1
|
Ash LV, Campião KM, Teixeira CP, Gotelli NJ. Ranavirus and helminth parasite co-infection in invasive American bullfrogs in the Atlantic forest, Brazil. Int J Parasitol Parasites Wildl 2024; 23:100924. [PMID: 38586581 PMCID: PMC10997893 DOI: 10.1016/j.ijppaw.2024.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Emerging infectious diseases threaten amphibian species across the globe. In Brazil, the American bullfrog (Aquarana catesbeiana) is a highly invasive species that can potentially transmit parasites and pathogens to native amphibians. This is the first assessment of co-infection of Ranavirus and helminth macroparasites in invasive populations of bullfrogs in South America. We collected, measured, and euthanized 65 specimens of A. catesbeiana sampled from 9 sites across three states of Brazil in the Atlantic Forest biome. We collected and identified helminth macroparasites and sampled host liver tissue to test for the presence and load of Ranavirus with quantitative PCR. We documented patterns of prevalence, parasite load, and co-infection with generalized linear mixed models, generalized logistic regressions, and randomization tests. Most individual bullfrogs did not exhibit clinical signs of infection, but the overall Ranavirus prevalence was 27% (95% confidence interval, [CI 17-38]). Bullfrogs were infected with helminth macroparasites from 5 taxa. Co-infection of helminth macroparasites and Ranavirus was also common (21% CI [12-31]). Bullfrog size was positively correlated with total macroparasite abundance and richness, and the best-fitting model included a significant interaction between bullfrog size and Ranavirus infection status. We observed a negative correlation between Ranavirus viral load and nematode abundance (slope = -0.22, P = 0.03). Invasive bullfrogs (A. catesbeiana) in Brazil were frequently infected with both Ranavirus and helminth macroparasites, so adult bullfrogs could serve as reservoir hosts for both pathogens and parasites. However, many macroparasites collected were encysted and not developing. Coinfection patterns suggest a potential interaction between Ranavirus and macroparasites because helminth abundance increased with bullfrog size but was lower in Ranavirus infected individuals. Future studies of bullfrogs in the Atlantic Forest should investigate their potential role in pathogen and parasite transmission to native anurans.
Collapse
Affiliation(s)
- Lauren V. Ash
- University of Vermont, Department of Biology, 109 Carrigan Drive, Burlington, VT, 05403, USA
| | - Karla Magalhães Campião
- Laboratório de Interações Biológicas, Departamento de Zoologia, Universidade Federal do Paraná, UFPR, Curitiba, Paraná, Brazil
| | - Cauê Pinheiro Teixeira
- Laboratório de Interações Biológicas, Departamento de Zoologia, Universidade Federal do Paraná, UFPR, Curitiba, Paraná, Brazil
| | - Nicholas J. Gotelli
- University of Vermont, Department of Biology, 109 Carrigan Drive, Burlington, VT, 05403, USA
| |
Collapse
|
2
|
Grunberg RL, Joyner BN, Mitchell CE. Historical contingency in parasite community assembly: Community divergence results from early host exposure to symbionts and ecological drift. PLoS One 2023; 18:e0285129. [PMID: 37192205 DOI: 10.1371/journal.pone.0285129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/15/2023] [Indexed: 05/18/2023] Open
Abstract
Host individuals are commonly coinfected with multiple parasite species that may interact to shape within-host parasite community structure. In addition to within-host species interactions, parasite communities may also be structured by other processes like dispersal and ecological drift. The timing of dispersal (in particular, the temporal sequence in which parasite species infect a host individual) can alter within-host species interactions, setting the stage for historical contingency by priority effects, but how persistently such effects drive the trajectory of parasite community assembly is unclear, particularly under continued dispersal and ecological drift. We tested the role of species interactions under continued dispersal and ecological drift by simultaneously inoculating individual plants of tall fescue with a factorial combination of three symbionts (two foliar fungal parasites and a mutualistic endophyte), then deploying the plants in the field and tracking parasite communities as they assembled within host individuals. In the field, hosts were exposed to continued dispersal from a common pool of parasites, which should promote convergence in the structure of within-host parasite communities. Yet, analysis of parasite community trajectories found no signal of convergence. Instead, parasite community trajectories generally diverged from each other, and the magnitude of divergence depended on the initial composition of symbionts within each host, indicating historical contingency. Early in assembly, parasite communities also showed evidence of drift, revealing another source of among-host divergence in parasite community structure. Overall, these results show that both historical contingency and ecological drift contributed to divergence in parasite community assembly within hosts.
Collapse
Affiliation(s)
- Rita L Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Brooklynn N Joyner
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| | - Charles E Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
3
|
Tepox-Vivar N, Stephenson JF, Guevara-Fiore P. Transmission dynamics of ectoparasitic gyrodactylids (Platyhelminthes, Monogenea): An integrative review. Parasitology 2022; 149:1-13. [PMID: 35481457 DOI: 10.1017/s0031182022000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasite transmission is the ability of pathogens to move between hosts. As a key component of the interaction between hosts and parasites, it has crucial implications for the fitness of both. Here, we review the transmission dynamics of Gyrodactylus species, which are monogenean ectoparasites of teleost fishes and a prominent model for studies of parasite transmission. Particularly, we focus on the most studied host–parasite system within this genus: guppies, Poecilia reticulata, and G. turnbulli/G. bullatarudis. Through an integrative literature examination, we identify the main variables affecting Gyrodactylus spread between hosts, and the potential factors that enhance their transmission. Previous research indicates that Gyrodactylids spread when their current conditions are unsuitable. Transmission depends on abiotic factors like temperature, and biotic variables such as gyrodactylid biology, host heterogeneity, and their interaction. Variation in the degree of social contact between hosts and sexes might also result in distinct dynamics. Our review highlights a lack of mathematical models that could help predict the dynamics of gyrodactylids, and there is also a bias to study only a few species. Future research may usefully focus on how gyrodactylid reproductive traits and host heterogeneity promote transmission and should incorporate the feedbacks between host behaviour and parasite transmission.
Collapse
Affiliation(s)
- Natalia Tepox-Vivar
- Maestría en Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| |
Collapse
|
4
|
Park E, Poulin R. Two parasites in one host: spatiotemporal dynamics and co-occurrence of Microsporidia and Rickettsia in an amphipod host. Parasitology 2021; 148:1099-1106. [PMID: 34024289 PMCID: PMC11010212 DOI: 10.1017/s0031182021000810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 11/07/2022]
Abstract
Biological interactions can greatly influence the abundance of species. This is also true for parasitic species that share the same host. Microsporidia and Rickettsia are widespread intracellular parasites in populations of Paracalliope fluviatilis, the most common freshwater amphipods in New Zealand. Although both parasites coexist in many populations, it is unclear whether they interact with each other. Here, we investigated spatial−temporal dynamics and co-occurrence of the two parasites, Microsporidia and Rickettsia in P. fluviatilis hosts, across one annual cycle and in three different locations. Prevalence of both Microsporidia and Rickettsia changed over time. However, while the prevalence of Rickettsia varied significantly between sampling times, that of Microsporidia did not change significantly and remained relatively low. The two parasites therefore followed different temporal patterns. Also, the prevalence of both parasites differed among locations, though the two species reached their highest prevalence in different locations. Lastly, there was no evidence for positive or negative associations between the two parasite species; the presence of one parasite in an individual host does not appear to influence the probability of infection by the other parasite. Their respective prevalence may follow different patterns among populations on a larger spatial scale due to environmental heterogeneity across locations.
Collapse
Affiliation(s)
- Eunji Park
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Robert Poulin
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
Effects of first intermediate host density, host size and salinity on trematode infections in mussels of the south-western Baltic Sea. Parasitology 2020; 148:486-494. [PMID: 33213531 PMCID: PMC7938341 DOI: 10.1017/s0031182020002188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Trematode prevalence and abundance in hosts are known to be affected by biotic drivers as well as by abiotic drivers. In this study, we used the unique salinity gradient found in the south-western Baltic Sea to: (i) investigate patterns of trematode infections in the first intermediate host, the periwinkle Littorina littorea and in the downstream host, the mussel Mytilus edulis, along a regional salinity gradient (from 13 to 22) and (ii) evaluate the effects of first intermediate host (periwinkle) density, host size and salinity on trematode infections in mussels. Two species dominated the trematode community, Renicola roscovita and Himasthla elongata. Salinity, mussel size and density of infected periwinkles were significantly correlated with R. roscovita, and salinity and density correlated with H. elongata abundance. These results suggest that salinity, first intermediate host density and host size play an important role in determining infection levels in mussels, with salinity being the main major driver. Under expected global change scenarios, the predicted freshening of the Baltic Sea might lead to reduced trematode transmission, which may be further enhanced by a potential decrease in periwinkle density and mussel size.
Collapse
|
6
|
Oda FH, da Graça RJ, Lima FS, Alvarenga FS, Takemoto RM, Pavanelli GC. Cysts and larvae of Strongyluris: A parasite of amphibians and reptiles found in an urban population of Lissachatina fulica (Férussac, 1821) in southern Brazil. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2020; 20:100386. [PMID: 32448537 DOI: 10.1016/j.vprsr.2020.100386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 11/15/2022]
Abstract
We report the finding of cysts and larvae of Strongyluris in specimens of L. fulica from an urban area of the municipality of Maringá in northern Paraná State, southern Brazil. Thirty-seven young adult snails were collected at three sites: 15 in riparian forest; 14 in a vegetable garden; and eight in a residential garden. We found a total of 16 cysts with nematode larvae in three of the 15 snails collected in riparian forest. The parasites were identified as larvae of the genus Strongyluris, which are parasites of the gastrointestinal tract of amphibians and reptiles. Lissachatina fulica is established in urban areas of 33% of the municipalities of the state of Paraná. The species has spread rapidly through the urban area of the municipality of Maringá, which may contribute to the transmission of nematode larvae of medical and veterinary interest to humans and other animals.
Collapse
Affiliation(s)
- Fabrício H Oda
- Departamento de Química Biológica, Programa de Pós-graduação em Bioprospecção Molecular, Universidade Regional do Cariri, Campus Pimenta, Crato 63105-000, Ceará, Brazil; Laboratório de Ictioparasitologia, Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Paraná, Brazil.
| | - Rodrigo J da Graça
- Laboratório de Ictioparasitologia, Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Paraná, Brazil
| | - Flávia S Lima
- Laboratório de Ictioparasitologia, Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Paraná, Brazil
| | - Filipe S Alvarenga
- Departamento de Ciências Biológicas e da Saúde, Centro Universitário Maringá, Avenida Guedner 1610, Jardim Aclimação, Maringá 87050-390, Paraná, Brazil
| | - Ricardo M Takemoto
- Laboratório de Ictioparasitologia, Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Paraná, Brazil
| | - Gilberto C Pavanelli
- Instituto Cesumar de Ciência, Tecnologia e Inovação, Maringá, Paraná, Brazil; Centro Universitário de Maringá, Programa de Pós-Graduação em Promoção da Saúde, Avenida Guedner, 1610, Bloco 07, sala 11, Maringá 87050-390, Paraná, Brazil
| |
Collapse
|
7
|
Mohammed RS, King SD, Bentzen P, Marcogliese D, van Oosterhout C, Lighten J. Parasite diversity and ecology in a model species, the guppy ( Poecilia reticulata) in Trinidad. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191112. [PMID: 32218941 PMCID: PMC7029902 DOI: 10.1098/rsos.191112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The guppy (Poecilia reticulata) is a model species in ecology and evolution. Many studies have examined effects of predators on guppy behaviour, reproduction, survival strategies, feeding and other life-history traits, but few have studied variation in their parasite diversity. We surveyed parasites of 18 Trinidadian populations of guppy, to provide insight on the geographical mosaic of parasite variability, which may act as a source of natural selection acting on guppies. We found 21 parasite species, including five new records for Trinidad. Spatial variation in parasite diversity was significantly higher than that of piscine predators, and significant variation in parasite richness among individuals and populations was correlated with: (i) host size, (ii) snail species richness, and (iii) the distance between populations. Differences in parasite species richness are likely to play an important, yet underestimated role in the biology of this model species of vertebrate ecology and evolution.
Collapse
Affiliation(s)
- Ryan S. Mohammed
- Department of Life Sciences, The University of the West Indies, St Augustine, Trinidad and Tobago
| | - Stanley D. King
- Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H4R2
| | - Paul Bentzen
- Biology Department, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, Canada B3H4R2
| | - David Marcogliese
- Environment and Climate Change Canada, St Lawrence Centre, 105 McGill, Montreal, Quebec, Canada HY2 2E7
- St Andrews Biological Station, Department of Fisheries and Oceans Canada, 125 Marine Science Drive, St Andrews, New Brunswick, Canada E5B 0E4
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jackie Lighten
- Biosciences, University of Exeter, Stocker Road, Exeter EX4 4PY, UK
| |
Collapse
|
8
|
Life-cycle mediated effects of urbanization on parasite communities in the estuarine fish, Fundulus heteroclitus. PLoS One 2019; 14:e0225896. [PMID: 31790480 PMCID: PMC6886805 DOI: 10.1371/journal.pone.0225896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022] Open
Abstract
This study examined the relationship between urbanization and parasite community structure in the estuarine fish, Fundulus heteroclitus. We measured landscape and physicochemical factors associated with urbanization at 6 sites from 4 collection periods. Concurrently, we quantified the metazoan parasite community in F. heteroclitus collected at those sites, with 105 fish studied per site during the 4 collection periods. Parasite community composition differed among sites. Host size was the most important variable for direct life-cycle parasite assemblages and indirect life-cycle parasites at the individual fish level, while landscape and physicochemical factors determined the structure of indirect life-cycle parasite assemblages at the population scale. Variation in the prevalence and intensity of infection of two indirect life-cycle parasites, Lasiocotus minutus and Glossocercus caribaensis, were the primary parasites that drove differences across sites. Variation in the presence/absence of these indirect life-cycle parasite species was associated with sediment Ni concentrations, patch density, and marsh size. Our data support the hypothesis that urbanization, acting at both landscape and physicochemical scales, can have a significant impact on parasite community structure. This, however, varied by parasite life history: there was little effect of urbanization on the prevalence and intensity of direct life-cycle parasites, but significant variation was detected for indirect life-cycle parasites. This study demonstrates how anthropogenically driven landscape change influences fine-scale population dynamics of parasites.
Collapse
|
9
|
Steenrod CL, Jones JR, Marino JA. Variation in Trematode Infection in Snails Associated with Land Cover and Water Chemistry in the Central Illinois River Watershed. J Parasitol 2019. [PMID: 31348718 DOI: 10.1645/18-147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Parasites can affect animal populations and communities in aquatic ecosystems. However, greater understanding is needed for the distributions and drivers of parasite infection levels in many areas. This study focuses on parasite prevalence (percent infected hosts) of an important class of parasites, trematodes, in 2 species of snail first intermediate hosts (Planorbella trivolvis and Physa sp.) in the Illinois River watershed, which has been impacted by human development. We hypothesized that trematode prevalence depends on local (e.g., water chemistry) and landscape (e.g., proximity to the Illinois River and land cover) factors. To test our hypotheses, we collected at least 20 individuals of 1 or both species of snails from 28 ponds within the watershed, and we made water-quality measurements and recorded habitat characteristics at each site. We then screened the snails for infections in the laboratory and identified the trematode cercariae that emerged based on morphological and molecular techniques. We found 5 cercariae morphotypes, including important parasites of wildlife, such as Echinostoma sp. and Ribeiroia ondatrae. Our results indicate that proximity to the Illinois River and open water or wetlands was positively associated with trematode prevalence in both snail species, whereas water chemistry (higher pH, lower calcium concentration, and lower specific conductance) was associated with increased prevalence, but only in Physa. Our findings offer increased understanding of potential environmental drivers underlying trematode distributions, with implications for wildlife health.
Collapse
Affiliation(s)
- Camille L Steenrod
- 1 Department of Geography, University of Maryland, 2181 LeFrak Hall, College Park, Maryland 20740
| | - Jacob R Jones
- 2 Department of Biology, Bradley University, 1501 West Bradley Avenue, Peoria, Illinois 61625
| | - John A Marino
- 2 Department of Biology, Bradley University, 1501 West Bradley Avenue, Peoria, Illinois 61625
| |
Collapse
|
10
|
Multi-driver and multi-scale assessment of vine community structure and composition across a complex tropical environmental matrix. PLoS One 2019; 14:e0215274. [PMID: 31075096 PMCID: PMC6510454 DOI: 10.1371/journal.pone.0215274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/31/2019] [Indexed: 11/19/2022] Open
Abstract
Ecological communities are structured by multiple processes operating at multiple scales yet understanding the scale-dependency of these processes remains an open challenge. This might be particularly true for parasites, for which biotic rather than abiotic processes may play a primary role in structuring communities. Focusing on vines, a group of structural parasites that gain access to the canopy using different climbing mechanisms, we examined the influence of abiotic factors in tandem with host-parasite and parasite-parasite interactions in the assembly of tropical vine communities. Two synthetic variables, namely Climate1 and landscape Variety, were consistently important in explaining variation in species richness and diversity, as well as species composition, but their importance varied with scale. Whereas Climate1 summarizes the largest variability among climatic variables, landscape Variety expresses landscape heterogeneity within a neighborhood. Significant patterns of species co-occurrences suggest that vine-vine interactions also contribute to vine community assembly. Our results may be critical to understand vine proliferation and help design management strategies for their control.
Collapse
|
11
|
McDevitt-Galles T, Calhoun DM, Johnson PTJ. Parasite richness and abundance within aquatic macroinvertebrates: testing the roles of host- and habitat-level factors. Ecosphere 2018; 9. [PMID: 30271654 DOI: 10.1002/ecs2.2188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The importance of parasites as both members of biological communities and as structuring agents of host communities has been increasingly emphasized. Yet parasites of aquatic macroinvertebrates and the environmental factors regulating their richness and abundance remain poorly studied. Here we quantified parasite richness and abundance within 12 genera of odonate naiads and opportunistically sampled four additional orders of aquatic macroinvertebrates from 35 freshwater ponds in the San Francisco Bay Area of California, USA. We also tested the relative contributions of host- and habitat-level factors in driving patterns of infection abundance for the most commonly encountered parasite (the trematode Haematoloechus sp.) in nymphal damselflies and dragonflies using hierarchical generalized linear mixed models. Over the course of two years, we quantified the presence and intensity of parasites from 1,612 individuals. We identified six parasite taxa: two digenetic trematodes, one larval nematode, one larval acanthocephalan, one gregarine, and a mite, for which the highest infection prevalence (39%) occurred in the damselfly genus, Ishnura sp. Based on the hierarchical analysis of Haematoloechus sp. occurrence, infection prevalence and abundance were associated predominantly with site-level factors, including definitive host (frog) presence, nymphal odonate density, water pH and conductivity. In addition, host suborder interacted with the presence of fishes, such that damselflies had higher infection rates in sites with fish relative to those without, whereas the opposite was true for dragonfly nymphs. These findings offer insights into the potential interaction between host- and site-level factors in shaping parasite populations within macroinvertebrate taxa.
Collapse
Affiliation(s)
| | - Dana Marie Calhoun
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309 USA
| | - Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309 USA
| |
Collapse
|
12
|
Gilbert BM, Avenant-Oldewage A. Parasites and pollution: the effectiveness of tiny organisms in assessing the quality of aquatic ecosystems, with a focus on Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18742-18769. [PMID: 28660518 DOI: 10.1007/s11356-017-9481-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
The aquatic environment represents the final repository for many human-generated pollutants associated with anthropogenic activities. The quality of natural freshwater systems is easily disrupted by the introduction of pollutants from urban, industrial and agricultural processes. To assess the extent of chemical perturbation and associated environmental degradation, physico-chemical parameters have been monitored in conjunction with biota in numerous biological monitoring protocols. Most studies incorporating organisms into such approaches have focussed on fish and macroinvertebrates. More recently, interest in the ecology of parasites in relation to environmental monitoring has indicated that these organisms are sensitive towards the quality of the macroenvironment. Variable responses towards exposure to pollution have been identified at the population and component community level of a number of parasites. Furthermore, such responses have been found to differ with the type of pollutant and the lifestyle of the parasite. Generally, endoparasite infection levels have been shown to become elevated in relation to poorer water quality conditions, while ectoparasites are more sensitive, and exposure to contaminated environments resulted in a decline in ectoparasite infections. Furthermore, endoparasites have been found to be suitable accumulation indicators for monitoring levels of several trace elements and metals in the environment. The ability of these organisms to accumulate metals has further been observed to be of benefit to the host, resulting in decreased somatic metal levels in infected hosts. These trends have similarly been found for host-parasite models in African freshwater environments, but such analyses are comparatively sparse compared to other countries. Recently, studies on diplozoids from two freshwater systems have indicated that exposure to poorer water quality resulted in decreased infections. In the Vaal River, the poor water quality resulted in the extinction of the parasite from a site below the Vaal River Barrage. Laboratory exposures have further indicated that oncomiracidia of Paradiplozoon ichthyoxanthon are sensitive to exposure to dissolved aluminium. Overall, parasites from African freshwater and marine ecosystems have merit as effect and accumulation indicators; however, more research is required to detail the effects of exposure on sensitive biological processes within these organisms.
Collapse
|
13
|
Metazoan parasite communities in Alosa alosa (Linnaeus, 1758) and Alosa fallax (Lacépède, 1803) (Clupeidae) from North-East Atlantic coastal waters and connected rivers. Parasitol Res 2017; 116:2211-2230. [DOI: 10.1007/s00436-017-5525-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
|
14
|
Grunberg RL, Sukhdeo MVK. Temporal Community Structure in Two Gregarines (Rotundula gammari and Heliospora longissima) Co-Infecting the Amphipod Gammarus fasciatus. J Parasitol 2016; 103:6-13. [PMID: 27723433 DOI: 10.1645/16-47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This study surveyed gregarine parasites that infect the amphipod, Gammarus fasciatus , to investigate temporal dynamics in infracommunity structure. We sampled a population of hosts for 2 yr from the north branch of the Raritan River in New Jersey. These hosts were infected with 2 direct life cycle gregarine parasites, Rotundula gammari and Heliospora longissima. Infections were separated temporally, with the prevalence of R. gammari peaking within the amphipod population in the fall (prevalence = 78% year 1 and 97% year 2) and H. longissima peaking in early spring (prevalence = 41% year 1 and 52% year 2). Increases in host population density did not significantly correlate with the abundance of these 2 parasites. However, H. longissima abundance was positively correlated with host body weight while R. gammari showed no significant relationship. The mean body mass of amphipods infected with H. longissima was 20.7 ± 1. 2 mg, and with R. gammari 8.1 ± 0.2 mg, which suggests a sized-based infection pattern. Mixed species infections were infrequent with an overall prevalence of 4.6%. When both gregarine species co-infected the same host, the R. gammari but not the H. longissima infrapopulation size was significantly lower when compared to single-species infections, suggesting asymmetric interactions. We conclude that the observed temporal patterns of infection by the 2 parasites are driven by a seasonal change in host demographics and size-dependent infections. We argue that specificity for host developmental stages may have arisen as a mechanism to avoid overlap between these gregarine species.
Collapse
Affiliation(s)
- Rita L Grunberg
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901
| | - Michael V K Sukhdeo
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
15
|
Parasite community similarity in Athabasca River trout-perch (Percopsis omiscomaycus) varies with local-scale land use and sediment hydrocarbons, but not distance or linear gradients. Parasitol Res 2016; 115:3853-66. [PMID: 27314231 DOI: 10.1007/s00436-016-5151-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Parasite communities have been shown to be structured by processes at scales ranging from continental to microhabitat, but few studies have simultaneously considered spatial and environmental variables, measured at different scales, to assess their relative influences on parasite abundance, species richness, and community similarity. Parasite abundance, diversity, and community similarity in Athabasca River trout-perch (Percopsis omiscomaycus) were examined in relation to water quality, substrate profile, metal and organic compound levels in water and sediment, and landscape use patterns at different scales, as well as distance among sites and upstream-downstream position along the river. Although species richness did not differ among sites, there were significant differences in abundance of individual taxa and community structure. We observed a shift from communities dominated by larval trematodes Diplostomum spp. to domination by gill monogeneans Urocleidus baldwini, followed by a reversion further downstream. Variations in the abundance of these taxa and of overall community similarity were strongly correlated with sediment hydrocarbons (alkanes and polycyclic aromatic hydrocarbons (PAHs)) as well as landscape use within 5 km of study sites. No correlations were noted with any other predictors, indicating that parasite populations and communities in this system were likely primarily influenced by habitat level and landscape-scale filters, rather than larger-scale processes such as distance decay or river continuum effects.
Collapse
|
16
|
Zelmer DA. Size, time, and asynchrony matter: the species-area relationship for parasites of freshwater fishes. J Parasitol 2014; 100:561-8. [PMID: 24820194 DOI: 10.1645/14-534.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The tendency to attribute species-area relationships to "island biogeography" effectively bypasses the examination of specific mechanisms that act to structure parasite communities. Positive covariation between fish size and infrapopulation richness should not be examined within the typical extinction-based paradigm, but rather should be addressed from the standpoint of differences in colonization potential among individual hosts. Although most mechanisms producing the aforementioned pattern constitute some variation of passive sampling, the deterministic aspects of the accumulation of parasite individuals by fish hosts makes untenable the suggestion that infracommunities of freshwater fishes are stochastic assemblages. At the component community level, application of extinction-dependent mechanisms might be appropriate, given sufficient time for colonization, but these structuring forces likely act indirectly through their effects on the host community to increase the probability of parasite persistence. At all levels, the passive sampling hypothesis is a relevant null model. The tendency for mechanisms that produce species-area relationships to produce nested subset patterns means that for most systems, the passive sampling hypothesis can be addressed through the application of appropriate null models of nested subset structure.
Collapse
Affiliation(s)
- Derek A Zelmer
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina 29801
| |
Collapse
|
17
|
Sherrard-Smith E, Chadwick EA, Cable J. Climatic variables are associated with the prevalence of biliary trematodes in otters. Int J Parasitol 2013; 43:729-37. [DOI: 10.1016/j.ijpara.2013.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 12/22/2022]
|
18
|
Anderson TK, Sukhdeo MVK. Qualitative community stability determines parasite establishment and richness in estuarine marshes. PeerJ 2013; 1:e92. [PMID: 23802092 PMCID: PMC3691787 DOI: 10.7717/peerj.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/03/2013] [Indexed: 11/20/2022] Open
Abstract
The establishment of parasites with complex life cycles is generally thought to be regulated by free-living species richness and the stability of local ecological interactions. In this study, we test the prediction that stable host communities are prerequisite for the establishment of complex multi-host parasite life cycles. The colonization of naïve killifish, Fundulus heteroclitus, by parasites was investigated in 4 salt marsh sites that differed in time since major ecological restoration, and which provided a gradient in free-living species richness. The richness of the parasite community, and the rate at which parasite species accumulated in the killifish, were similar between the low diversity unrestored site and the two high diversity (10- and 20-year) restored marsh sites. The parasite community in the newly restored marsh (0 year) included only directly-transmitted parasite species. To explain the paradox of a low diversity, highly invaded salt marsh (unrestored) having the same parasite community as highly diverse restored marsh sites (10 and 20 yrs) we assessed qualitative community stability. We find a significant correlation between system stability and parasite species richness. These data suggest a role for local stability in parasite community assembly, and support the idea that stable trophic relationships are required for the persistence of complex parasite life cycles.
Collapse
Affiliation(s)
- Tavis K Anderson
- Graduate Program in Ecology and Evolution, Rutgers University , New Brunswick, NJ , USA ; Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS , Ames, IA , USA
| | | |
Collapse
|
19
|
Anderson TK, Sukhdeo MVK. The Relationship Between Community Species Richness and the Richness of the Parasite Community inFundulus heteroclitus. J Parasitol 2013. [DOI: 10.1645/ge-2940.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
20
|
Anderson TK, Sukhdeo MVK. Host centrality in food web networks determines parasite diversity. PLoS One 2011; 6:e26798. [PMID: 22046360 PMCID: PMC3201966 DOI: 10.1371/journal.pone.0026798] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/04/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Parasites significantly alter topological metrics describing food web structure, yet few studies have explored the relationship between food web topology and parasite diversity. METHODS/PRINCIPAL FINDINGS This study uses quantitative metrics describing network structure to investigate the relationship between the topology of the host food web and parasite diversity. Food webs were constructed for four restored brackish marshes that vary in species diversity, time post restoration and levels of parasitism. Our results show that the topology of the food web in each brackish marsh is highly nested, with clusters of generalists forming a distinct modular structure. The most consistent predictors of parasite diversity within a host were: trophic generality, and eigenvector centrality. These metrics indicate that parasites preferentially colonise host species that are highly connected, and within modules of tightly interacting species in the food web network. CONCLUSIONS/SIGNIFICANCE These results suggest that highly connected free-living species within the food web may represent stable trophic relationships that allow for the persistence of complex parasite life cycles. Our data demonstrate that the structure of host food webs can have a significant effect on the establishment of parasites, and on the potential for evolution of complex parasite life cycles.
Collapse
Affiliation(s)
- Tavis K Anderson
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, New Jersey, United States of America.
| | | |
Collapse
|
21
|
Blanar CA, Marcogliese DJ, Couillard CM. Natural and anthropogenic factors shape metazoan parasite community structure in mummichog (Fundulus heteroclitus) from two estuaries in New Brunswick, Canada. Folia Parasitol (Praha) 2011; 58:240-8. [DOI: 10.14411/fp.2011.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|