1
|
Alhazmi A, Sidney LE, Hopkinson A, Elsheikha HM. Comparative cytotoxicity of Acanthamoeba castellanii-derived conditioned medium on human corneal epithelial and stromal cells. Acta Trop 2024; 257:107288. [PMID: 38901524 DOI: 10.1016/j.actatropica.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Soluble factors in the secretome of Acanthamoeba castellanii play crucial roles in the pathogenesis of Acanthamoeba keratitis (AK). Investigating the pathological effects of A. castellanii-derived conditioned medium (ACCM) on ocular cells can provide insights into the damage inflicted during AK. This study examined ACCM-induced cytotoxicity in primary human corneal stromal cells (CSCs) and a human SV40 immortalized corneal epithelial cell line (ihCECs) at varying ACCM concentrations (25 %, 50 %, 75 %, and 100 %). MTT, AlamarBlue, Sulforhodamine B, lactate dehydrogenase, and Caspase-3/7 activation assays were used to assess the impact of ACCM on the cell viability, proliferation and apoptosis. Additionally, fluorescent staining was used to reveal actin cytoskeleton changes. ACCM exposure significantly decreased cell viability, increased apoptosis, and disrupted the actin cytoskeleton, particularly at higher concentrations and longer exposures. Proteases were found to mediate these cytopathogenic effects, highlighting the need for characterization of A. castellanii proteases as key virulence factors in AK pathogenesis.
Collapse
Affiliation(s)
- Abdullah Alhazmi
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham NG7 2UH, UK; Faculty of Public Health and Health Informatics, Umm Al Qura University, Makkah, Saudi Arabia
| | - Laura E Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham NG7 2UH, UK
| | - Andy Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience, University of Nottingham, Nottingham NG7 2UH, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
2
|
Ávila-Blanco ME, Aguilera-Martínez SL, Ventura-Juarez J, Pérez-Serrano J, Casillas-Casillas E, Barba-Gallardo LF. Effectiveness of Polyclonal Antibody Immunoconjugate Treatment with Propamidine Isethionate for Amoebic Keratitis in Golden Hamsters. J Parasitol Res 2023; 2023:3713368. [PMID: 37143958 PMCID: PMC10154091 DOI: 10.1155/2023/3713368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Acanthamoeba griffini is known to cause amoebic keratitis (AK); its main causes are inadequate hygiene when contact lenses are handled and/or its prolonged use at night, as well as the use of contact lenses during underwater activities. The most used treatment for AK is the combination of propamidine isethionate combined with polyhexamethylene biguanide, which disrupts the cytoplasmic membrane, and damages cellular components and respiratory enzymes. We proposed an immunoconjugate treatment obtained from Acanthamoeba immunized rabbit serum combined with propamidine isethionate; the corneas of hamsters inoculated with A. griffini (MYP2004) were treated with the combined, at 1, 2, and 3 weeks. Propamidine isethionate is frequently used for AK treatment, in vivo study we are found IL-1β and IL-10 expression and caspase 3 activity is significantly increased with respect to the group that was inoculated with the amoeba without receiving any treatment, suggesting that it may be an effect of the toxicity of this drug on the corneal tissue. Application of the immunoconjugate showed enhanced amoebicidal and anti-inflammatory activities, with comparison to propamidine isethionate only. The aim of this study is to evaluate the effect of the immunoconjugate of propamidine isethionate and polyclonal antibodies as a treatment of AK in golden hamsters (Mesocricetus auratus).
Collapse
|
3
|
In Vitro Cytopathogenic Activities of Acanthamoeba T3 and T4 Genotypes on HeLa Cell Monolayer. Pathogens 2022; 11:pathogens11121474. [PMID: 36558808 PMCID: PMC9782662 DOI: 10.3390/pathogens11121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Amoebic keratitis and encephalitis are mainly caused by free-living amoebae of the genus Acanthamoeba, which consists of both pathogenic and nonpathogenic species. The global distribution, amphizoic properties and the severity of the disease caused by Acanthamoeba species have inspired the scientific community to put more effort into the isolation of Acanthamoeba, besides exploring the direct and indirect parameters that could signify a pathogenic potential. Therefore, this study was performed to characterize the pathogenic potential of Acanthamoeba isolated from contact lens paraphernalia and water sources in Malaysia. Various methodologies were utilized to analyze the thermotolerance and osmotolerance, the secretion level of proteases and the cytopathic effect of trophozoites on the cell monolayer. In addition, the in vitro cytopathogenicity of these isolates was assessed using the LDH-release assay. A total of 14 Acanthamoeba isolates were classified as thermo- and osmotolerant and had presence of serine proteases with a molecular weight of 45-230 kDa. Four T4 genotypes isolated from contact lens paraphernalia recorded the presence of serine-type proteases of 107 kDa and 133 kDa. In contrast, all T3 genotypes isolated from environmental samples showed the presence of a 56 kDa proteolytic enzyme. Remarkably, eight T4 and a single T3 genotype isolates demonstrated a high adhesion percentage of greater than 90%. Moreover, the use of the HeLa cell monolayer showed that four T4 isolates and one T3 isolate achieved a cytopathic effect in the range of 44.9-59.4%, indicating an intermediate-to-high cytotoxicity level. Apart from that, the LDH-release assay revealed that three T4 isolates (CL5, CL54 and CL149) and one T3 isolate (SKA5-SK35) measured an exceptional toxicity level of higher than 40% compared to other isolates. In short, the presence of Acanthamoeba T3 and T4 genotypes with significant pathogenic potential in this study reiterates the essential need to reassess the functionality of other genotypes that were previously classified as nonpathogenic isolates in past research.
Collapse
|
4
|
López-Barona P, Verdú-Expósito C, Martín-Pérez T, Gómez-Casanova N, Lozano-Cruz T, Ortega P, Gómez R, Pérez-Serrano J, Heredero-Bermejo I. Amoebicidal activity of cationic carbosilane dendrons derived with 4-phenylbutyric acid against Acanthamoeba griffini and Acanthamoeba polyphaga trophozoites and cysts. Sci Rep 2022; 12:14926. [PMID: 36056060 PMCID: PMC9440212 DOI: 10.1038/s41598-022-19200-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Amoebae from the genus Acanthamoeba are important pathogens responsible for severe illnesses in humans such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. In the last few decades, AK diagnoses have steadily increased. Most patients suffering from AK were contact lens users and the infection was related to poor hygiene. However, therapy is not yet well established, and treatments may last for several months due to resistance. Moreover, these treatments have been described to generate cytotoxicity. Therefore, there is an urgent need to develop new therapeutic strategies against AK. In this study, the amoebicidal activity of different generation cationic carbosilane dendrons derived with 4-phenylbutyric acid was demonstrated against Acanthamoeba polyphaga and Acanthamoeba griffini trophozoites and cysts. In addition, the combination of chlorhexidine digluconate and the most effective dendron (ArCO2G2(SNMe3I)4) showed an in vitro effect against Acanthamoeba trophozoites and cysts, reducing the minimal trophozoite amoebicidal concentration as well as concentrations with cysticidal activity.
Collapse
Affiliation(s)
- P López-Barona
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - C Verdú-Expósito
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - T Martín-Pérez
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - N Gómez-Casanova
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - T Lozano-Cruz
- Department of Organic and Inorganic Chemistry, Andrés M. del Río Chemistry Research Institute (IQAR), Ramón y Cajal Health Research Institute (IRYCIS), Bioengineering, Biomaterials and Nanomedicine Networking Research Center (CIBER-BBN), University of Alcalá, 28871, Madrid, Spain
| | - P Ortega
- Department of Organic and Inorganic Chemistry, Andrés M. del Río Chemistry Research Institute (IQAR), Ramón y Cajal Health Research Institute (IRYCIS), Bioengineering, Biomaterials and Nanomedicine Networking Research Center (CIBER-BBN), University of Alcalá, 28871, Madrid, Spain
| | - R Gómez
- Department of Organic and Inorganic Chemistry, Andrés M. del Río Chemistry Research Institute (IQAR), Ramón y Cajal Health Research Institute (IRYCIS), Bioengineering, Biomaterials and Nanomedicine Networking Research Center (CIBER-BBN), University of Alcalá, 28871, Madrid, Spain
| | - J Pérez-Serrano
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain
| | - I Heredero-Bermejo
- Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Spain.
| |
Collapse
|
5
|
Diehl MLN, Paes J, Rott MB. Genotype distribution of Acanthamoeba in keratitis: a systematic review. Parasitol Res 2021; 120:3051-3063. [PMID: 34351492 PMCID: PMC8339388 DOI: 10.1007/s00436-021-07261-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022]
Abstract
Acanthamoeba spp. are among the most worldwide prevalent protozoa. It is the causative agent of a disease known as Acanthamoeba keratitis, a painful and severe sight-threatening corneal infection that can lead to blindness. In recent years, the prevalence of Acanthamoeba keratitis has rapidly increased, growing its importance to human health. This systematic review aims to assess the distribution of Acanthamoeba sp. genotypes causing keratitis around the world, considering the sample collected type and the used identification method. Most of the cases were found in Asia and Europe. Not surprisingly, the T4 genotype was the most prevalent worldwide, followed by T3, T15, T11, and T5. Furthermore, the T4 genotype contains a higher number of species. Given the differences in pathology, susceptibility to treatment, and clinical outcome between distinct genotypes, it is essential to genotype isolates from Acanthamoeba keratitis cases to help to establish a better correlation between in vitro and in vivo activities, resulting in better drug therapies and successful treatment in cases of this important ocular infection.
Collapse
Affiliation(s)
- Maria Luisa Nunes Diehl
- Departamento de Microbiologia, Imunologia E Parasitologia, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Júlia Paes
- Departamento de Microbiologia, Imunologia E Parasitologia, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Marilise Brittes Rott
- Departamento de Microbiologia, Imunologia E Parasitologia, Instituto de Ciências, Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
6
|
Martín-Pérez T, Heredero-Bermejo I, Verdú-Expósito C, Pérez-Serrano J. In Vitro Evaluation of the Combination of Melaleuca alternifolia (Tea Tree) Oil and Dimethyl Sulfoxide (DMSO) against Trophozoites and Cysts of Acanthamoeba Strains. Oxygen Consumption Rate (OCR) Assay as a Method for Drug Screening. Pathogens 2021; 10:pathogens10040491. [PMID: 33921633 PMCID: PMC8073477 DOI: 10.3390/pathogens10040491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Ameobae belonging to the genus Acanthamoeba are responsible for the human diseases Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). The treatment of these illnesses is hampered by the existence of a resistance stage (cysts). In an attempt to add new agents that are effective against trophozoites and cysts, tea tree oil (TTO) and dimethyl sulfoxide (DMSO), separately and in combination, were tested In Vitro against two Acanthamoeba isolates, T3 and T4 genotypes. The oxygen consumption rate (OCR) assay was used as a drug screening method, which is to some extent useful in amoebicide drug screening; however, evaluation of lethal effects may be misleading when testing products that promote encystment. Trophozoite viability analysis showed that the effectiveness of the combination of both compounds is higher than when either compound is used alone. Therefore, the TTO alone or TTO + DMSO in combination were an amoebicide, but most of the amoebicidal activity in the combination’s treatments seemed to be caused mainly by the TTO effect. In fact, DMSO alone seems to be a non-amoebicide, triggering encystment. Regarding cytotoxicity, these compounds showed toxicity in human corneal epithelial cells (HCEpiC), even at low concentrations when tested in combination. In conclusion, the use of TTO and DMSO, in combination or alone, cannot be recommended as an alternative for AK treatment until more cytotoxicity and cyst adhesion tests are performed.
Collapse
|
7
|
Latifi A, Salami M, Kazemirad E, Soleimani M. Isolation and identification of free-living amoeba from the hot springs and beaches of the Caspian Sea. Parasite Epidemiol Control 2020; 10:e00151. [PMID: 32923701 PMCID: PMC7474157 DOI: 10.1016/j.parepi.2020.e00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022] Open
Abstract
Free-living amoeba (FLA) such as Acanthamoeba, Naegleria, Balamuthia, and Vermamoeba have been identified from both natural and human-made environments such as Hot springs and spa. Naegleria fowleri causes Primary Amoebic Meningoencephalitis (PAM), while Acanthamoeba and Balamuthia cause chronic granulomatous encephalitis. Acanthamoeba also can cause cutaneous lesions and Amoebic Keratitis (AK) that is associated with contact lens use or corneal trauma. FLA are known to serve as host of and vehicles for diverse intracellular organisms. This study aimed was to identify the presence of FLA in the hot springs and beaches of the Caspian Sea in Ramsar tourist town located in the northern part of Iran. Water samples were collected in sterile bottles and were transferred to the laboratory. One litre of each sample passed through the nitrocellulose membrane filter. Each filter insert was then placed in non-nutrient agar plates already seeded with lawn culture of Escherichia coli. Positive samples were analyzed by morphological keys and Polymerase chain reaction (PCR) using 18S rDNA gene and ITS region to identify amoeba isolates. A total of 81 water sampled were tasted. After identified using the morphological key and PCR assay, 54 (66.6%) of the samples were positive for FLA. Ten of the samples were identified as Acanthamoeba (belong to T3, T4, and T5 genotypes), three as Vermamoeba vermiformis, four as Naegleria (3 N.australiensis and 1 N.grubery). Only one sample was positive Vahlkampfia. The presence of thermotolerant FLA in the Hot springs and beaches of the Caspian Sea as places for recreational purposes or wellness may be a potential health risk.
Collapse
Affiliation(s)
- Alireza Latifi
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Salami
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Kazemirad
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Soleimani
- Ocular Trauma and Emergency Department, Farabi eye hospital, Tehran university of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Carnt NA, Subedi D, Lim AW, Lee R, Mistry P, Badenoch PR, Kilvington S, Dutta D. Prevalence and seasonal variation of Acanthamoeba in domestic tap water in greater Sydney, Australia. Clin Exp Optom 2020; 103:782-786. [PMID: 32227362 DOI: 10.1111/cxo.13065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/17/2019] [Accepted: 02/28/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study examined the prevalence of free-living Acanthamoeba in domestic tap water in the greater Sydney region, Australia, and determined any seasonal variation in prevalence. METHODS Fifty-four participants were included in this study following approval from an institutional human research ethics committee. Each participant self-collected two samples (one in summer and another in winter) from the surface of the drain of the bathroom sink using an instructional kit. The samples were cultured by inoculating onto a non-nutrient agar plate seeded with Escherichia coli and incubation at 32°C for two weeks. The plates were microscopically examined for the presence of free-living amoeba. DNA was isolated from 20 samples and a polymerase chain reaction (PCR) assay was performed for amplification of the partial sequence of the 18S ribosomal RNA gene. The PCR amplified products were sequenced using Sanger sequencing and genotyping was performed based on the variation in nucleotide sequences. RESULTS A total of 97 samples were collected over the two collection periods, with 28.6 per cent of samples morphologically classified as Acanthamoeba. The summer period yielded 16 of 54 (29.6 per cent) samples classified as Acanthamoeba, while the winter period yielded 12 of 43 (27.9 per cent) samples classified as Acanthamoeba. There was no statistically significant difference (p = 0.85) between the prevalence of free-living Acanthamoeba in summer compared to winter. Phylogenetic analysis showed that 15 of 20 (75 per cent) isolates belonged to genotype T4, the most frequent genotype isolated in Acanthamoeba keratitis. CONCLUSION The prevalence of free-living Acanthamoeba characterised morphologically in domestic tap water of the greater Sydney region was higher than expected, especially considering the low incidence of Acanthamoeba keratitis in Australia. However, this study did not find variation between seasons. As the T4 genotype was most common, Sydney-based practitioners must always consider Acanthamoeba as a possible causative organism in cases of microbial keratitis, regardless of the season.
Collapse
Affiliation(s)
- Nicole A Carnt
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia.,Centre for Vision Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia.,Institute of Ophthalmology, University College London, London, UK
| | - Dinesh Subedi
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Ann W Lim
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Rebecca Lee
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Priyal Mistry
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Paul R Badenoch
- Department of Ophthalmology, Flinders Medical Centre, Adelaide, Australia.,College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Simon Kilvington
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Debarun Dutta
- School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia.,Optometry and Vision Science, Life and Health Sciences, Aston University, Birmingham, UK
| |
Collapse
|
9
|
Ávila-Blanco ME, Martín-Pérez T, Ventura-Juárez J, Pérez-Serrano J. Experimental keratitis in rats caused by Acanthamoeba griffini: A kinetic histopathological study. Parasite Immunol 2020; 42:e12692. [PMID: 31856305 DOI: 10.1111/pim.12692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/22/2023]
Abstract
The aim of this study was to evaluate the inflammation process that resulted from the inoculation of Wistar Rats with Acanthamoeba griffini, a virulent T3 Acanthamoeba genotype that produces keratitis. Haematoxylin and eosin, periodic acid stain, immunohistochemistry and morphometry were used to analyse tissues from rats of an Acanthamoeba keratitis (AK) model. Two weeks after inoculating the rats with A griffini trophozoites, the thickness of the stroma had diminished, followed by an increase in thickness at 4 weeks. At the latter time, an abundance of inflammatory infiltrate cells was observed, some found to express IL-1β, IL-10 and/or caspase 3. Intercellular adhesion molecule-1 was expressed in corneal blood vessels amid the abundant vascularization characteristic of the development of AK. Through an immunohistochemical technique, trophozoites were detected at 2 and 4 weeks post-inoculation. By 8 weeks, there were a low number of trophozoites and cysts and the corneas of infected rats were similar in thickness to those of the controls. Thus, the rats were capable of healing experimental AK in the present rat model. Diverse immunological mechanisms regulated the inflammatory process in acute AK induced by A griffini in a murine model.
Collapse
Affiliation(s)
- Manuel Enrique Ávila-Blanco
- Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico.,Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Javier Ventura-Juárez
- Departamento de Microbiología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Jorge Pérez-Serrano
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
10
|
Martín-Pérez T, Lozano-Cruz T, Criado-Fornelio A, Ortega P, Gómez R, de la Mata FJ, Pérez-Serrano J. Synthesis and in vitro activity of new biguanide-containing dendrimers on pathogenic isolates of Acanthamoeba polyphaga and Acanthamoeba griffini. Parasitol Res 2019; 118:1953-1961. [PMID: 31069536 DOI: 10.1007/s00436-019-06341-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/29/2019] [Indexed: 11/26/2022]
Abstract
The genus Acanthamoeba can cause Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). The treatment of these illnesses is hampered by the existence of a resistance stage that many times causes infection relapses. In an attempt to add new agents to our chemotherapeutic arsenal against acanthamebiasis, two Acanthamoeba isolates were treated in vitro with newly synthesized biguanide dendrimers. Trophozoite viability analysis and ultrastructural studies showed that dendrimers prevent encystment by lysing the cellular membrane of the amoeba. Moreover, one of the dendrimers showed low toxicity when tested on mammalian cell cultures, which suggest that it might be eventually used as an amoebicidal drug or as a disinfection compound in contact lens solutions.
Collapse
Affiliation(s)
- T Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - T Lozano-Cruz
- Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28805, Alcalá de Henares, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, Km. 9100, 28034, Madrid, Spain
| | - A Criado-Fornelio
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - P Ortega
- Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28805, Alcalá de Henares, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, Km. 9100, 28034, Madrid, Spain
| | - R Gómez
- Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28805, Alcalá de Henares, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, Km. 9100, 28034, Madrid, Spain
| | - F J de la Mata
- Instituto de Investigación Química "Andrés M. del Río" (IQAR), Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, 28805, Alcalá de Henares, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, Km. 9100, 28034, Madrid, Spain
| | - J Pérez-Serrano
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Hernández-Martínez D, Reyes-Batlle M, Castelan-Ramírez I, Hernández-Olmos P, Vanzzini-Zago V, Ramírez-Flores E, Sifaoui I, Piñero JE, Lorenzo-Morales J, Omaña-Molina M. Evaluation of the sensitivity to chlorhexidine, voriconazole and itraconazole of T4 genotype Acanthamoeba isolated from Mexico. Exp Parasitol 2019; 197:29-35. [DOI: 10.1016/j.exppara.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 02/03/2023]
|
12
|
Box Behnken design of siRNA-loaded liposomes for the treatment of a murine model of ocular keratitis caused by Acanthamoeba. Colloids Surf B Biointerfaces 2018; 173:725-732. [PMID: 30384269 DOI: 10.1016/j.colsurfb.2018.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Abstract
Acanthamoeba keratitis is an ophthalmic disease with no specific treatment that specially affects contact lens users. The silencing of serine phosphatase (SP) and glycogen phosphorylase (GP) proteins produced by Acanthamoeba has been shown to significantly reduce the cytopathic effect, although no vehicle was proposed yet to deliver the siRNA sequences to the trophozoites. In this study, PEGylated cationic liposomes were proposed and optimized using Box-Behnken design. The influence of DOTAP:DOPE ratio, DSPE-PEG concentration, and siRNA/DOTAP charge ratio were evaluated over both biological response and physicochemical properties of liposomes. The ratio of DOTAP:DOPE had an effect in the trophozoite activity whereas the charge ratio influenced both size and protease activity. The predicted values were very close to the observed values, yielding a formulation with good activity and toxicity profile, which was used in the following experiments. A murine model of ocular keratitis was treated with siGP + siSP-loaded liposomes, as well as their respective controls, and combined treatment of liposomes and chlorhexidine. After 15 days of eight daily administrations, the liposomal complex combined with chlorhexidine was the only treatment able to reverse the more severe lesions associated with keratitis. There was 60% complete regression in corneal damage, with histological sections demonstrating the presence of an integral epithelium, without lymphocytic infiltrate. The set of results demonstrate the efficacy of a combined therapy based on siRNA with classical drugs for a better prognosis of keratitis caused by Acanthamoeba.
Collapse
|
13
|
Martín-Pérez T, Criado-Fornelio A, Ávila-Blanco M, Pérez-Serrano J. Development and optimization of new culture media for Acanthamoeba spp. (Protozoa: Amoebozoa). Eur J Protistol 2018; 64:91-102. [PMID: 29730482 DOI: 10.1016/j.ejop.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 10/17/2022]
Abstract
The isolation and growth in axenic liquid media of Acanthamoeba strains is necessary in order to carry out primary in vitro drug screening. Amoebic isolates which are hard to grow in the current liquid media have been reported. Such circumstances hampers the ability of conducting drug sensitivity tests. Therefore, finding suitable universal growth media for Acanthamoeba species is required. The present study was aimed at the development of liquid medium suitable for growing a fastidious (F) genotype T3 Acanthamoeba isolate, and eventually for other genotypes of this genus as well. Trophozoite growth was indirectly monitored by respiration analysis with oxygen-sensitive microplates (OSM) and further confirmed by manual counting. Media were empirically designed and tested first in a non-fastidious (NF) T3 isolate and then tested with 14 different strains, including the fastidious one. Combinations of nutritive components such as meat/vegetable broth, LB medium, malt and skimmed milk led to the design of new media suitable for culturing all the isolates tested, in conditions similar to those obtained in standard culture media such as PYG or CERVA.
Collapse
Affiliation(s)
- Tania Martín-Pérez
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain.
| | - Angel Criado-Fornelio
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| | - Manuel Ávila-Blanco
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Laboratorio de ciencias morfológicas, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Ciudad Universitaria, Aguascalientes, Ags., México
| | - Jorge Pérez-Serrano
- Departamento de Biomedicina y Biotecnología, Laboratorio de Parasitología, Grupo ECOMYP, Facultad de Farmacia, Universidad de Alcalá, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
14
|
Abstract
Nontuberculous mycobacteria (NTM) include species that colonize human epithelia, as well as species that are ubiquitous in soil and aquatic environments. NTM that primarily inhabit soil and aquatic environments include the Mycobacterium avium complex (MAC, M. avium and Mycobacterium intracellulare) and the Mycobacterium abscessus complex (MABSC, M. abscessus subspecies abscessus, massiliense, and bolletii), and can be free-living, biofilm-associated, or amoeba-associated. Although NTM are rarely pathogenic in immunocompetent individuals, those who are immunocompromised - due to either an inherited or acquired immunodeficiency - are highly susceptible to NTM infection (NTMI). Several characteristics such as biofilm formation and the ability of select NTM species to form distinct colony morphotypes all may play a role in pathogenesis not observed in the related, well-characterized pathogen Mycobacterium tuberculosis The recognition of different morphotypes of NTM has been established and characterized since the 1950s, but the mechanisms that underlie colony phenotype change and subsequent differences in pathogenicity are just beginning to be explored. Advances in genomic analysis have led to progress in identifying genes important to the pathogenesis and persistence of MAC disease as well as illuminating genetic aspects of different colony morphotypes. Here we review recent literature regarding NTM ecology and transmission, as well as the factors which regulate colony morphotype and pathogenicity.
Collapse
Affiliation(s)
- Tiffany A Claeys
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
15
|
Knowledge, Behavior, and Free-Living Amoebae Contamination of Cosmetic Contact Lens Among University Wearers in Thailand: A Cross-Sectional Study. Eye Contact Lens 2017; 43:81-88. [PMID: 26925535 DOI: 10.1097/icl.0000000000000246] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the general knowledge, behavior, and presence of potentially pathogenic amoebae in cosmetic contact lens (CCL) wearers. METHODS One hundred CCL asymptomatic wearers were randomly selected. A questionnaire regarding their lens use, and a pair of their CCL was obtained. Identification of free-living amoeba (FLA) strains was based on morphological diagnosis, enflagellation tests (for non-Acanthamoeba strains), and sequencing of the small-subunit rRNA gene fragments. RESULTS Most (92%) of the participants surveyed were women, and the average age of the participants was 21.5±0.2 years. The CCL wearers generally showed a moderate (47%) or good (35%) level of knowledge, and good (51%) or excellent (40%) use of CCL. Two CCL samples were positive for Acanthamoeba genotype T3 or Vahlkampfia. The Acanthamoeba-contaminated CCL was from a wearer who used saline for treating lenses, and the Vahlkampfia-contaminated CCL was from a wearer who used CCL while swimming. CONCLUSIONS This is the first report of the presence of potentially pathogenic FLA in used CCL from asymptomatic wearers in Thailand. Although there was satisfactory knowledge and practice of lens care use, the public should be aware of CCL contaminated with potentially pathogenic FLA that can directly or indirectly cause keratitis.
Collapse
|
16
|
Isolation and molecular characterization of Acanthamoeba from patients with keratitis in Spain. Eur J Protistol 2017; 61:244-252. [PMID: 28756938 DOI: 10.1016/j.ejop.2017.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 11/22/2022]
Abstract
In order to improve our knowledge on the epidemiology of amoebic keratitis, as well as the identification of Acanthamoeba isolates, we have isolated Acanthamoeba spp. from five symptomatic patients in Spain in the present study. All isolates were grown in axenic liquid medium, with only one exception. The morphology of these isolates were characterized by optical and scanning electron microscopy. Their structural features corresponded to those of amphizoic amoebae (namely Acanthamoeba spp.). The molecular characterization of the five Acanthamoeba isolates yielded six sequences. Almost complete 18S rRNA gene sequences (>2000bp) were obtained from three isolates and partial sequences (∼1500bp) from the other two. A robust phylogenetic analysis based on the almost complete 18S rRNA sequence showed that four isolates belonged to the T4 genotype and the other one to the T3 genotype. However, all isolates were identified as T4 genotype using the ASA.S1 fragment. As previously suggested by other researchers, only a robust phylogenetic approach may be helpful in identifying Acanthamoeba genotypes. In addition, new data on the phylogenetic relationships among the Acanthamoeba genotypes is provided and discussed.
Collapse
|
17
|
Acanthamoeba spp. in Contact Lenses from Healthy Individuals from Madrid, Spain. PLoS One 2016; 11:e0154246. [PMID: 27105183 PMCID: PMC4841564 DOI: 10.1371/journal.pone.0154246] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/11/2016] [Indexed: 02/07/2023] Open
Abstract
Purpose Acanthamoeba keratitis (AK) is a painful and potentially blinding corneal infection caused by Acanthamoeba spp. In Madrid, environmental studies have demonstrated a high presence of these free-living amoebae in tap water. Since most of AK cases occur in contact lenses (CL) wearers with inadequate hygiene habits, the presence of Acanthamoeba in discarded CL has been studied and compared with other common etiological agents of keratitis, such as Pseudomonas aeruginosa and Staphylococcus aureus. Methods One hundred and seventy-seven healthy individuals from Madrid contributed their discarded CL and answered a questionnaire on hygiene habits. DNA was extracted from the CL solution and analyzed by real-time PCR for Acanthamoeba, Pseudomonas aeruginosa and Staphylococcus aureus. These CL and their solutions were also cultured on non-nutrient agar to isolate Acanthamoeba. Results Among the 177 samples, Acanthamoeba DNA was detected in 87 (49.2%), P. aeruginosa DNA in 14 (7.9%) and S. aureus DNA in 19 (10.7%). Cultivable amoebae, however, were observed in only one sample (0.6%). This isolate was genotyped as T4. The habits reported by this CL owner included some recognized risk factors for AK, but in this study only the practice of “not cleaning the CL case” presented some statistical significant association with Acanthamoeba DNA presence. Detection of the investigated bacterial DNA did not demonstrate statistical significant association with the studied practices, but the presence of P. aeruginosa revealed a possible inhibition of Acanthamoeba in these samples. Conclusions The PCR results suggest a high presence of Acanthamoeba spp. in healthy CL wearers from Madrid, but we can assume that CL solutions are properly disinfecting the CL since only 1.1% of the positive PCR samples correspond to viable amoebae and, after four years, only one participant reported stronger ocular problems. Nevertheless, more studies are necessary to corroborate this hypothesis.
Collapse
|
18
|
Acanthamoeba genotypes T3 and T4 as causative agents of amoebic keratitis in Mexico. Parasitol Res 2015; 115:873-8. [DOI: 10.1007/s00436-015-4821-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/05/2015] [Indexed: 02/02/2023]
|