1
|
Singh P, Selvarasu K, Ghosh-Roy A. Optimization of RNAi efficiency in PVD neuron of C. elegans. PLoS One 2024; 19:e0298766. [PMID: 38498505 PMCID: PMC10947639 DOI: 10.1371/journal.pone.0298766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
PVD neuron of C. elegans has become an attractive model for the study of dendrite development and regeneration due to its elaborate and stereotype dendrite morphology. RNA interference (RNAi) by feeding E. coli expressing dsRNA has been the basis of several genome wide screens performed using C. elegans. However, the feeding method often fails when it comes to knocking down genes in nervous system. In order to optimize the RNAi conditions for PVD neuron, we fed the worm strains with E. coli HT115 bacteria expressing dsRNA against mec-3, hpo-30, and tiam-1, whose loss of function are known to show dendrite morphology defects in PVD neuron. We found that RNAi of these genes in the available sensitive backgrounds including the one expresses sid-1 under unc-119 promoter, although resulted in reduction of dendrite branching, the phenotypes were significantly modest compared to the respective loss of function mutants. In order to enhance RNAi in PVD neurons, we generated a strain that expressed sid-1 under the promoter mec-3, which exhibits strong expression in PVD. When Pmec-3::sid-1 is expressed in either nre-1(-)lin-15b(-) or lin-15b(-) backgrounds, the higher order branching phenotype after RNAi of mec-3, hpo-30, and tiam-1 was significantly enhanced as compared to the genetic background alone. Moreover, knockdown of genes playing role in dendrite regeneration in the nre-1(-)lin-15b(-), Pmec-3-sid-1[+] background resulted in significant reduction in dendrite regeneration following laser injury. The extent of dendrite regrowth due to the RNAi of aff-1 or ced-10 in our optimized strain was comparable to that of aff-1 and ced-10 mutants. Essentially, our strain expressing sid-1 in PVD neuron, provides an RNAi optimized platform for high throughput screening of genes involved in PVD development, maintenance and regeneration.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Kavinila Selvarasu
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Anindya Ghosh-Roy
- Department of Cellular & Molecular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| |
Collapse
|
2
|
Similar Characteristics of siRNAs of Plant Viruses Which Replicate in Plant and Fungal Hosts. BIOLOGY 2022; 11:biology11111672. [PMID: 36421386 PMCID: PMC9687825 DOI: 10.3390/biology11111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary RNA silencing in fungi was shown to confer antiviral defense against plant viruses. In this study, using high-throughput sequencing and bioinformatic analyses, we showed that small interfering RNAs (siRNAs) of cucumber mosaic virus and tobacco mosaic virus (TMV) which replicated in phytopathogenic fungi Rhizoctonia solani and Fusarium graminearum had similarities with viral siRNAs produced in plant hosts in regard to the size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini. Additionally, our results also determined that both F. graminearum DCL1 and DCL2 were involved in the production of TMV siRNAs. Thus, the fungal RNA silencing machineries have adaptive capabilities to recognize and process the genome of invading plant viruses. Abstract RNA silencing is a host innate antiviral mechanism which acts via the synthesis of viral-derived small interfering RNAs (vsiRNAs). We have previously reported the infection of phytopathogenic fungi by plant viruses such as cucumber mosaic virus (CMV) and tobacco mosaic virus (TMV). Furthermore, fungal RNA silencing was shown to suppress plant virus accumulation, but the characteristics of plant vsiRNAs associated with the antiviral response in this nonconventional host remain unknown. Using high-throughput sequencing, we characterized vsiRNA profiles in two plant RNA virus–fungal host pathosystems: CMV infection in phytopathogenic fungus Rhizoctonia solani and TMV infection in phytopathogenic fungus Fusarium graminearum. The relative abundances of CMV and TMV siRNAs in the respective fungal hosts were much lower than those in the respective experimental plant hosts, Nicotiana benthamiana and Nicotiana tabacum. However, CMV and TMV siRNAs in fungi had similar characteristics to those in plants, particularly in their size distributions, proportion of plus and minus senses, and nucleotide preference for the 5′ termini of vsiRNAs. The abundance of TMV siRNAs largely decreased in F. graminearum mutants with a deletion in either dicer-like 1 (dcl1) or dcl2 genes which encode key proteins for the production of siRNAs and antiviral responses. However, deletion of both dcl1 and dcl2 restored TMV siRNA accumulation in F. graminearum, indicating the production of dcl-independent siRNAs with no antiviral function in the absence of the dcl1 and dcl2 genes. Our results suggest that fungal RNA silencing recognizes and processes the invading plant RNA virus genome in a similar way as in plants.
Collapse
|
3
|
Abstract
One of the first layers of protection that metazoans put in place to defend themselves against viruses rely on the use of proteins containing DExD/H-box helicase domains. These members of the duplex RNA–activated ATPase (DRA) family act as sensors of double-stranded RNA (dsRNA) molecules, a universal marker of viral infections. DRAs can be classified into 2 subgroups based on their mode of action: They can either act directly on the dsRNA, or they can trigger a signaling cascade. In the first group, the type III ribonuclease Dicer plays a key role to activate the antiviral RNA interference (RNAi) pathway by cleaving the viral dsRNA into small interfering RNAs (siRNAs). This represents the main innate antiviral immune mechanism in arthropods and nematodes. Even though Dicer is present and functional in mammals, the second group of DRAs, containing the RIG-I-like RNA helicases, appears to have functionally replaced RNAi and activate type I interferon (IFN) response upon dsRNA sensing. However, recent findings tend to blur the frontier between these 2 mechanisms, thereby highlighting the crucial and diverse roles played by RNA helicases in antiviral innate immunity. Here, we will review our current knowledge of the importance of these key proteins in viral infection, with a special focus on the interplay between the 2 main types of response that are activated by dsRNA.
Collapse
Affiliation(s)
- Morgane Baldaccini
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
- * E-mail:
| |
Collapse
|
4
|
Seroussi U, Li C, Sundby AE, Lee TL, Claycomb JM, Saltzman AL. Mechanisms of epigenetic regulation by C. elegans nuclear RNA interference pathways. Semin Cell Dev Biol 2021; 127:142-154. [PMID: 34876343 DOI: 10.1016/j.semcdb.2021.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
RNA interference (RNAi) is a highly conserved gene regulatory phenomenon whereby Argonaute/small RNA (AGO/sRNA) complexes target transcripts by antisense complementarity to modulate gene expression. While initially appreciated as a cytoplasmic process, RNAi can also occur in the nucleus where AGO/sRNA complexes are recruited to nascent transcripts. Nuclear AGO/sRNA complexes recruit co-factors that regulate transcription by inhibiting RNA Polymerase II, modifying histones, compacting chromatin and, in some organisms, methylating DNA. C. elegans has a longstanding history in unveiling the mechanisms of RNAi and has become an outstanding model to delineate the mechanisms underlying nuclear RNAi. In this review we highlight recent discoveries in the field of nuclear RNAi in C. elegans and the roles of nuclear RNAi in the regulation of gene expression, chromatin organization, genome stability, and transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Adam E Sundby
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Arneet L Saltzman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Abbasi R, Heschuk D, Kim B, Whyard S. A novel paperclip double-stranded RNA structure demonstrates clathrin-independent uptake in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103492. [PMID: 33096213 DOI: 10.1016/j.ibmb.2020.103492] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) has become a widely used technique of knocking down a gene's expression in insects, but its efficacy in some species is limited by a reduced ability of the cells to take in and disperse the double-stranded RNA (dsRNA) throughout the cytoplasm. While RNA transport proteins such as SID-1 and its orthologues can facilitate dsRNA uptake in some invertebrate species, dsRNA uptake in many insects examined to date appears to be facilitated by clathrin-mediated endocytosis (CME). In this study, we used pharmacological inhibitors and RNAi-mediated knockdown of endocytic genes to provide evidence that CME is the primary means of dsRNA uptake in the mosquito Aedes aegypti. Inhibition of clathrin-mediated endocytosis was sufficient to supress uptake of short (21 nt) interfering RNAs (siRNAs), short (23 nt) hairpin RNAs (shRNAs), and long (>200 nt) dsRNA molecules in Aedes aegypti cultured cells and larvae. In contrast, we observed that short (23 nt) "paperclip" RNAs (pcRNAs), with partially closed ends, efficiently enter cells via a clathrin-independent pathway and effectively facilitate transcript knockdown. This alternative dsRNA structure may prove useful in insects generally considered recalcitrant to RNAi and in insect populations where resistance to RNAi-insecticides may arise through changes in dsRNA uptake mechanisms.
Collapse
Affiliation(s)
- Roohollah Abbasi
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Daniel Heschuk
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Brandon Kim
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Steve Whyard
- Department of Biological Sciences, 50 Sifton Road, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
6
|
Abstract
RNA interference is a powerful tool for dissecting gene function. In Caenorhabditis elegans, ingestion of double stranded RNA causes strong, systemic knockdown of target genes. Further insight into gene function can be revealed by tissue-specific RNAi techniques. Currently available tissue-specific C. elegans strains rely on rescue of RNAi function in a desired tissue or cell in an otherwise RNAi deficient genetic background. We attempted to assess the contribution of specific tissues to polyunsaturated fatty acid (PUFA) synthesis using currently available tissue-specific RNAi strains. We discovered that rde-1 (ne219), a commonly used RNAi-resistant mutant strain, retains considerable RNAi capacity against RNAi directed at PUFA synthesis genes. By measuring changes in the fatty acid products of the desaturase enzymes that synthesize PUFAs, we found that the before mentioned strain, rde-1 (ne219) and the reported germline only RNAi strain, rrf-1 (pk1417) are not appropriate genetic backgrounds for tissue-specific RNAi experiments. However, the knockout mutant rde-1 (ne300) was strongly resistant to dsRNA induced RNAi, and thus is more appropriate for construction of a robust tissue-specific RNAi strains. Using newly constructed strains in the rde-1(null) background, we found considerable desaturase activity in intestinal, epidermal, and germline tissues, but not in muscle. The RNAi-specific strains reported in this study will be useful tools for C. elegans researchers studying a variety of biological processes.
Collapse
|
7
|
Dexheimer PJ, Cochella L. MicroRNAs: From Mechanism to Organism. Front Cell Dev Biol 2020; 8:409. [PMID: 32582699 PMCID: PMC7283388 DOI: 10.3389/fcell.2020.00409] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short, regulatory RNAs that act as post-transcriptional repressors of gene expression in diverse biological contexts. The emergence of small RNA-mediated gene silencing preceded the onset of multicellularity and was followed by a drastic expansion of the miRNA repertoire in conjunction with the evolution of complexity in the plant and animal kingdoms. Along this process, miRNAs became an essential feature of animal development, as no higher metazoan lineage tolerated loss of miRNAs or their associated protein machinery. In fact, ablation of the miRNA biogenesis machinery or the effector silencing factors results in severe embryogenesis defects in every animal studied. In this review, we summarize recent mechanistic insight into miRNA biogenesis and function, while emphasizing features that have enabled multicellular organisms to harness the potential of this broad class of repressors. We first discuss how different mechanisms of regulation of miRNA biogenesis are used, not only to generate spatio-temporal specificity of miRNA production within an animal, but also to achieve the necessary levels and dynamics of expression. We then explore how evolution of the mechanism for small RNA-mediated repression resulted in a diversity of silencing complexes that cause different molecular effects on their targets. Multicellular organisms have taken advantage of this variability in the outcome of miRNA-mediated repression, with differential use in particular cell types or even distinct subcellular compartments. Finally, we present an overview of how the animal miRNA repertoire has evolved and diversified, emphasizing the emergence of miRNA families and the biological implications of miRNA sequence diversification. Overall, focusing on selected animal models and through the lens of evolution, we highlight canonical mechanisms in miRNA biology and their variations, providing updated insight that will ultimately help us understand the contribution of miRNAs to the development and physiology of multicellular organisms.
Collapse
Affiliation(s)
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
8
|
Castelletto ML, Gang SS, Hallem EA. Recent advances in functional genomics for parasitic nematodes of mammals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb206482. [PMID: 32034038 DOI: 10.1242/jeb.206482] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human-parasitic nematodes infect over a quarter of the world's population and are a major cause of morbidity in low-resource settings. Currently available treatments have not been sufficient to eliminate infections in endemic areas, and drug resistance is an increasing concern, making new treatment options a priority. The development of new treatments requires an improved understanding of the basic biology of these nematodes. Specifically, a better understanding of parasitic nematode development, reproduction and behavior may yield novel drug targets or new opportunities for intervention such as repellents or traps. Until recently, our ability to study parasitic nematode biology was limited because few tools were available for their genetic manipulation. This is now changing as a result of recent advances in the large-scale sequencing of nematode genomes and the development of new techniques for their genetic manipulation. Notably, skin-penetrating gastrointestinal nematodes in the genus Strongyloides are now amenable to transgenesis, RNAi and CRISPR/Cas9-mediated targeted mutagenesis, positioning the Strongyloides species as model parasitic nematode systems. A number of other mammalian-parasitic nematodes, including the giant roundworm Ascaris suum and the tissue-dwelling filarial nematode Brugia malayi, are also now amenable to transgenesis and/or RNAi in some contexts. Using these tools, recent studies of Strongyloides species have already provided insight into the molecular pathways that control the developmental decision to form infective larvae and that drive the host-seeking behaviors of infective larvae. Ultimately, a mechanistic understanding of these processes could lead to the development of new avenues for nematode control.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92161, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Zhang XB, Dong W, Li KX, Wang JJ, Shen J, Moussian B, Zhang JZ. Flexible manipulation of Omb levels in the endogenous expression region of Drosophila wing by combinational overexpression and suppression strategy. INSECT SCIENCE 2020; 27:14-21. [PMID: 31246335 DOI: 10.1111/1744-7917.12705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Manipulating an exogenous or endogenous gene of interest at a defined level is critical for a wide variety of experiments. The Gal4/UAS system has been widely used to direct gene expression for studying complex genetic and biological problems in Drosophila melanogaster and other model organisms. Driven by a given tissue-specific Gal4, expressing UAS-transgene or UAS-RNAi (RNA interference) could be used to up- or down-regulate target gene expression, respectively. However, the efficiency of the Gal4/UAS system is roughly predefined by properties of transposon vector constructs and the insertion site in the transgenic stock. Here, we describe a simple way to modulate optomotor blind (omb) expression levels in its endogenous expression region of the wing disc. We co-expressed UAS-omb and UAS-omb-RNAi together under the control of dpp-Gal4 driver which is expressed in the omb expression region of the wing pouch. The repression effect is more sensitive to temperature than that of overexpression. At low temperature, overexpression plays a dominant role but the efficiency is attenuated by UAS-omb-RNAi. In contrast, at high temperature RNAi predominates in gene expression regulation. By this strategy, we could manipulate omb expression levels at a moderate level. It allows us to manipulate omb expression levels in the same tissue between overexpression and repression at different stages by temperature control.
Collapse
Affiliation(s)
- Xu-Bo Zhang
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| | - Wei Dong
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
- Applied Zoology, Technical University Dresden, Zellescher Weg 20b, Dresden, Germany
- iBV, University of Nice Sophia-Antipolis, Parc Valrose, Nice, France
| | - Kai-Xia Li
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| | - Juan-Juan Wang
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| | - Jie Shen
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Bernard Moussian
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
- Applied Zoology, Technical University Dresden, Zellescher Weg 20b, Dresden, Germany
- iBV, University of Nice Sophia-Antipolis, Parc Valrose, Nice, France
| | - Jian-Zhen Zhang
- Institute of Applied Biology, College of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
10
|
C. elegans protein interaction network analysis probes RNAi validated pro-longevity effect of nhr-6, a human homolog of tumor suppressor Nr4a1. Sci Rep 2019; 9:15711. [PMID: 31673088 PMCID: PMC6823380 DOI: 10.1038/s41598-019-51649-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/30/2019] [Indexed: 02/07/2023] Open
Abstract
Protein-protein interaction (PPI) studies are gaining momentum these days due to the plethora of various high-throughput experimental methods available for detecting PPIs. Proteins create complexes and networks by functioning in harmony with other proteins and here in silico network biology hold the promise to reveal new functionality of genes as it is very difficult and laborious to carry out experimental high-throughput genetic screens in living organisms. We demonstrate this approach by computationally screening C. elegans conserved homologs of already reported human tumor suppressor and aging associated genes. We select by this nhr-6, vab-3 and gst-23 as predicted longevity genes for RNAi screen. The RNAi results demonstrated the pro-longevity effect of these genes. Nuclear hormone receptor nhr-6 RNAi inhibition resulted in a C. elegans phenotype of 23.46% lifespan reduction. Moreover, we show that nhr-6 regulates oxidative stress resistance in worms and does not affect the feeding behavior of worms. These findings imply the potential of nhr-6 as a common therapeutic target for aging and cancer ailments, stressing the power of in silico PPI network analysis coupled with RNAi screens to describe gene function.
Collapse
|
11
|
Mousavi SM, Afgar A, Mohammadi MA, Mortezaei S, Sadeghi B, Harandi MF. Calmodulin-specific small interfering RNA induces consistent expression suppression and morphological changes in Echinococcus granulosus. Sci Rep 2019; 9:3894. [PMID: 30846822 PMCID: PMC6406006 DOI: 10.1038/s41598-019-40656-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Among parasitic helminths, biological features of Echinococcus granulosus have been a focus of particular interest in biology and medicine. The determinants and underlying molecular mechanisms of Echinococcus development in different host settings is largely unknown. The phenomenal bi-directional development of E. granulosus protoscoleces into multi-proglottid and/or microcysts, is a fascinating feature of the parasite cultivation. Calmodulin (CaM) is the major intracellular Ca2+ binding protein in plant and animal organisms. Many Ca2+-related processes in the physiology of eukaryotic organisms are CaM-dependent, however little is known on the role of CaM in platyhelminths growth and development. Small interfering (si) RNA-induced manipulations of the genes involving in the parasite development is an opportunity to explore novel approaches for cystic echinococcosis (CE) prevention and management. Regarding the fundamental role of CaM in cellular function of the parasites, in this study, we investigated the molecular and morphological changes induced by siRNA on CaM in different in vitro stages of E. granulosus. Three developmental stages of the tapeworm, protoscoleces, microcysts and strobilated worms, were cultivated in vitro in mono- and di-phasic media and three delivery methods, i.e. electroporation, soaking and electro-soaking, were used for RNA interference. The level of mRNA suppression as well as the phenotypic changes of the parasites were measured. Following RNA interference, EgCaM mRNA suppressions of 65-99% were recorded in different stages of the tapeworm as compared to untreated/unrelated siRNA controls. Lower viability, growth retardation, morphological abnormalities as well as EgCaM expression suppression were documented in the parasite implying potential of siRNA technology for the prevention and management of CE.
Collapse
Affiliation(s)
- Seyed Mohammad Mousavi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Mohammad Ali Mohammadi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Seifollah Mortezaei
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, 7616914115, Iran
| | - Balal Sadeghi
- Shahid Bahonar University of Kerman, Faculty of Veterinary Medicine, Department of Food Hygiene and Public Health, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, 7616914115, Iran.
| |
Collapse
|
12
|
Abstract
RNA interference (RNAi) is the biological process of mRNA degradation induced by complementary sequences double-stranded (ds) small interfering RNAs (siRNA) and suppression of target gene expression. Exogenous siRNAs (perfectly paired dsRNAs of ∼21–25 nt in length) play an important role in host defense against RNA viruses and in transcriptional and post-transcriptional gene regulation in plants and other eukaryotes. Using RNAi technology by transfecting synthetic siRNAs into eukaryotic cells to silence genes has become an indispensable tool to investigate gene functions, and siRNA-based therapy is being developed to knockdown genes implicated in diseases. Other examples of RNAi technology include method of producing highly potent and purified siRNAs directly from Escherichiacoli cells, based on an unexpected discovery that ectopic expression of p19, a plant viral siRNA-binding protein, stabilizes a cryptic siRNA-like RNA species in bacteria. Those siRNAs, named as pro-siRNA for “prokaryotic siRNA”, are bacterial RNase III products that have chemical and functional properties that like eukaryotic siRNAs.
Collapse
|
13
|
Abstract
In the nematode Caenorhabditis elegans, RNA interference (RNAi) triggered by double-stranded RNA (dsRNA) spreads systemically to cause gene silencing throughout the organism and its progeny. We confirm that Caenorhabditis nematode SID-1 orthologs have dsRNA transport activity and demonstrate that the SID-1 paralog CHUP-1 does not transport dsRNA. Sequence comparison of these similar proteins, in conjunction with analysis of loss-of-function missense alleles, identifies several conserved 2–7 amino acid microdomains within the extracellular domain (ECD) that are important for dsRNA transport. Among these missense alleles, we identify and characterize a sid-1 allele, qt95, which causes tissue-specific silencing defects most easily explained as a systemic RNAi export defect. However, we conclude from genetic and biochemical analyses that sid-1(qt95) disrupts only import, and speculate that the apparent export defect is caused by the cumulative effect of sequentially impaired dsRNA import steps. Thus, consistent with previous studies, we fail to detect a requirement for sid-1 in dsRNA export, but demonstrate for the first time that SID-1 functions in the intestine to support environmental RNAi (eRNAi).
Collapse
|
14
|
Claycomb J, Abreu-Goodger C, Buck AH. RNA-mediated communication between helminths and their hosts: The missing links. RNA Biol 2017; 14:436-441. [PMID: 28125361 DOI: 10.1080/15476286.2016.1274852] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Small RNAs have been discovered in a wide variety of extracellular environments and are now thought to participate in communication between cells and even between different organisms and species. Helminths are parasitic worms that generally reside in extracellular niches in their hosts and can establish chronic infection through the release of immunomodulatory factors. Recent work has demonstrated that Extracellular RNA (exRNA) may be another class of immunomodulator secreted by helminths. Here we will detail what is known about small RNA pathways in helminth pathogens (focusing on nematodes) and mammalian hosts. We will then explore the computational challenges with identifying RNA-RNA interactions between 2 different species and the paradigm of RNA-RNA co-evolution that accompanies this. Finally we explore the lingering questions that require further investigation to understand the properties of exRNA that would enable it to function as an immunomodulator.
Collapse
Affiliation(s)
- Julie Claycomb
- a Department of Molecular Genetics , University of Toronto , ON , Canada
| | - Cei Abreu-Goodger
- b Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN , Irapuato, Guanajuato, México
| | - Amy H Buck
- c Institute of Immunology & Infection and Centre for Immunity, Infection & Evolution, University of Edinburgh , UK
| |
Collapse
|
15
|
Liu Y, Zhi D, Li M, Liu D, Wang X, Wu Z, Zhang Z, Fei D, Li Y, Zhu H, Xie Q, Yang H, Li H. Shengmai Formula suppressed over-activated Ras/MAPK pathway in C. elegans by opening mitochondrial permeability transition pore via regulating cyclophilin D. Sci Rep 2016; 6:38934. [PMID: 27982058 PMCID: PMC5159904 DOI: 10.1038/srep38934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 11/16/2016] [Indexed: 12/01/2022] Open
Abstract
Since about 30% of all human cancers contain mutationally activated Ras, down regulating the over-activation of Ras/MAPK pathway represents a viable approach for treating cancers. Over-activation of Ras/MAPK pathway is accompanied by accumulation of reactive oxygen species (ROS). One approach for developing anti-cancer drugs is to target ROS production and their accumulation. To test this idea, we have employed C. elegans of let-60 (gf) mutant, which contain over-activated let-60 (the homolog of mammalian ras) and exhibit tumor-like symptom of multivulva phenotype, to determine whether anti-oxidants can affect their tumor-like phenotype. Specifically we studied the effect of Shengmai formula (SM), a traditional Chinese medicine that has strong anti-oxidant activity, on the physiology of let-60 (gf) mutants. Unexpectedly, we found that SM treatment led to the opening of mitochondrial permeability transition pore by regulating cyclophilin D and then triggered oxidative stress and related signaling pathway activation, including p53, JNK, and p38/MAPK pathways. Finally, SM induced mitochondrial pathway of apoptosis and inhibited the tumor-like symptom of the multivulva phenotype of let-60(gf) mutants. Our results provide evidences to support that SM act as a pro-oxidant agent and could serve as a potential drug candidate for combating over-activated Ras-related cancer.
Collapse
Affiliation(s)
- Yan Liu
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Dejuan Zhi
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Menghui Li
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Dongling Liu
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xin Wang
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Zhengrong Wu
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Zhanxin Zhang
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Dongqing Fei
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Yang Li
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Hongmei Zhu
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
| | - Qingjian Xie
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| | - Hui Yang
- Institute of Biology, Academy of Sciences, Lanzhou 730000, Gansu province, P.R. China.
| | - Hongyu Li
- Gansu high throughput screening and creation center for health products, School of Pharmacy, Lanzhou University, Donggang West Road No. 199, Lanzhou 730020, P.R. China
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
16
|
Patel AV, Chaney KE, Choi K, Largaespada DA, Kumar AR, Ratner N. An ShRNA Screen Identifies MEIS1 as a Driver of Malignant Peripheral Nerve Sheath Tumors. EBioMedicine 2016; 9:110-119. [PMID: 27333032 PMCID: PMC4972548 DOI: 10.1016/j.ebiom.2016.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/27/2016] [Accepted: 06/03/2016] [Indexed: 01/25/2023] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are rare soft tissue sarcomas that are a major source of mortality in neurofibromatosis type 1 (NF1) patients. To identify MPNST driver genes, we performed a lentiviral short hairpin (sh) RNA screen, targeting all 130 genes up-regulated in neurofibroma and MPNSTs versus normal human nerve Schwann cells. NF1 mutant cells show activation of RAS/MAPK signaling, so a counter-screen in RAS mutant carcinoma cells was performed to exclude common RAS-pathway driven genes. We identified 7 genes specific for survival of MPSNT cells, including MEIS1. MEIS1 was frequently amplified or hypomethylated in human MPSNTs, correlating with elevated MEIS1 gene expression. In MPNST cells and in a genetically engineered mouse model, MEIS1 expression in developing nerve glial cells was necessary for MPNST growth. Mechanistically, MEIS1 drives MPNST cell growth via the transcription factor ID1, thereby suppressing expression of the cell cycle inhibitor p27Kip and maintaining cell survival. Targeting over-expressed genes facilitates identification of sarcoma driver genes. We identify MEIS1 as a MPNST oncogene. MEIS1 suppresses p27Kip enabling MPNST survival.
We identify MEIS1 as a sarcoma oncogene, and identify an additional 7 genes specific for survival of malignant peripheral nerve sheath cells. MEIS1 was frequently amplified or hypomethylated in human tumors, correlating with elevated MEIS1 gene and protein expression. MEIS1 enables cell cycle progression in these tumor cells through downregulation of expression of a pro-cell death protein p27Kip. Thus, inhibitors targeting cell cycle checkpoints and/or upregulating p27Kip may have therapeutic value for these patients, and perhaps for other tumor types in which MEIS1 is an oncogene.
Collapse
Affiliation(s)
- Ami V Patel
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ashish R Kumar
- Division of Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229-0713, United States.
| |
Collapse
|
17
|
Britton C, Winter AD, Marks ND, Gu H, McNeilly TN, Gillan V, Devaney E. Application of small RNA technology for improved control of parasitic helminths. Vet Parasitol 2015; 212:47-53. [PMID: 26095949 PMCID: PMC4535316 DOI: 10.1016/j.vetpar.2015.06.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/26/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
MicroRNAs and siRNAs in helminth post-transcriptional gene regulation are reviewed. Many parasitic helminth miRNAs are unique and developmentally expressed. miRNAs released by parasites have diagnostic potential, particularly for filarial and schistosome spp. Parasite and host miRNAs may regulate immune responses. Improvements to siRNA-mediated gene silencing are important for functional genomics.
Over the last decade microRNAs (miRNAs) and small interfering RNAs (siRNAs) have emerged as important regulators of post-transcriptional gene expression. miRNAs are short, non-coding RNAs that regulate a variety of processes including cancer, organ development and immune function. This class of small RNAs bind with partial complementarity to their target mRNA sequences, most often in the 3′UTR, to negatively regulate gene expression. In parasitic helminths, miRNAs are being increasingly studied for their potential roles in development and host-parasite interactions. The availability of genome data, combined with small RNA sequencing, has paved the way to profile miRNAs expressed at particular developmental stages for many parasitic helminths. While some miRNAs are conserved across species, others appear to be unique to specific parasites, suggesting important roles in adaptation and survival in the host environment. Some miRNAs are released from parasites, in exosomes or in protein complexes, and the potential effects of these on host immune function are being increasingly studied. In addition, release of miRNAs from schistosome and filarial parasites into host plasma can be exploited for the development of specific and sensitive diagnostic biomarkers of infection. Interfering with miRNA function, as well as silencing key components of the pathways they regulate, will progress our understanding of parasite development and provide a novel approach to therapeutic control. RNA interference (RNAi) by siRNAs has proven to be inconsistent in parasitic nematodes. However, the recent successes reported for schistosome and liver fluke RNAi, encourage further efforts to enhance delivery of RNA and improve in vitro culture systems and assays to monitor phenotypic effects in nematodes. These improvements are important for the establishment of reliable functional genomic platforms for novel drug and vaccine development. In this review we focus on the important roles of miRNAs and siRNAs in post-transcriptional gene regulation in veterinary parasitic helminths and the potential value of these in parasite diagnosis and control.
Collapse
Affiliation(s)
- Collette Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK.
| | - Alan D Winter
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Neil D Marks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Henry Gu
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Victoria Gillan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Eileen Devaney
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
18
|
Kärblane K, Gerassimenko J, Nigul L, Piirsoo A, Smialowska A, Vinkel K, Kylsten P, Ekwall K, Swoboda P, Truve E, Sarmiento C. ABCE1 is a highly conserved RNA silencing suppressor. PLoS One 2015; 10:e0116702. [PMID: 25659154 PMCID: PMC4319951 DOI: 10.1371/journal.pone.0116702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/12/2014] [Indexed: 01/15/2023] Open
Abstract
ATP-binding cassette sub-family E member 1 (ABCE1) is a highly conserved protein among eukaryotes and archaea. Recent studies have identified ABCE1 as a ribosome-recycling factor important for translation termination in mammalian cells, yeast and also archaea. Here we report another conserved function of ABCE1. We have previously described AtRLI2, the homolog of ABCE1 in the plant Arabidopsis thaliana, as an endogenous suppressor of RNA silencing. In this study we show that this function is conserved: human ABCE1 is able to suppress RNA silencing in Nicotiana benthamiana plants, in mammalian HEK293 cells and in the worm Caenorhabditis elegans. Using co-immunoprecipitation and mass spectrometry, we found a number of potential ABCE1-interacting proteins that might support its function as an endogenous suppressor of RNA interference. The interactor candidates are associated with epigenetic regulation, transcription, RNA processing and mRNA surveillance. In addition, one of the identified proteins is translin, which together with its binding partner TRAX supports RNA interference.
Collapse
Affiliation(s)
- Kairi Kärblane
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- Competence Centre for Cancer Research, Tallinn, Estonia
| | - Jelena Gerassimenko
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- Competence Centre for Cancer Research, Tallinn, Estonia
| | - Lenne Nigul
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Alla Piirsoo
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Agata Smialowska
- School of Life Sciences, Södertörn University College, S-14189, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, S-14183, Huddinge, Sweden
| | - Kadri Vinkel
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Per Kylsten
- School of Life Sciences, Södertörn University College, S-14189, Huddinge, Sweden
| | - Karl Ekwall
- School of Life Sciences, Södertörn University College, S-14189, Huddinge, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, S-14183, Huddinge, Sweden
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, S-14183, Huddinge, Sweden
| | - Erkki Truve
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- Competence Centre for Cancer Research, Tallinn, Estonia
| | - Cecilia Sarmiento
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
- Competence Centre for Cancer Research, Tallinn, Estonia
| |
Collapse
|
19
|
Weiberg A, Bellinger M, Jin H. Conversations between kingdoms: small RNAs. Curr Opin Biotechnol 2015; 32:207-215. [PMID: 25622136 DOI: 10.1016/j.copbio.2014.12.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 12/30/2022]
Abstract
Humans, animals, and plants are constantly under attack from pathogens and pests, resulting in severe consequences on global human health and crop production. Small RNA (sRNA)-mediated RNA interference (RNAi) is a conserved regulatory mechanism that is involved in almost all eukaryotic cellular processes, including host immunity and pathogen virulence. Recent evidence supports the significant contribution of sRNAs and RNAi to the communication between hosts and some eukaryotic pathogens, pests, parasites, or symbiotic microorganisms. Mobile silencing signals—most likely sRNAs—are capable of translocating from the host to its interacting organism, and vice versa. In this review, we will provide an overview of sRNA communications between different kingdoms, with a primary focus on the advances in plant-pathogen interaction systems.
Collapse
Affiliation(s)
- Arne Weiberg
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Marschal Bellinger
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
20
|
Nagy AI, Vázquez-Manrique RP, Lopez M, Christov CP, Sequedo MD, Herzog M, Herlihy AE, Bodak M, Gatsi R, Baylis HA. IP3 signalling regulates exogenous RNAi in Caenorhabditis elegans. EMBO Rep 2015; 16:341-50. [PMID: 25608529 DOI: 10.15252/embr.201439585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RNA interference (RNAi) is a widespread and widely exploited phenomenon. Here, we show that changing inositol 1,4,5-trisphosphate (IP3) signalling alters RNAi sensitivity in Caenorhabditis elegans. Reducing IP3 signalling enhances sensitivity to RNAi in a broad range of genes and tissues. Conversely up-regulating IP3 signalling decreases sensitivity. Tissue-specific rescue experiments suggest IP3 functions in the intestine. We also exploit IP3 signalling mutants to further enhance the sensitivity of RNAi hypersensitive strains. These results demonstrate that conserved cell signalling pathways can modify RNAi responses, implying that RNAi responses may be influenced by an animal's physiology or environment.
Collapse
Affiliation(s)
- Anikó I Nagy
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Rafael P Vázquez-Manrique
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, Valencia, Spain Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Marie Lopez
- Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - María Dolores Sequedo
- Research Group in Molecular, Cellular and Genomic Biomedicine, Health Research Institute-La Fe, Valencia, Spain Centre for Biomedical Network Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Mareike Herzog
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Anna E Herlihy
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Maxime Bodak
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Roxani Gatsi
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Howard A Baylis
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Caenorhabditis elegans Models to Study the Molecular Biology of Ataxias. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Kolliopoulou A, Swevers L. Recent progress in RNAi research in Lepidoptera: intracellular machinery, antiviral immune response and prospects for insect pest control. CURRENT OPINION IN INSECT SCIENCE 2014; 6:28-34. [PMID: 0 DOI: 10.1016/j.cois.2014.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/27/2014] [Accepted: 09/30/2014] [Indexed: 05/03/2023]
|
23
|
Mohr SE, Smith JA, Shamu CE, Neumüller RA, Perrimon N. RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol 2014; 15:591-600. [PMID: 25145850 PMCID: PMC4204798 DOI: 10.1038/nrm3860] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene silencing through sequence-specific targeting of mRNAs by RNAi has enabled genome-wide functional screens in cultured cells and in vivo in model organisms. These screens have resulted in the identification of new cellular pathways and potential drug targets. Considerable progress has been made to improve the quality of RNAi screen data through the development of new experimental and bioinformatics approaches. The recent availability of genome-editing strategies, such as the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system, when combined with RNAi, could lead to further improvements in screen data quality and follow-up experiments, thus promoting our understanding of gene function and gene regulatory networks.
Collapse
Affiliation(s)
- Stephanie E Mohr
- 1] Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts MA 02115, USA. [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts MA 02115, USA
| | - Jennifer A Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, Massachusetts MA 02115, USA
| | - Caroline E Shamu
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, Massachusetts MA 02115, USA
| | - Ralph A Neumüller
- Department of Genetics, Harvard Medical School, Boston, Massachusetts MA 02115, USA
| | - Norbert Perrimon
- 1] Drosophila RNAi Screening Center, Harvard Medical School, Boston, Massachusetts MA 02115, USA. [2] Department of Genetics, Harvard Medical School, Boston, Massachusetts MA 02115, USA. [3] Howard Hughes Medical Institute, Boston, Massachusetts MA 02115, USA
| |
Collapse
|
24
|
Diogo J, Bratanich A. The nematode Caenorhabditis elegans as a model to study viruses. Arch Virol 2014; 159:2843-51. [PMID: 25000902 DOI: 10.1007/s00705-014-2168-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/28/2014] [Indexed: 12/15/2022]
Abstract
Caenorhabditis elegans is a worm that has been extensively studied, and it is today an accepted model in many different biological fields. C. elegans is cheap to maintain, it is transparent, allowing easy localization studies, and it develops from egg to adult in around 4 days. Many mutants, available to the scientific community, have been developed. This has facilitated the study of the role of particular genes in many cellular pathways, which are highly conserved when compared with higher eukaryotes. This review describes the advantages of C. elegans as a laboratory model and the known mechanisms utilized by this worm to fight pathogens. In particular, we describe the strong C. elegans RNAi machinery, which plays an important role in the antiviral response. This has been shown in vitro (C. elegans cell cultures) as well as in vivo (RNAi-deficient strains) utilizing recently described viruses that have the worm as a host. Infections with mammalian viruses have also been achieved using chemical treatment. The role of viral genes involved in pathogenesis has been addressed by evaluating the phenotypes of transgenic strains of C. elegans expressing those genes. Very simple approaches such as feeding the worm with bacteria transformed with viral genes have also been utilized. The advantages and limitations of different approaches are discussed.
Collapse
Affiliation(s)
- Jesica Diogo
- Department of Virology, School of Veterinary Sciences, University of Buenos Aires, Av. Chorroarin 280, 1427, Buenos Aires, Argentina
| | | |
Collapse
|
25
|
Cho A, Shin J, Hwang S, Kim C, Shim H, Kim H, Kim H, Lee I. WormNet v3: a network-assisted hypothesis-generating server for Caenorhabditis elegans. Nucleic Acids Res 2014; 42:W76-82. [PMID: 24813450 PMCID: PMC4086142 DOI: 10.1093/nar/gku367] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
High-throughput experimental technologies gradually shift the paradigm of
biological research from hypothesis-validation toward hypothesis-generation
science. Translating diverse types of large-scale experimental data into
testable hypotheses, however, remains a daunting task. We previously
demonstrated that heterogeneous genomics data can be integrated into a single
genome-scale gene network with high prediction power for ribonucleic acid
interference (RNAi) phenotypes in Caenorhabditis elegans, a
popular metazoan model in the study of developmental biology, neurobiology and
genetics. Here, we present WormNet version 3 (v3), which is a new
network-assisted hypothesis-generating server for C. elegans.
WormNet v3 includes major updates to the base gene network, which substantially
improved predictions of RNAi phenotypes. The server generates various gene
network-based hypotheses using three complementary network methods: (i) a
phenotype-centric approach to ‘find new members for a pathway’;
(ii) a gene-centric approach to ‘infer functions from network
neighbors’ and (iii) a context-centric approach to ‘find
context-associated hub genes’, which is a new method to identify key
genes that mediate physiology within a specific context. For example, we
demonstrated that the context-centric approach can be used to identify potential
molecular targets of toxic chemicals. WormNet v3 is freely accessible at
http://www.inetbio.org/wormnet.
Collapse
Affiliation(s)
- Ara Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Junha Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Sohyun Hwang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Chanyoung Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hongseok Shim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hyojin Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hanhae Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
26
|
Shiu PK, Zhuang JJ, Hunter CP. Assays for direct and indirect effects of C. elegans endo-siRNAs. Methods Mol Biol 2014; 1173:71-87. [PMID: 24920361 DOI: 10.1007/978-1-4939-0931-5_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Ever since the discovery of the first microRNAs in C. elegans, increasing numbers of endogenous small RNAs have been discovered. Endogenous siRNAs (endo-siRNAs) have emerged in the last few years as a largely independent class of small RNAs that regulate endogenous gene expression, with mechanisms distinct from those of piRNAs and miRNAs. Quantification of these small RNAs and their effect on target RNAs is a powerful tool for the analysis of RNAi; however, detection of small RNAs can be difficult due to their small size and relatively low abundance. Here, we describe the novel FirePlex assay for directly detecting endo-siRNA levels in bulk, as well as an optimized qPCR method for detecting the effect of endo-siRNAs on gene targets. Intriguingly, the loss of endo-siRNAs frequently results in enhanced experimental RNAi. Thus, we also present an optimized method to assess the indirect impact of endo-siRNAs on experimental RNAi efficiency.
Collapse
Affiliation(s)
- Philip K Shiu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Room 3044, Cambridge, MA, 02138, USA
| | | | | |
Collapse
|
27
|
Swevers L, Vanden Broeck J, Smagghe G. The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis. Front Physiol 2013; 4:319. [PMID: 24204347 PMCID: PMC3817476 DOI: 10.3389/fphys.2013.00319] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 10/15/2013] [Indexed: 11/13/2022] Open
Abstract
RNAi experiments in insects are characterized by great variability in efficiency; for instance beetles and locusts are very amenable to dsRNA-mediated gene silencing, while other insect groups, most notably lepidopterans, are more refractory to RNAi. Several factors can be forwarded that could affect the efficiency of RNAi, such as the composition and function of the intracellular RNAi machinery, the mechanism of dsRNA uptake, the presence of dsRNA- and siRNA-degrading enzymes and non-specific activation of the innate immune response. In this essay, we investigate the evidence whether persistent infection with RNA viruses could be a major factor that affects the response to exogenous dsRNA in insects. The occurrence of RNA viruses in different insect groups will be discussed, as well as several mechanisms by which viruses could interfere with the process of RNAi. Finally, the impact of RNA virus infection on the design of dsRNA-based insect control strategies will be considered.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Center for Scientific Research "Demokritos," Athens, Greece
| | | | | |
Collapse
|
28
|
Affiliation(s)
- Peter Sarkies
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
29
|
RNAi pathways in the recognition of foreign RNA: antiviral responses and host–parasite interactions in nematodes. Biochem Soc Trans 2013; 41:876-80. [DOI: 10.1042/bst20130021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The nematode Caenorhabditis elegans was the first animal for which RNAi (RNA interference) in response to exogenous triggers was shown experimentally and subsequently the molecular components of the RNAi pathway have been characterized in some detail. However, the function of RNAi in the life cycle of nematodes in the wild is still unclear. In the present article, we argue that RNAi could be used in nematodes as a mechanism to sense and respond to foreign RNA that the animal might be exposed to either through viral infection or through ingestion of food sources. This could be of potential importance to the life cycle of parasitic nematodes as they ingest RNA from different hosts at different points during their life cycle. We postulate that RNA ingested from the host could be used by the parasite to regulate its own genes, through the amplification mechanism intrinsic to the nematode RNAi pathway.
Collapse
|
30
|
Zhu KY. RNA interference: a powerful tool in entomological research and a novel approach for insect pest management. INSECT SCIENCE 2013; 20:1-3. [PMID: 23955820 DOI: 10.1111/1744-7917.12006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506-4004, USA
| |
Collapse
|
31
|
Abstract
The significance of noncoding RNAs in animal biology is being increasingly recognized. The nematode Caenorhabditis elegans has an extensive system of short RNAs that includes microRNAs, piRNAs, and endogenous siRNAs, which regulate development, control life span, provide resistance to viruses and transposons, and monitor gene duplications. Progress in our understanding of short RNAs was stimulated by the discovery of RNA interference, a phenomenon of sequence-specific gene silencing induced by exogenous double-stranded RNA, at the turn of the twenty-first century. This chapter provides a broad overview of the exogenous and endogenous RNAi processes in C. elegans and describes recent advances in genetic, genomic, and molecular analyses of nematode's short RNAs and proteins involved in the RNAi-related pathways.
Collapse
Affiliation(s)
- Alla Grishok
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
32
|
Using Multiple Phenotype Assays and Epistasis Testing to Enhance the Reliability of RNAi Screening and Identify Regulators of Muscle Protein Degradation. Genes (Basel) 2012; 3:686-701. [PMID: 23152949 PMCID: PMC3495584 DOI: 10.3390/genes3040686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RNAi is a convenient, widely used tool for screening for genes of interest. We have recently used this technology to screen roughly 750 candidate genes, in C. elegans, for potential roles in regulating muscle protein degradation in vivo. To maximize confidence and assess reproducibility, we have only used previously validated RNAi constructs and have included time courses and replicates. To maximize mechanistic understanding, we have examined multiple sub-cellular phenotypes in multiple compartments in muscle. We have also tested knockdowns of putative regulators of degradation in the context of mutations or drugs that were previously shown to inhibit protein degradation by diverse mechanisms. Here we discuss how assaying multiple phenotypes, multiplexing RNAi screens with use of mutations and drugs, and use of bioinformatics can provide more data on rates of potential false positives and negatives as well as more mechanistic insight than simple RNAi screening.
Collapse
|
33
|
Li J, Li X, Chen Y, Yang Z, Guo S. Solexa sequencing based transcriptome analysis of Helicoverpa armigera larvae. Mol Biol Rep 2012; 39:11051-9. [DOI: 10.1007/s11033-012-2008-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022]
|
34
|
Joseph S, Gheysen G, Subramaniam K. RNA interference in Pratylenchus coffeae: knock down of Pc-pat-10 and Pc-unc-87 impedes migration. Mol Biochem Parasitol 2012; 186:51-9. [PMID: 23043990 DOI: 10.1016/j.molbiopara.2012.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/25/2012] [Accepted: 09/26/2012] [Indexed: 11/26/2022]
Abstract
Many of the currently available nematicides used in nematode control are hazardous to the user, environment and beneficial non-target organisms. Therefore the need to develop alternative methods for nematode control such as the development of nematode-resistant crops through RNA-mediated interference (RNAi) holds great promise. The Caenorhabditis elegans genes unc-87 and pat-10 are essential components of the body wall muscle and are thus required for nematode movement. The Pratylenchus coffeae orthologs of these two genes, namely Pc-pat-10 and Pc-unc-87 were cloned and used to test RNAi in this migratory nematode. RNAi was performed by soaking P. coffeae in a solution containing dsRNA of either Pc-unc-87 or Pc-pat-10. The levels of both Pc-unc-87 and Pc-pat-10 mRNAs were significantly reduced in a sequence-specific manner in nematodes soaked for 24h. Nematodes incubated in Pc-pat-10 dsRNA appeared straight and rigid while Pc-unc-87 resulted in nematodes that were coiled, in contrast to the regular sinusoidal movement of the control nematodes. While 88.4 ± 3.9% of the control nematodes successfully migrated to the bottom of the sand column in 12h, only 6 ± 1.3% and 7 ± 2.3%, respectively, of the Pc-pat-10 (RNAi) and Pc-unc-87 (RNAi) nematodes successfully migrated to the bottom. However a recovery in movement as well as transcript level was observed in both treatments when the nematodes were incubated in distilled water for 24h following the dsRNA soaking. The recovery rate was slower in Pc-unc-87 when compared to Pc-pat-10. In summary, this study demonstrates the existence of the RNAi phenomenon in P. coffeae and shows that the function of unc-87 and pat-10 genes has been evolutionarily conserved among free-living and plant parasitic nematodes.
Collapse
Affiliation(s)
- Soumi Joseph
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, UP, India
| | | | | |
Collapse
|
35
|
Developments in RNA interference and genetic transformation to define gene function in parasitic helminths. Parasitology 2012; 139:557-9. [PMID: 22459432 DOI: 10.1017/s0031182012000108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|