CP, Daffre S. Therapeutic use of a cationic antimicrobial peptide from the spider Acanthoscurria gomesiana in the control of experimental candidiasis. BMC Microbiol 2012; 12:28. [PMID: 22394555 PMCID: PMC3361493 DOI: 10.1186/1471-2180-12-28] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 03/06/2012] [Indexed: 11/20/2022] Open
Abstract
Background Antimicrobial peptides are present in animals, plants and microorganisms and play a fundamental role in the innate immune response. Gomesin is a cationic antimicrobial peptide purified from haemocytes of the spider Acanthoscurria gomesiana. It has a broad-spectrum of activity against bacteria, fungi, protozoa and tumour cells. Candida albicans is a commensal yeast that is part of the human microbiota. However, in immunocompromised patients, this fungus may cause skin, mucosal or systemic infections. The typical treatment for this mycosis comprises three major categories of antifungal drugs: polyenes, azoles and echinocandins; however cases of resistance to these drugs are frequently reported. With the emergence of microorganisms that are resistant to conventional antibiotics, the development of alternative treatments for candidiasis is important. In this study, we evaluate the efficacy of gomesin treatment on disseminated and vaginal candidiasis as well as its toxicity and biodistribution. Results Treatment with gomesin effectively reduced Candida albicans in the kidneys, spleen, liver and vagina of infected mice. The biodistribution of gomesin labelled with technetium-99 m showed that the peptide is captured in the kidneys, spleen and liver. Enhanced production of TNF-α, IFN-γ and IL-6 was detected in infected mice treated with gomesin, suggesting an immunomodulatory activity. Moreover, immunosuppressed and C. albicans-infected mice showed an increase in survival after treatment with gomesin and fluconazole. Systemic administration of gomesin was also not toxic to the mic Conclusions Gomesin proved to be effective against experimental Candida albicans infection. It can be used as an alternative therapy for candidiasis, either alone or in combination with fluconazole. Gomesin's mechanism is not fully understood, but we hypothesise that the peptide acts through the permeabilisation of the yeast membrane leading to death and/or releasing the yeast antigens that trigger the host immune response against infection. Therefore, data presented in this study reinforces the potential of gomesin as a therapeutic antifungal agent in both humans and animals.
Collapse
Affiliation(s)
- Diego C Rossi
- Department of Parasitology, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Benitez LB, Caumo K, Brandelli A, Rott MB. Bacteriocin-like substance from Bacillus amyloliquefaciens shows remarkable inhibition of Acanthamoeba polyphaga. Parasitol Res 2010; 108:687-91. [PMID: 20967460 DOI: 10.1007/s00436-010-2114-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/05/2010] [Indexed: 12/01/2022]
Abstract
The effectiveness of a bacteriocin-like substance (BLS) produced by Bacillus amyloliquefaciens was tested against Acanthamoeba polyphaga strains, and its cytotoxic potential on Vero cells was investigated. Amebicidal activity of the purified BLS was tested by plate bioassays with concentrations ranging from 12.5 to 6,400 AU mL(-1). Damage to A. pholyphaga cells was monitored using an inverted microscope and counted in a Fuchs-Rosenthal chamber after 24, 48, and 72 h. According to the results obtained, the BLS showed remarkable amebicidal and amebostatic effect on A. polyphaga and showed no cytotoxicity on the Vero cells. These results may have great relevance in the development of new acanthamoebicidal compounds.
Collapse
Affiliation(s)
- Lisianne Brittes Benitez
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | |
Collapse
|
12
|
Domingues TM, Riske KA, Miranda A. Revealing the lytic mechanism of the antimicrobial peptide gomesin by observing giant unilamellar vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:11077-11084. [PMID: 20356040 DOI: 10.1021/la100662a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Gomesin (Gm) is a potent cationic antimicrobial peptide from a Brazilian spider. Here we use optical and fluorescence microscopy to study the interaction of Gm, its low active linear analogue, [Ser(2,6,11,15)]-Gm (GmL), and a fluorescent labeled analogue, Gm-Rh, with giant unilamellar vesicles (GUVs) composed of mixtures of the neutral lipid palmitoyloleoyl phosphatidylcholine (POPC) with the negatively charged lipid palmitoyloleoyl phosphatidylglycerol (POPG) or cholesterol, so as to mimic bacterial and mammalian cell membranes, respectively. We observed the effect of injecting a peptide solution with a micropipet close to GUVs. As a result of peptide-lipid interaction, GUVs burst suddenly. Stable pores, which result in leaky vesicles, were not observed. Fluorescence microscopy of Gm-Rh injected on GUVs confirmed the high peptide/lipid affinity. These facts lead us to suggest that Gm and GmL disrupt the membrane via the carpet model. In order to quantify the lytic activity of both peptides against different membrane composition, a solution of GUVs was diluted in increasing concentration of peptides and the fraction of burst GUVs was measured as a function of time. The lytic activity of both peptides was enhanced by the presence of POPG and decreased upon addition of cholesterol. GmL exhibited lower lytic activity as compared to Gm, but this difference vanished at high POPG molar fraction.
Collapse
Affiliation(s)
- Tatiana M Domingues
- Departamento de Biofísica, Universidade Federal de São Paulo, 100 CEP 04044-020, São Paulo, SP, Brazil
| | | | | |
Collapse
|