1
|
Dong H, Zhang J, Wang Q, Shen Y, Zhou B, Dai L, Zhu W, Sun H, Xie X, Xie H, Xu C, Zhao G, Yin K. Development of an indirect ELISA for detecting Toxoplasma gondii IgG antibodies based on a recombinant TgIMP1 protein. PLoS Negl Trop Dis 2024; 18:e0012421. [PMID: 39141677 PMCID: PMC11346964 DOI: 10.1371/journal.pntd.0012421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 08/26/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Toxoplasma gondii (T. gondii) is widely spread around the world, which can cause serious harm to immunosuppressed patients. Currently, the commercial test kits are poor at assessing T. gondii infection and vaccine effectiveness, making an urgent need to exploit effective enzyme-linked immunosorbent assay with great performance to compensate for this deficiency. Here, the TgIMP1 recombinant protein was expressed in E. coli BL(21) cells. The TgIMP1 was purified with affinity chromatography and the reactivity was retained with anti-TgIMP1 antibodies. The TgIMP1 was then used to develop an indirect ELISA (IMP1-iELISA) and the reaction conditions of IMP1-iELISA were optimized. As a result, the cut-off value was determined to be 0.2833 by analyzing the OD450nm values of forty T. gondii-negative sera. The coefficient of variation of 6 T. gondii-positive sera within and between runs were both less than 10%. The IMP1-iELISA was non-cross-reactive with the sera of cytomegalovirus, herpes virus, rubella virus, Cryptosporidium spp., Theileria spp., Neospora spp. and Plasmodium spp.. Furthermore, the sensitivity and specificity of IMP1-iELISA were 98.9% and 96.7%, respectively, based on testing 150 serum samples. The results suggest that this IMP1-iELISA is specific, sensitive, repeatable and can be applied to the detection of T. gondii infections in the medical and health industries.
Collapse
Affiliation(s)
- Hongjie Dong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Junmei Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Qi Wang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Yanmei Shen
- Digestive Disease Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Beibei Zhou
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Lisha Dai
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Wenju Zhu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Hang Sun
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Xiaoman Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Huanhuan Xie
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Chao Xu
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Guihua Zhao
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| | - Kun Yin
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, People’s Republic of China
| |
Collapse
|
2
|
Xiao J, He W, Xiong C, Hao G, Pu J, Chen H, Xu L, Zhu Y, Ren Y, Yang G. Protective efficacy of recombinant proteins AMA1 and IMP1 in rabbits infected with Eimeria intestinalis. Vet Parasitol 2023; 320:109985. [PMID: 37482016 DOI: 10.1016/j.vetpar.2023.109985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Eimeria intestinalis is one of the most pathogenic rabbit coccidia species causing severe intestinal damage and increased risk of secondary infection from opportunistic pathogens, which results in huge economic losses to the rabbit industry. Anticoccidial drugs are currently the main method to control coccidiosis; however, increasing resistance and drug residues have fueled research on anticoccidial vaccines. Apical membrane antigen 1 (AMA1) and immune mapped protein 1 (IMP1), as surface proteins, are associated with host invasion and might have the potential as candidate vaccine antigens. In the present study, recombinant IMP1 (rEiIMP1) and AMA1 (rEiAMA1) from E. intestinalis were expressed using Escherichia coli BL21. The immunoreactivity and immunoprotective effects of rEiIMP1 and rEiAMA1 were then analyzed. Fifty rabbits were grouped randomly (n = 10 per group): The unimmunized-unchallenged control group (sterilized phosphate-buffered saline (PBS)), the unimmunized-challenged control group (sterilized PBS), the vector protein-challenged control group (100 μg of pET-32a vector protein per rabbit), the rEiIMP1 immunized group (100 μg of rEiIMP1 per rabbit), and the rEiAMA1 immunized group (100 μg of rEiAMA1 per rabbit). After two immunizations, the rabbits were challenged with homologous oocysts (except for the unimmunized-unchallenged group). Serum specific antibody levels were assessed weekly throughout the experimental period; and the levels of different cytokines in the serum before the challenge were detected. The clinical symptoms, oocysts output, weight gain, feed conversion ratio (FCR), and lesion scores were recorded after experimental infection, and the anticoccidial indexes (ACIs) were calculated. The results showed that both rEiIMP1 and rEiAMA1 had good immunoreactivity. Rabbits immunized with rEiIMP1 and rEiAMA1 displayed 66.74 % and 63.14 % oocyst reduction, respective land 81.79 % and 78.87 % body weight gain, respectively. The rEiIMP1 and rEiAMA1 groups had lower FCRs (3.77:1 and 4.06:1, respectively) and lesion scores (P = 0.00). The rEiIMP1 and rEiAMA1 showed moderate effects, with an ACI of 152.09 and 147.17, respectively. Immunization induced high levels of anti-rEiIMP1 and -rEiAMA1 antibodies. Rabbits immunized with rEiIMP1 and rEiAMA1 displayed significantly increased interleukin (IL)- 2 (P = 0.00), interferon gamma (IFN)- γ (P = 0.00), and IL- 4 (P = 0.00) levels. Therefore, this study provided potential candidate vaccine antigens for E. intestinalis.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Wei He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Changming Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Ge Hao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Liwen Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yuhua Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China
| | - Yongjun Ren
- Sichuan Animal Science Academy, Chengdu 610066, China; Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China.
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China.
| |
Collapse
|
3
|
Britez JD, Rodriguez AE, Di Ciaccio L, Marugán-Hernandez V, Tomazic ML. What Do We Know about Surface Proteins of Chicken Parasites Eimeria? Life (Basel) 2023; 13:1295. [PMID: 37374079 DOI: 10.3390/life13061295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Poultry is the first source of animal protein for human consumption. In a changing world, this sector is facing new challenges, such as a projected increase in demand, higher standards of food quality and safety, and reduction of environmental impact. Chicken coccidiosis is a highly widespread enteric disease caused by Eimeria spp. which causes significant economic losses to the poultry industry worldwide; however, the impact on family poultry holders or backyard production-which plays a key role in food security in small communities and involves mainly rural women-has been little explored. Coccidiosis disease is controlled by good husbandry measures, chemoprophylaxis, and/or live vaccination. The first live vaccines against chicken coccidiosis were developed in the 1950s; however, after more than seven decades, none has reached the market. Current limitations on their use have led to research in next-generation vaccines based on recombinant or live-vectored vaccines. Next-generation vaccines are required to control this complex parasitic disease, and for this purpose, protective antigens need to be identified. In this review, we have scrutinised surface proteins identified so far in Eimeria spp. affecting chickens. Most of these surface proteins are anchored to the parasite membrane by a glycosylphosphatidylinositol (GPI) molecule. The biosynthesis of GPIs, as well as the role of currently identified surface proteins and interest as vaccine candidates has been summarised. The potential role of surface proteins in drug resistance and immune escape and how these could limit the efficacy of control strategies was also discussed.
Collapse
Affiliation(s)
- Jesica Daiana Britez
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Anabel Elisa Rodriguez
- Instituto Nacional de Tecnología Agropecuaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | - Lucía Di Ciaccio
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
| | | | - Mariela Luján Tomazic
- Instituto de Patobiología Veterinaria, IPVET, INTA-CONICET, Nicolás Repetto y Los Reseros, Hurlingham 1686, Argentina
- Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Ciudad Autónoma de Buenos Aires 1113, Argentina
| |
Collapse
|
4
|
Xiao J, Zheng R, Bai X, Pu J, Chen H, Gu X, Xie Y, He R, Xu J, Jing B, Peng X, Yang G. Preliminary evaluation of the protective effects of recombinant AMA1 and IMP1 against Eimeria stiedae infection in rabbits. Parasit Vectors 2022; 15:400. [PMID: 36316714 PMCID: PMC9623944 DOI: 10.1186/s13071-022-05492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eimeria stiedae parasitizes the bile duct, causing hepatic coccidiosis in rabbits. Coccidiosis control using anticoccidials led to drug resistance and residues; therefore, vaccines are required as an alternative control strategy. Apical membrane antigen 1 (AMA1) and immune mapped protein 1 (IMP1) are surface-located proteins that might contribute to host cell invasion, having potential as candidate vaccine antigens. METHODS Herein, we cloned and expressed the E. stiedae EsAMA1 and EsIMP1 genes. The reactogenicity of recombinant AMA1 (rEsAMA1) and IMP1 (rEsIMP1) proteins were investigated using immunoblotting. For the vaccination-infection trial, rabbits were vaccinated with rEsAMA1 and rEsIMP1 (both 100 μg/rabbit) twice at 2-week intervals. After vaccination, various serum cytokines were measured. The protective effects of rEsAMA1 and rEsIMP1 against E. stiedae infection were assessed using several indicators. Sera were collected weekly to detect the specific antibody levels. RESULTS Both rEsAMA1 and rEsIMP1 showed strong reactogenicity. Rabbits vaccinated with rEsAMA1 and rEsIMP1 displayed significantly increased serum IL-2 (F (4, 25) = 9.53, P = 0.000), IL-4 (F (4, 25) = 7.81, P = 0.000), IL-17 (F (4, 25) = 8.55, P = 0.000), and IFN-γ (F (4, 25) = 6.89, P = 0.001) levels; in the rEsIMP1 group, serum TGF-β1 level was also elevated (F (4, 25) = 3.01, P = 0.037). After vaccination, the specific antibody levels increased and were maintained at a high level. The vaccination-infection trial showed that compared with the positive control groups, rabbits vaccinated with the recombinant proteins showed significantly reduced oocyst output (F (5, 54) = 187.87, P = 0.000), liver index (F (5, 54) = 37.52, P = 0.000), and feed conversion ratio; body weight gain was significantly improved (F (5, 54) = 28.82, P = 0.000). CONCLUSIONS rEsAMA1 and rEsIMP1 could induce cellular and humoral immunity, protecting against E. stiedae infection. Thus, rEsAMA1 and rEsIMP1 are potential vaccine candidates against E. stiedae.
Collapse
Affiliation(s)
- Jie Xiao
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Ruoyu Zheng
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xin Bai
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Jiayan Pu
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Hao Chen
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xiaobin Gu
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Yue Xie
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Ran He
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Jing Xu
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Bo Jing
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Xuerong Peng
- grid.80510.3c0000 0001 0185 3134Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130 China
| | - Guangyou Yang
- grid.80510.3c0000 0001 0185 3134Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130 China
| |
Collapse
|
5
|
Towards the First Multiepitope Vaccine Candidate against Neospora caninum in Mouse Model: Immunoinformatic Standpoint. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2644667. [PMID: 35722460 PMCID: PMC9204498 DOI: 10.1155/2022/2644667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Neospora caninum is an economically significant parasite among livestock, particularly in dairy cattle herds, causing storm abortions. Vaccination seems necessary to limit the infection and its harsh consequences. This is the first steps towards developing a multiepitope vaccine candidate against N. caninum using in silico approaches. High-ranked mouse MHC-binding and shared linear B-cell epitopes from six proteins (SRS2, MIC3, MIC6, GRA1, IMP-1, and profilin) as well as IFN-γ-inducing epitopes (from SAG1) were predicted, screened, and connected together through appropriate linkers. Finally, RS-09 protein (TLR4 agonist) and histidine tag were added to N- and C-terminal of the vaccine sequence, yielding 486 residues in length. Physicochemical properties showed a stable (instability index: 27.23), highly soluble, antigenic (VaxiJen score: 0.9554), and nonallergenic candidate. Secondary structure of the multiepitope protein included 58.85% random coil, 20.99% extended strand, and 20.16% alpha helix. Also, the tertiary structure was predicted, and further analyses validated a stable interaction between the vaccine model and mouse TLR4 (binding score: -1261.6). Virtual simulation of immune profile demonstrated potently stimulated humoral (IgG+IgM) and cell-mediated (IFN-γ) responses upon multiepitope vaccine injection. Altogether, a potentially immunogenic vaccine candidate was developed using several N. caninum proteins, with the capability to elicit IFN-γ upsurge and other components of cellular immunity, and can be used in prophylactic purposes against neosporosis.
Collapse
|
6
|
Determination of B and T Cell Epitopes in Neospora caninum Immune Mapped Protein-1 (IMP-1): Implications in Vaccine Design against Neosporosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2508050. [PMID: 35434130 PMCID: PMC9010208 DOI: 10.1155/2022/2508050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/15/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023]
Abstract
Prevention of neosporosis is advantageous for cattle health and productivity. Previously, several vaccine candidates were nominated for vaccination against Neospora caninum. This study was premised on in silico evaluation of N. caninum IMP-1 in order to determine its physicochemical features and immunogenic epitopes. We employed a wide array of network-based tools for the prediction of antigenicity, allergenicity, solubility, posttranslational modification (PTM) sites, physicochemical properties, transmembrane domains and signal peptide, secondary and tertiary structures, and intrinsically disordered regions. Also, prediction and screening of potential continuous B cell peptides and those epitopes having stringent affinity to couple with mouse major histocompatibility complex (MHC) and cytotoxic T lymphocyte (CTL) receptors were accomplished. The protein had 393 residues with a molecular weight of 42.71 kDa, representing aliphatic index of 85.83 (thermotolerant) and GRAVY score of -0.447 (hydrophilic). There were 47 PTM sites without a signal peptide in the sequence. Secondary structure comprised mostly of extended strand and helices, followed by coils. The Ramachandran plot of the refined model showed 90.1%, 9.9%, 0.0%, and 0.0% residues in the favored, additional allowed, generously allowed, and disallowed regions, correspondingly. Additionally, various potential B cell (linear and conformational), CTL, and MHC binding epitopes were predicted for N. caninum IMP-1. The findings of the present study could be further directed for next-generation vaccine design against neosporosis.
Collapse
|
7
|
Neospora caninum SRS2 Protein: Essential Vaccination Targets and Biochemical Features for Next-Generation Vaccine Design. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7070144. [PMID: 35434127 PMCID: PMC9007667 DOI: 10.1155/2022/7070144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Vaccination is a standout preventive measure to combat neosporosis among cattle herds. The present in silico study was done to evaluate the physicochemical properties and potent immunogenic epitopes of N. caninum SRS2 protein as a possible vaccine candidate. Web-based tools were used to predict physicochemical properties, antigenicity, allergenicity, solubility, posttranslational modification (PTM) sites, transmembrane domains and signal peptide, and secondary and tertiary structures as well as intrinsically disordered regions, followed by identification and screening of potential linear and conformational B-cell epitopes and those peptides having affinity to bind mouse major histocompatibility complex (MHC) and cytotoxic T lymphocyte (CTL). The protein had 401 residues with a molecular weight of 42 kDa, representing aliphatic index of 69.35 (thermotolerant) and GRAVY score of -0.294 (hydrophilic). There were 53 PTM sites without a signal peptide in the sequence. Secondary structure comprised mostly by extended strand, followed by helices and coils. The Ramachandran plot of the refined model showed 90.2%, 8.8%, 0.5%, and 0.5% residues in the favored, additional allowed, generously allowed, and disallowed regions, correspondingly. Additionally, various potential B-cell (linear and conformational), CTL, and MHC-binding epitopes were predicted for N. caninum SRS2. These epitopes could be further utilized in the multiepitope vaccine constructs directed against neosporosis.
Collapse
|
8
|
Ying Z, Zhu Z, Yang X, Liu J, Liu Q. Prevalence and Associated Risk Factors of Neospora caninum Infection among Cattle in Mainland China: A Systematic Review and Meta-analysis. Prev Vet Med 2022; 201:105593. [DOI: 10.1016/j.prevetmed.2022.105593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
|
9
|
Ma C, Li G, Chen W, Jia Z, Yang X, Pan X, Ma D. Eimeria tenella: IMP1 protein delivered by Lactococcus lactis induces immune responses against homologous challenge in chickens. Vet Parasitol 2021; 289:109320. [PMID: 33248421 DOI: 10.1016/j.vetpar.2020.109320] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Abstract
Avian coccidiosis leads to severe economic losses on the global poultry industry. Immune mapped protein-1 (IMP1) is a novel membrane protein, and was reported to be a candidate protective antigen. However, production and utilization modes of IMP1 using Lactococcus lactis as delivery vector were not reported untill now. In the present study, Eimeria tenella IMP1 (EtIMP1) protein was expressed in L. lactis under the nisin-inducible promoter, and EtIMP1 protein was produced in cytoplasmic, cell wall-anchored and secreted forms. Each chicken was orally immunized with one of the three live EtIMP1-expressing lactococci three times at 2 weeks intervals (immunized group), or with live bacteria harboring empty vector (immunized control group). Chickens in immunized and immunized control group were challenged with E. tenella sporulated oocysts to assess the immune responses. The results showed that proliferative responses of peripheral blood T lymphocytes, mRNA expression levels of IL-2, IL-4, IL-10 and IFN-γ in spleen tissues, levels of serum IgG and secretory IgA (sIgA) in cecal lavage fluids from chickens in immunized group were all significantly elevated compared to that in immunized control group. All three the live EtIMP1-expressing lactococci significantly decreased oocyst shedding, alleviated pathological damage in cecum and improved weight gain compared with bacteria harboring empty vector. These results suggested EtIMP1 protein delivered by L. lactis might be a promising candidate in developing novel vaccines against Eimeria infection.
Collapse
Affiliation(s)
- Chunli Ma
- Food College, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Guanghao Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, Heilongjiang, PR China
| | - Wenjing Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xuelian Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, Heilongjiang, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, Heilongjiang, PR China.
| |
Collapse
|
10
|
Su S, Hou Z, Wang L, Liu D, Hu J, Xu J, Tao J. Further confirmation of second- and third-generation Eimeria necatrix merozoite DEGs using suppression subtractive hybridization. Parasitol Res 2019; 118:1159-1169. [PMID: 30747293 DOI: 10.1007/s00436-019-06242-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/31/2019] [Indexed: 11/28/2022]
Abstract
In our previous study, we obtained a large number of differentially expressed genes (DEGs) between second-generation merozoites (MZ-2) and third-generation merozoites (MZ-3) of Eimeria necatrix using RNA sequencing (RNA-seq). Here, we report two subtractive cDNA libraries for MZ2 (forward library) and MZ3 (reverse library) that were constructed using suppression subtractive hybridization (SSH). PCR amplification revealed that the MZ2 and MZ3 libraries contained approximately 96.7% and 95% recombinant clones, respectively, and the length of the inserted fragments ranged from 0.5 to 1.5 kb. A total of 106 and 111 unique sequences were obtained from the MZ2 and MZ3 libraries, respectively, and were assembled into 13 specific consensus sequences (contigs or genes) (5 from MZ2 and 8 from MZ3). The qRT-PCR results revealed that 11 out of 13 genes were differentially expressed between MZ-2 and MZ-3. Of 13 genes, 11 genes were found in both SSH and our RNA-seq data and displayed a similar expression trend between SSH and RNA-seq data, and the remaining 2 genes have not been reported in both E. necatrix genome and our RNA-seq data. Among the 11 genes, the expression trends of 8 genes were highly consistent between SSH and our RNA-seq data. These DEGs may provide specialized functions related to the life-cycle transitions of Eimeria species.
Collapse
Affiliation(s)
- Shijie Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lele Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Junjie Hu
- Biology Department, Yunnan University, Kunming, 650500, People's Republic of China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
11
|
Tang X, Liu X, Yin G, Suo J, Tao G, Zhang S, Suo X. A Novel Vaccine Delivery Model of the Apicomplexan Eimeria tenella Expressing Eimeria maxima Antigen Protects Chickens against Infection of the Two Parasites. Front Immunol 2018; 8:1982. [PMID: 29375584 PMCID: PMC5767589 DOI: 10.3389/fimmu.2017.01982] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/20/2017] [Indexed: 12/05/2022] Open
Abstract
Vaccine delivery is critical in antigen discovery and vaccine efficacy and safety. The diversity of infectious diseases in humans and livestock has required the development of varied delivery vehicles to target different pathogens. In livestock animals, previous strategies for the development of coccidiosis vaccines have encountered several hurdles, limiting the development of multiple species vaccine formulations. Here, we describe a novel vaccine delivery system using transgenic Eimeria tenella expressing immunodominant antigens of Eimeria maxima. In this delivery system, the immune mapped protein 1 of E. maxima (EmIMP1) was delivered by the closely related species of E. tenella to the host immune system during the whole endogenous life cycle. The overexpression of the exogenous antigen did not interfere with the reproduction and immunogenicity of transgenic Eimeria. After immunization with the transgenic parasite, we detected EmIMP1’s and E. maxima oocyst antigens’ specific humoral and cellular immune responses. In particular, we observed partial protection of chickens immunized with transgenic E. tenella against subsequent E. maxima infections. Our results demonstrate that the transgenic Eimeria parasite is an ideal coccidia antigen delivery vehicle and represents a new type of coccidiosis vaccines. In addition, this model could potentially be used in the development of malaria live sporozoite vaccines, in which antigens from different strains can be expressed in the vaccine strain.
Collapse
Affiliation(s)
- Xinming Tang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xianyong Liu
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jingxia Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Geru Tao
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sixin Zhang
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.,National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
On the application of reverse vaccinology to parasitic diseases: a perspective on feature selection and ranking of vaccine candidates. Int J Parasitol 2017; 47:779-790. [PMID: 28893639 DOI: 10.1016/j.ijpara.2017.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 01/27/2023]
Abstract
Reverse vaccinology has the potential to rapidly advance vaccine development against parasites, but it is unclear which features studied in silico will advance vaccine development. Here we consider Neospora caninum which is a globally distributed protozoan parasite causing significant economic and reproductive loss to cattle industries worldwide. The aim of this study was to use a reverse vaccinology approach to compile a worthy vaccine candidate list for N. caninum, including proteins containing pathogen-associated molecular patterns to act as vaccine carriers. The in silico approach essentially involved collecting a wide range of gene and protein features from public databases or computationally predicting those for every known Neospora protein. This data collection was then analysed using an automated high-throughput process to identify candidates. The final vaccine list compiled was judged to be the optimum within the constraints of available data, current knowledge, and existing bioinformatics programs. We consider and provide some suggestions and experience on how ranking of vaccine candidate lists can be performed. This study is therefore important in that it provides a valuable resource for establishing new directions in vaccine research against neosporosis and other parasitic diseases of economic and medical importance.
Collapse
|
13
|
Kundu K, Garg R, Kumar S, Mandal M, Tomley FM, Blake DP, Banerjee PS. Humoral and cytokine response elicited during immunisation with recombinant Immune Mapped protein-1 (EtIMP-1) and oocysts of Eimeria tenella. Vet Parasitol 2017; 244:44-53. [PMID: 28917316 DOI: 10.1016/j.vetpar.2017.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/16/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022]
Abstract
Eimeria tenella, the causative agent of caecal coccidiosis, is a pathogenic gut dwelling protozoan which can cause severe morbidity and mortality in farmed chickens. Immune mapped protein-1 (IMP-1) has been identified as an anticoccidial vaccine candidate; in the present study allelic polymorphism was assessed across the IMP-1 coding sequence in E. tenella isolates from four countries and compared with the UK reference Houghton strain. Nucleotide diversity was low, limited to expansion/contraction of a CAG triplet repeat and five substitutions, three of which were non-synonymous. The EtIMP-1 coding sequence from a cloned Indian E. tenella isolate was expressed in E. coli and purified as a His-tagged thioredoxin fusion protein. An in-vivo vaccination and challenge trial was conducted to test the vaccine potential of recombinant EtIMP-1 (rEtIMP-1) and to compare post-vaccination immune responses of chickens to those stimulated by live oocyst infection. Following challenge, parasite replication measured using quantitative PCR was significantly reduced in chickens that had been vaccinated with rEtIMP-1 (rIC group; 67% reduction compared to UC or unimmunised controls; 79% reduction compared to rTC group or recombinant thioredoxin mock-immunised controls, p<0.05), or the birds vaccinated by infection with oocysts (OC group, 90% compared to unimmunised controls). Chickens vaccinated with oocysts (OC) had significantly higher levels of interferon gamma in their serum post-challenge, compared to rEtIMP-1 vaccinated birds (rIC). Conversely rEtIMP-1 (rIC) vaccinated birds had significantly higher antigen specific serum IgY responses, correlating with higher serum IL-4 (both p<0.05).
Collapse
Affiliation(s)
- Krishnendu Kundu
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Rajat Garg
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Saroj Kumar
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Mrityunjay Mandal
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India
| | - Fiona M Tomley
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL97TA, UK
| | - Damer P Blake
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL97TA, UK
| | - Partha Sarathi Banerjee
- Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, PIN-243122, India.
| |
Collapse
|
14
|
Jia Y, Benjamin S, Liu Q, Xu Y, Dogga SK, Liu J, Matthews S, Soldati-Favre D. Toxoplasma gondii immune mapped protein 1 is anchored to the inner leaflet of the plasma membrane and adopts a novel protein fold. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:208-219. [PMID: 27888074 PMCID: PMC5716462 DOI: 10.1016/j.bbapap.2016.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 01/30/2023]
Abstract
The immune mapped protein 1 (IMP1) was first identified as a protective antigen in Eimeria maxima and described as vaccine candidate and invasion factor in Toxoplasma gondii. We show here that TgIMP1 localizes to the inner leaflet of plasma membrane (PM) via dual acylation. Mutations either in the N-terminal myristoylation or palmitoylation sites (G2 and C5) cause relocalization of TgIMP1 to the cytosol. The first 11 amino acids are sufficient for PM targeting and the presence of lysine (K7) is critical. Disruption of TgIMP1 gene by double homologous recombination revealed no invasion defect or any measurable alteration in the lytic cycle of tachyzoites. Following immunization with TgIMP1 DNA vaccine, mice challenged with either wild type or IMP1-ko parasites showed no significant difference in protection. The sequence analysis identified a structured C-terminal domain that is present in a broader family of IMP1-like proteins conserved across the members of Apicomplexa. We present the solution structure of this domain determined from NMR data and describe a new protein fold not seen before.
Collapse
Affiliation(s)
- Yonggen Jia
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Stefi Benjamin
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Qun Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Sunil Kumar Dogga
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Jing Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
15
|
Wang J, Tang D, Li W, Xu J, Liu Q, Liu J. A new microneme protein of Neospora caninum, NcMIC8 is involved in host cell invasion. Exp Parasitol 2017; 175:21-27. [PMID: 28130119 DOI: 10.1016/j.exppara.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 12/23/2016] [Accepted: 01/22/2017] [Indexed: 11/28/2022]
Abstract
Microneme proteins play an important role in the invasion process of Apicomplexan parasites through adhesion to host cells. We discovered a new N. caninum protein, NcMIC8, which is highly identical to TgMIC8. The NcMIC8 sequence has 2049 bp and no intron in the open reading fragment. It has a molecular weight of 73.8 kDa and contains a signal peptide, a transmembrane region, a low complexity region and 10 epidermal growth factor (EGF) domains. Immuno-fluorescence assay showed that NcMIC8 is located in the microneme. NcMIC8 was secreted to culture medium under stimulation of 1% ethanol, and cleaved to form the mature body of 40 kDa before transporting to microneme or during secretion. Blocking NcMIC8 using anti-NcMIC8 serum effectively inhibited host cell invasion by tachyzoites in vitro. NcMIC8 in the form of mature body interacts with NcMIC3, and the two microneme proteins form a complex probably during transportation. NcMIC8 is a new microneme protein of N. caninum and could be an attractive target for the control of neosporosis.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Di Tang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wensheng Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianhai Xu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qun Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jing Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
16
|
Bezerra MA, Pereira LM, Bononi A, Biella CA, Baroni L, Pollo-Oliveira L, Yatsuda AP. Constitutive expression and characterization of a surface SRS (NcSRS67) protein of Neospora caninum with no orthologue in Toxoplasma gondii. Parasitol Int 2017; 66:173-180. [PMID: 28108401 DOI: 10.1016/j.parint.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023]
Abstract
Neospora caninum is a parasite of the Apicomplexa phylum responsible for abortion and losses of fertility in cattle. As part of its intracellular cycle, the first interaction of the parasite with the target cell is performed with the surface proteins known as the SRS superfamily (Surface Antigen Glycoprotein - Related Sequences). SAG related or SRS proteins have been a target of intense research due to its immunodominant pattern, exhibiting potential as diagnostic and/or vaccine candidates. The aim of this study was the cloning, expression and characterization of the gene NcSRS67 of N. caninum using a novel designed plasmid. The coding sequence of NcSRS67 (without the signal peptide and the GPI anchor) was cloned and expressed constitutively instead of the ccdB system of pCR-Blunt II-TOPO. The protein was purified in a nickel sepharose column and identified by mass spectrometry (MS/MS). The constitutive expression did not affect the final bacterial growth, with a similar OD 600nm compared to the non-transformed strains. The recombinant NcSRS67 was over expressed and the native form was detected by the anti-rNcSRS67 serum on 1D western blot as a single band of approximately 38kDa as predicted. On an in vitro assay, the inhibitory effect of the polyclonal antiserum anti-rNcSRS67 was nearly 20% on adhesion/invasion of host cells. The NcSRS67 native protein was localised on part of the surface of N. caninum tachyzoite when compared to the nucleus by confocal immunofluorescence.
Collapse
Affiliation(s)
- Marcos Alexandre Bezerra
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Aline Bononi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Carla Agostino Biella
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Leticia Pollo-Oliveira
- Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do café, s/n, 14040-903 Ribeirão Preto, SP, Brazil; Núcleo de Apoio à Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Immunogenicity and protective efficacy of an Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and chicken CD40 ligand. Vet Parasitol 2015; 210:19-24. [DOI: 10.1016/j.vetpar.2015.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/07/2015] [Accepted: 03/15/2015] [Indexed: 11/19/2022]
|
18
|
A 78 kDa host cell invasion protein of Neospora caninum as a potential vaccine candidate. Exp Parasitol 2015; 148:56-65. [DOI: 10.1016/j.exppara.2014.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 09/30/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022]
|
19
|
A nuclear factor of high mobility group box protein in Toxoplasma gondii. PLoS One 2014; 9:e111993. [PMID: 25369210 PMCID: PMC4219823 DOI: 10.1371/journal.pone.0111993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/08/2014] [Indexed: 01/28/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear factor that usually binds DNA and modulates gene expression in multicellular organisms. Three HMGB1 orthologs were predicted in the genome of Toxoplasma gondii, an obligate intracellular protozoan pathogen, termed TgHMGB1a, b and c. Phylogenetic and bioinformatic analyses indicated that these proteins all contain a single HMG box and which shared in three genotypes. We cloned TgHMGB1a, a 33.9 kDa protein that can stimulates macrophages to release TNF-α, and, we demonstrated that the TgHMGB1a binds distorted DNA structures such as cruciform DNA in electrophoretic mobility shift assays (EMSA). Immunofluorescence assay indicated TgHMGB1a concentrated in the nucleus of intracellular tachyzoites but translocated into the cytoplasm while the parasites release to extracellular. There were no significant phenotypic changes when the TgHMGB1a B box was deleted, while transgenic parasites that overexpressed TgHMGB1a showed slower intracellular growth and caused delayed death in mouse, further quantitative RT-PCR analyses showed that the expression levels of many important genes, including virulence factors, increased when TgHMGB1a was overexpressed, but no significant changes were observed in TgHMGB1a B box-deficient parasites. Our findings demonstrated that TgHMGB1a is indeed a nuclear protein that maintains HMG box architectural functions and is a potential proinflammatory factor during the T.gondii infection. Further studies that clarify the functions of TgHMGB1s will increase our knowledge of transcriptional regulation and parasite virulence, and might provide new insight into host-parasite interactions for T. gondii infection.
Collapse
|
20
|
Yin G, Lin Q, Wei W, Qin M, Liu X, Suo X, Huang Z. Protective immunity against Eimeria tenella infection in chickens induced by immunization with a recombinant C-terminal derivative of EtIMP1. Vet Immunol Immunopathol 2014; 162:117-21. [PMID: 25464823 DOI: 10.1016/j.vetimm.2014.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. Cloning and sequence analysis has predicted the antigen to be a novel membrane protein of apicomplexan parasites. In order to assess the immunogenicity of EtIMP1, a C-terminal derivative of EtIMP1 was expressed in a bacterial host system and was used to immunize chickens. The protective efficacy against a homologous challenge was evaluated by body weight gains, lesion scores and fecal oocyst shedding. The results showed that the subunit vaccine can improve weight gains, reduced cecal pathology and lower oocyst fecal shedding compared with non immunized controls. The results suggested that the C-terminal derivative of EtIMP1 might be considered as a candidate in the development of subunit vaccines against Eimeria infection.
Collapse
Affiliation(s)
- Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Qian Lin
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Wenjun Wei
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Mei Qin
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis, China Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xun Suo
- National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Laboratory of Zoonosis, China Ministry of Agriculture & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhijian Huang
- Engineering Laboratory of Animal Pharmaceuticals, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.
| |
Collapse
|
21
|
Lei T, Wang H, Liu J, Nan H, Liu Q. ROP18 is a key factor responsible for virulence difference between Toxoplasma gondii and Neospora caninum. PLoS One 2014; 9:e99744. [PMID: 24927100 PMCID: PMC4057265 DOI: 10.1371/journal.pone.0099744] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/17/2014] [Indexed: 01/16/2023] Open
Abstract
Toxoplasma gondii (T. gondii) and Neospora caninum (N. caninum) are both obligate intracellular protozoan parasites and share many common morphological and biological features. Despite these similarities the two parasites differ dramatically in virulence in mice, but the factors involved in virulence differences between the two parasites remain unknown. A secreted serine-threonine kinase called rhoptry protein 18 (ROP18) was identified to play a crucial role on virulence differences among different T. gondii clonal lineages. Intriguingly, we found that ROP18 in Nc1 strain of N. caninum (NcROP18) is a pseudogene due to several interrupting stop codons in the sequence in our previous studies. We assume that the difference of ROP18 leads to virulence difference between T. gondii and N. caninum. We constructed a transgenic N. caninum Nc1 stain by transfecting the TgROP18 from the T. gondii RH strain. Phenotype and virulence assays showed that the expression of TgROP18 in N. caninum did not affect the motility and cell invasion, but resulted in a significant increase in intracellular parasite proliferation and virulence in mice. Immunity-Related GTPase (IRG) phosphorylation assay showed that the transgenic parasite Nc1-TgROP18 was able to phosphorylate IRGs as T. gondii did. The present study indicated that the ROP18 plays a crucial role in virulence of the closely related parasites T. gondii and N. caninum and it is indeed a key factor responsible for the virulence difference between T. gondii and N. caninum.
Collapse
Affiliation(s)
- Tao Lei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hui Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Huizhu Nan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Monney T, Hemphill A. Vaccines against neosporosis: what can we learn from the past studies? Exp Parasitol 2014; 140:52-70. [PMID: 24602874 DOI: 10.1016/j.exppara.2014.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 02/09/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Neospora caninum is an intracellular apicomplexan parasite, which is a leading cause of abortion in cattle; thus neosporosis represents an important veterinary health problem and is of high economic significance. The parasite can infect cattle via trans-placental transmission from an infected cow to its fetus (vertical transmission), or through the oral route via ingestion of food or water contaminated with oocysts that were previously shed with the feces of a canid definitive host (horizontal transmission). Although vaccination was considered a rational strategy to prevent bovine neosporosis, the only commercialized vaccine (Neoguard®) produced ambiguous results with relatively low efficacy, and was recently removed from the market. Therefore, there is a need to develop an efficient vaccine capable of preventing both, the horizontal transmission through infected food or water to a naïve animal as well as the vertical transmission from infected but clinically asymptomatic dams to the fetus. Different vaccine strategies have been investigated, including the use of live attenuated vaccines, killed parasite lysates, total antigens or antigen fractions from killed parasites, and subunit vaccines. The vast majority of experimental studies were performed in mice, and to a certain extent in gerbils, but there is also a large number of investigations that were conducted in cattle and sheep. However, it is difficult to directly compare these studies due to the high variability of the parameters employed. In this review, we will summarize the recent advances made in vaccine development against N. caninum in cattle and in mice and highlight the most important factors, which are likely to influence the degree of protection mediated by vaccination.
Collapse
Affiliation(s)
- Thierry Monney
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012 Berne, Switzerland.
| |
Collapse
|
23
|
Yin G, Qin M, Liu X, Suo J, Tang X, Tao G, Han Q, Suo X, Wu W. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin. Biochem Biophys Res Commun 2013; 440:437-42. [PMID: 24076159 DOI: 10.1016/j.bbrc.2013.09.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 01/04/2023]
Abstract
Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund's Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.
Collapse
Affiliation(s)
- Guangwen Yin
- National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Protein palmitoylation and pathogenesis in apicomplexan parasites. J Biomed Biotechnol 2012; 2012:483969. [PMID: 23093847 PMCID: PMC3470895 DOI: 10.1155/2012/483969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/18/2012] [Accepted: 07/24/2012] [Indexed: 01/02/2023] Open
Abstract
Apicomplexan parasites comprise a broad variety of protozoan parasites, including Toxoplasma gondii, Plasmodium, Eimeria, and Cryptosporidium species. Being intracellular parasites, the success in establishing pathogenesis relies in their ability to infect a host-cell and replicate within it. Protein palmitoylation is known to affect many aspects of cell biology. Furthermore, palmitoylation has recently been shown to affect important processes in T. gondii such as replication, invasion, and gliding. Thus, this paper focuses on the importance of protein palmitoylation in the pathogenesis of apicomplexan parasites.
Collapse
|