1
|
Andrade CM, Carrasquilla M, Dabbas U, Briggs J, van Dijk H, Sergeev N, Sissoko A, Niangaly M, Ntalla C, LaVerriere E, Skinner J, Golob K, Richter J, Cisse H, Li S, Hendry JA, Asghar M, Doumtabe D, Farnert A, Ruppert T, Neafsey DE, Kayentao K, Doumbo S, Ongoiba A, Crompton PD, Traore B, Greenhouse B, Portugal S. Infection length and host environment influence on Plasmodium falciparum dry season reservoir. EMBO Mol Med 2024; 16:2349-2375. [PMID: 39284949 PMCID: PMC11473648 DOI: 10.1038/s44321-024-00127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 10/16/2024] Open
Abstract
Persistence of malaria parasites in asymptomatic hosts is crucial in areas of seasonally-interrupted transmission, where P. falciparum bridges wet seasons months apart. During the dry season, infected erythrocytes exhibit extended circulation with reduced cytoadherence, increasing the risk of splenic clearance of infected cells and hindering parasitaemia increase. However, what determines parasite persistence for long periods of time remains unknown. Here, we investigated whether seasonality affects plasma composition so that P. falciparum can detect and adjust to changing serological cues; or if alternatively, parasite infection length dictates clinical presentation and persistency. Data from Malian children exposed to alternating ~6-month wet and dry seasons show that plasma composition is unrelated to time of year in non-infected children, and that carrying P. falciparum only minimally affects plasma constitution in asymptomatic hosts. Parasites persisting in the blood of asymptomatic children from the dry into the ensuing wet season rarely if ever appeared to cause malaria in their hosts as seasons changed. In vitro culture in the presence of plasma collected in the dry or the wet seasons did not affect parasite development, replication or host-cell remodelling. The absence of a parasite-encoded sensing mechanism was further supported by the observation of similar features in P. falciparum persisting asymptomatically in the dry season and parasites in age- and sex-matched asymptomatic children in the wet season. Conversely, we show that P. falciparum clones transmitted early in the wet season had lower chance of surviving until the end of the following dry season, contrasting with a higher likelihood of survival of clones transmitted towards the end of the wet season, allowing for the re-initiation of transmission. We propose that the decreased virulence observed in persisting parasites during the dry season is not due to the parasites sensing ability, nor is it linked to a decreased capacity for parasite replication but rather a consequence decreased cytoadhesion associated with infection length.
Collapse
Affiliation(s)
- Carolina M Andrade
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | | | - Usama Dabbas
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Hannah van Dijk
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolay Sergeev
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Awa Sissoko
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Niangaly
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Emily LaVerriere
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Jeff Skinner
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Klara Golob
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeremy Richter
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hamidou Cisse
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Shanping Li
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Jason A Hendry
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Biology, Lund University, Lund, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Anna Farnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Silvia Portugal
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
2
|
Usman-Yamman H, Omalu C J I, Abubakar A, Abolarinwa S O, Eke S S, Otuu CA. Genetic diversity of plasmodium falciparum isolates in Minna, North Central Nigeria inferred by PCR genotyping of Merozoite surface protein 1 and 2. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 96:105143. [PMID: 34800712 DOI: 10.1016/j.meegid.2021.105143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
North Central Nigeria is one region in Nigeria with a significant incidence of malaria caused majorly by Plasmodium falciparum. This study utilizes the msp1 and msp2 genes of P. falciparum to examine its diversity and multiplicity of infection (MOI). Blood samples were collected from 247 children across selected healthcare facilities in Minna, from infants and children aged 6 months to 17 years. Of the total collection, 143 (58%) of the children were infected with P. falciparum with parasite density ≥ 1000 μl, and from which fifty (50) samples was randomly selected and presented for PCR for the characterization of msp1 and msp2 gene using nested-PCR method. Overall, 57 msp1 genotypes, including K1, MAD20 and RO33 were identified, ranging from (250-1000 bp), (100-500 bp) and (400-500 bp), respectively. In addition, 54 different msp2 genotypes of FC27 and 3D7 alleles ranging from (100-900 bp) and (100-800 bp), respectively were selected. A monoclonal infection of 39% and a polyclonal infection of 61% was recorded, however, a particularity about this study is the polyclonal nature of RO33. Determination of gene diversity revealed MAD20 as the predominant allele for msp1 with a mean MOI of 1.35 and FC27 for msp2 with 1.72 MOI. The overall MOI recorded for the study was 1.60. There was, however, no statistical significance difference between MOI and age of the child (P > 0.05). Meanwhile, findings from this study revealed P. falciparum populations were not genetically diverse with Heterozygosity (He) index of 0.0636. However, a significant level gene diversity within the antigenic markers of msp1 and msp2 was observed with He index of 0.714 and 0.830, respectively. This study has demonstrated the potential of gene diversity and MOI of P. falciparum, as important markers for assessing differences in malaria transmission intensity. Continuous malaria genetic surveillance is therefore recommended as a fundamental tool for monitoring changes in gene types and for intervention programs' effectiveness.
Collapse
Affiliation(s)
- Hadijah Usman-Yamman
- Department of Animal Biology, Federal University of Technology, Minna, Niger State, Nigeria.
| | - Innocent Omalu C J
- Department of Animal Biology, Federal University of Technology, Minna, Niger State, Nigeria.
| | - Abdulkadir Abubakar
- Department of Biochemistry, Federal University of Technology, Minna, Niger State, Nigeria.
| | - Abolarinwa S O
- Department of Animal Biology, Federal University of Technology, Minna, Niger State, Nigeria.
| | - Samuel Eke S
- Department of Biology, Air Force Institute of Technology, Kaduna, Nigeria.
| | - Chidiebere A Otuu
- Parasitology and Public Health Research Unit, Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria.
| |
Collapse
|
3
|
Kimenyi KM, Wamae K, Ochola-Oyier LI. Understanding P. falciparum Asymptomatic Infections: A Proposition for a Transcriptomic Approach. Front Immunol 2019; 10:2398. [PMID: 31681289 PMCID: PMC6803459 DOI: 10.3389/fimmu.2019.02398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Malaria is still a significant public health burden in the tropics. Infection with malaria causing parasites results in a wide range of clinical disease presentations, from severe to uncomplicated or mild, and in the poorly understood asymptomatic infections. The complexity of asymptomatic infections is due to the intricate interplay between factors derived from the human host, parasite, and environment. Asymptomatic infections often go undetected and provide a silent natural reservoir that sustains malaria transmission. This creates a major obstacle for malaria control and elimination efforts. Numerous studies have tried to characterize asymptomatic infections, unanimously revealing that host immunity is the underlying factor in the maintenance of these infections and in the risk of developing febrile malaria infections. An in-depth understanding of how host immunity and parasite factors interact to cause malaria disease tolerance is thus required. This review primarily focuses on understanding anti-inflammatory and pro-inflammatory responses to asymptomatic infections in malaria endemic areas, to present the view that it is potentially the shift in host immunity toward an anti-inflammatory profile that maintains asymptomatic infections after multiple exposures to malaria. Conversely, symptomatic infections are skewed toward a pro-inflammatory immune profile. Moreover, we propose that these infections can be better interrogated using next generation sequencing technologies, in particular RNA sequencing (RNA-seq), to investigate the immune system using the transcriptome sampled during a clearly defined asymptomatic infection.
Collapse
Affiliation(s)
- Kelvin M Kimenyi
- KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya.,Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Kevin Wamae
- KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya
| | - Lynette Isabella Ochola-Oyier
- KEMRI-Wellcome Trust Research Programme, CGMRC, Kilifi, Kenya.,Pwani University Bioscience Research Centre, Pwani University, Kilifi, Kenya
| |
Collapse
|
4
|
Mohamed NS, Ali Albsheer MM, Abdelbagi H, Siddig EE, Mohamed MA, Ahmed AE, Omer RA, Muneer MS, Ahmed A, Osman HA, Ali MS, Eisa IM, Elbasheir MM. Genetic polymorphism of the N-terminal region in circumsporozoite surface protein of Plasmodium falciparum field isolates from Sudan. Malar J 2019; 18:333. [PMID: 31570093 PMCID: PMC6771110 DOI: 10.1186/s12936-019-2970-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/24/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum parasite is still known to be one of the most significant public health problems in sub-Saharan Africa. Genetic diversity of the Sudanese P. falciparum based on the diversity in the circumsporozoite surface protein (PfCSP) has not been previously studied. Therefore, this study aimed to investigate the genetic diversity of the N-terminal region of the pfcsp gene. METHODS A cross-sectional molecular study was conducted; 50 blood samples have been analysed from different regions in Sudan. Patients were recruited from the health facilities of Khartoum, New Halfa, Red Sea, White Nile, Al Qadarif, Gezira, River Nile, and Ad Damazin during malaria transmission seasons between June to October and December to February 2017-2018. Microscopic and nested PCR was performed for detection of P. falciparum. Merozoite surface protein-1 was performed to differentiate single and multiple clonal infections. The N-terminal of the pfcsp gene has been sequenced using PCR-Sanger dideoxy method and analysed to sequences polymorphism including the numbers of haplotypes (H), segregating sites (S), haplotypes diversity (Hd) and the average number of nucleotide differences between two sequences (Pi) were obtained using the software DnaSP v5.10. As well as neutrality testing, Tajima's D test, Fu and Li's D and F statistics. RESULTS PCR amplification resulted in 1200 bp of the pfcsp gene. Only 21 PCR products were successfully sequenced while 29 were presenting multiple clonal P. falciparum parasite were not sequenced. The analysis of the N-terminal region of the PfCSP amino acids sequence compared to the reference strains showed five different haplotypes. H1 consisted of 3D7, NF54, HB3 and 13 isolates of the Sudanese pfcsp. H2 comprised of 7G8, Dd2, MAD20, RO33, Wellcome strain, and 5 isolates of the Sudanese pfcsp. H3, H4, and H5 were found in 3 distinct isolates. Hd was 0.594 ± 0.065, and S was 12. The most common polymorphic site was A98G; other sites were D82Y, N83H, N83M, K85L, L86F, R87L, R87F, and A98S. Fu and Li's D* test value was - 2.70818, Fu and Li's F* test value was - 2.83907, indicating a role of negative balancing selection in the pfcsp N-terminal region. Analysis with the global pfcsp N-terminal regions showed the presence of 13 haplotypes. Haplotypes frequencies were 79.4%, 17.0%, 1.6% and 1.0% for H1, H2, H3 and H4, respectively. Remaining haplotypes frequency was 0.1% for each. Hd was 0.340 ± 0.017 with a Pi of 0.00485, S was 18 sites, and Pi was 0.00030. Amino acid polymorphisms identified in the N-terminal region of global pfcsp were present at eight positions (D82Y, N83H/M, K85L/T/N, L86F, R87L/F, A98G/V/S, D99G, and G100D). CONCLUSIONS Sudanese pfcsp N-terminal region was well-conserved with only a few polymorphic sites. Geographical distribution of genetic diversity showed high similarity to the African isolates, and this will help and contribute in the deployment of RTS,S, a PfCSP-based vaccine, in Sudan.
Collapse
Affiliation(s)
- Nouh S Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan.
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Sinnar University, Sinnar, Sudan.
- Department of Molecular Biology, Institute of Zoology, University of Hohenheim, Stuttgart, Germany.
| | - Musab M Ali Albsheer
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Sinnar University, Sinnar, Sudan
- Department of Parasitology and Medical Entomology, East Nile College, Khartoum, Sudan
| | - Hanadi Abdelbagi
- Biotechnology Research Laboratory, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
| | - Emanuel E Siddig
- Unit of Applied Medical Sciences, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
- Mycetoma Research Center, University of Khartoum, Khartoum, Sudan
| | - Mona A Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan
| | - Abdallah E Ahmed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan
| | - Rihab Ali Omer
- Department of Molecular Biology, Institute of Zoology, University of Hohenheim, Stuttgart, Germany
- Department of Molecular Biology, Institute of Parasitology, University of Leipzig, Leipzig, Germany
| | - Mohamed S Muneer
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
- Department of Internal Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Ayman Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Hussam A Osman
- Biotechnology Research Laboratory, School of Pharmacy, Ahfad University for Women, Omdurman, Sudan
| | - Mohamed S Ali
- Faculty of Medicine, Neelain University, Khartoum, Sudan
| | - Ibrahim M Eisa
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Alzaiem Alazhari University, Khartoum, Sudan
| | - Mohamed M Elbasheir
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Alzaiem Alazhari University, Khartoum, Sudan
| |
Collapse
|
5
|
Patel P, Bharti PK, Bansal D, Raman RK, Mohapatra PK, Sehgal R, Mahanta J, Sultan AA, Singh N. Genetic diversity and antibody responses against Plasmodium falciparum vaccine candidate genes from Chhattisgarh, Central India: Implication for vaccine development. PLoS One 2017; 12:e0182674. [PMID: 28787005 PMCID: PMC5546615 DOI: 10.1371/journal.pone.0182674] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/21/2017] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity in Plasmodium falciparum antigens is a major hurdle in developing an effective malaria vaccine. Protective efficacy of the vaccine is dependent on the polymorphic alleles of the vaccine candidate antigens. Therefore, we investigated the genetic diversity of the potential vaccine candidate antigens i.e. msp-1, msp-2, glurp, csp and pfs25 from field isolates of P.falciparum and determined the natural immune response against the synthetic peptide of these antigens. Genotyping was performed using Sanger method and size of alleles, multiplicity of infection, heterogeneity and recombination rate were analyzed. Asexual stage antigens were highly polymorphic with 55 and 50 unique alleles in msp-1 and msp-2 genes, respectively. The MOI for msp-1 and msp-2 were 1.67 and 1.28 respectively. A total 59 genotype was found in glurp gene with 8 types of amino acid repeats in the conserved part of RII repeat region. The number of NANP repeats from 40 to 44 was found among 55% samples in csp gene while pfs25 was found almost conserved with only two amino acid substitution site. The level of genetic diversity in the present study population was very similar to that from Asian countries. A higher IgG response was found in the B-cell epitopes of msp-1 and csp antigens and higher level of antibodies against csp B-cell epitope and glurp antigen were recorded with increasing age groups. Significantly, higher positive responses were observed in the csp antigen among the samples with ≥42 NANP repeats. The present finding showed extensive diversity in the asexual stage antigens.
Collapse
Affiliation(s)
- Priyanka Patel
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Garha, Jabalpur, Madhya Pradesh, India
| | - Praveen K. Bharti
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Garha, Jabalpur, Madhya Pradesh, India
| | - Devendra Bansal
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Rajive K. Raman
- Community Health Centre Janakpur, District Baikunthpur, Chhattisgarh, India
| | - Pradyumna K. Mohapatra
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, Assam, India
| | - Rakesh Sehgal
- Department of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab, India
| | - Jagadish Mahanta
- Regional Medical Research Centre, NE, Indian Council of Medical Research, Dibrugarh, Assam, India
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine - Qatar, Cornell University, Qatar Foundation - Education City, Doha, Qatar
| | - Neeru Singh
- National Institute for Research in Tribal Health, Indian Council of Medical Research, Garha, Jabalpur, Madhya Pradesh, India
- * E-mail:
| |
Collapse
|
6
|
Mohammed H, Kassa M, Assefa A, Tadesse M, Kebede A. Genetic polymorphism of Merozoite Surface Protein-2 (MSP-2) in Plasmodium falciparum isolates from Pawe District, North West Ethiopia. PLoS One 2017; 12:e0177559. [PMID: 28542247 PMCID: PMC5438166 DOI: 10.1371/journal.pone.0177559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background In malaria endemic regions, Plasmodium falciparum infection is characterized by extensive genetic diversity. Describing this diversity provides important information about the local malaria situation. This study was conducted to evaluate the extent of genetic diversity of P. falciparum in Pawe district, North West Ethiopia, using the highly polymorphic merozoite surface protein 2 gene. Methods Atotal of 92 isolates from patients with uncomplicated P. falciparum attending Pawe Health Centre were collected from September to December 2013. Genomic DNA was extracted using the Chelex method and analyzed by length polymorphism following gel electrophoresis of DNA products from nested PCR of msp2 (block 3), targeting allelic families of FC27 and 3D7/IC. Results There were twenty-two different msp2 alleles, 11 corresponding to the 3D7/ IC and 11 to the FC27 allelic family. The frequency of isolates of the msp2 3D7/IC allelic familywas higher (51%) compared to FC27 (49%). The majority of the isolates (76%) contained multiple infections andthe overall mean multiplicity of infection was 2.8 (CI 95% 2.55–3.03). The heterozygosity index was 0.66 for msp2. There was no statically significant difference in the multiplicity of infection by age or parasite density. Conclusions The results of this study show that P.falciparum polymorphismsare extensive in Northwest Ethiopia and most of the infections are composed of multiple clones.
Collapse
Affiliation(s)
- Hussein Mohammed
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- * E-mail:
| | - Moges Kassa
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mekonnen Tadesse
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Amha Kebede
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| |
Collapse
|
7
|
Bakhiet AM, Abdel-Muhsin AMA, Elzaki SEG, Al-Hashami Z, Albarwani HS, AlQamashoui BA, Al-Hamidhi S, Idris MA, Elagib AA, Beja-Pereira A, Babiker HA. Plasmodium falciparum population structure in Sudan post artemisinin-based combination therapy. Acta Trop 2015; 148:97-104. [PMID: 25913735 DOI: 10.1016/j.actatropica.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
Abstract
Over the past decade, Sudan has stepped up malaria control backed by WHO, and this has resulted in significant reduction in parasite rate, malaria morbidity and mortality. The present study analyzed Plasmodium falciparum parasites in four geographical separated areas, to examine whether the success in malaria control following the use of artemisinin-based combination therapy (ACT) has disrupted the population structure and evolution of the parasite. We examined 319 P. falciparum isolates collected between October 2009 and October 2012 in four different areas in Sudan (Jazira [central Sudan], Southern Darfur [western Sudan], Upper Nile [southern Sudan] and Kasala [eastern Sudan]). Twelve microsatellites were analyzed for allelic diversity, multi-locus haplotype and inter-population differentiation. Level of diversity was compared to that detected for three of the above microsatellites among P. falciparum parasites in central and eastern Sudan in 1999, prior to introduction of ACT. Diversity at each locus (unbiased heterozygosity [H]) was high in all areas (Jazira, H=0.67), (Southern Darfur, H=0.71), (Upper Nile, H=0.71), and (Kasala, H=0.63). Microsatellites were distributed widely and private alleles, detected in a single population, were rare. The extent of diversity in the above sites was similar to that seen, in 1999, in central (Khartoum, H=0.73) and eastern Sudan (Gedaref, H=0.75). Significant Linkage disequilibrium (LD) was observed between the microsatellites in all populations. Pairwise FST analysis revealed that parasites in the four areas could be considered as one population. However, the parasites in Sudan clustered away from parasites in West Africa and the Arabian Peninsula. Despite marked reduction in malaria risk in Sudan, the extent of diversity and parasite genetic structure are indicative of a large population size. Further considerable reduction in transmission would be needed before fragmented sub-population can be seen. In addition, the large divergence of P. falciparum in Sudan from West Africa and Arabian Peninsula populations may result from differential evolutionary pressures acting at the population level, which shall be considered in eradication plans.
Collapse
|
8
|
Hamid MMA, Mohammed SB, El Hassan IM. Genetic Diversity of Plasmodium falciparum Field Isolates in Central Sudan Inferred by PCR Genotyping of Merozoite Surface Protein 1 and 2. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2013; 5:95-101. [PMID: 23641369 PMCID: PMC3624726 DOI: 10.4103/1947-2714.107524] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Characterization of Plasmodium falciparum diversity is commonly achieved by amplification of the polymorphic regions of the merozoite surface proteins 1 (MSP1) and 2 (MSP2) genes. AIMS The present study aimed to determine the allelic variants distribution of MSP1 and MSP2 and multiplicity of infection in P. falciparum field isolates from Kosti, central Sudan, an area characterized by seasonal malaria transmission. MATERIALS AND METHODS Total 121 samples (N = 121) were collected during a cross-sectional survey between March and April 2003. DNA was extracted and MSP1 and MSP2 polymorphic loci were genotyped. RESULTS The total number of alleles identified in MSP1 block 2 was 11, while 16 alleles were observed in MSP2 block 3. In MSP1, RO33 was found to be the predominant allelic type, carried alone or in combination with MAD20 and K1 types, whereas FC27 family was the most prevalent in MSP2. Sixty two percent of isolates had multiple genotypes and the overall mean multiplicity of infection was 1.93 (CI 95% 1.66-2.20). Age correlated with parasite density (P = 0.017). In addition, a positive correlation was observed between parasite densities and the number of alleles (P = 0.022). CONCLUSION Genetic diversity in P. falciparum field isolates in central Sudan was high and consisted of multiple clones.
Collapse
Affiliation(s)
- Muzamil M Abdel Hamid
- Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | | |
Collapse
|
9
|
Geiger C, Agustar HK, Compaoré G, Coulibaly B, Sié A, Becher H, Lanzer M, Jänisch T. Declining malaria parasite prevalence and trends of asymptomatic parasitaemia in a seasonal transmission setting in North-Western Burkina Faso between 2000 and 2009-2012. Malar J 2013; 12:27. [PMID: 23339523 PMCID: PMC3639197 DOI: 10.1186/1475-2875-12-27] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/14/2013] [Indexed: 11/24/2022] Open
Abstract
Background Malaria transmission was reported to have declined in some East African countries. However, a comparable trend has not been confirmed for West Africa. This study aims to assess the dynamics of parasite prevalence and malaria species distribution over time in an area of highly seasonal transmission in Burkina Faso. The aim was also to compare frequency of asymptomatic parasitaemia between wet and dry season by parasite density status and age group. Methods During the years 2009–2012, six cross-sectional studies were performed in the rural village Bourasso in the Nouna Health District in north-west Burkina Faso. In subsequent rainy and dry seasons blood samples were collected to assess the parasite prevalence, species, density and clinical parameters. In total, 1,767 children and adults were examined and compared to a baseline collected in 2000. Results The microscopical parasite prevalence (mainly P. falciparum) measured over the rainy seasons decreased significantly from 78.9% (2000) to 58.4%, 55.9% and 49.3%, respectively (2009–2011; p <0.001). The frequency of Plasmodium malariae infections (mono- and co-infections) decreased parallel to the overall parasite prevalence from 13.4% in 2000 to 2.1%, 4.1% and 4.7% in 2009–2011 (p <0.001). Comparing parasite-positive subjects from the rainy season versus dry season, the risk of fever was significantly reduced in the dry season adjusting for parasite density (grouped) and age group. Conclusions The results of this study suggest a decline of malaria transmission over the rainy seasons between 2000 and 2009–2011 in the region of Nouna, Burkina Faso. The decreased transmission intensity was associated with lower prevalence of P. malariae infections (both mono-infections and co-infections). Asymptomatic parasitaemia was more frequent in the dry season even adjusting for parasite density and age group in a multivariate regression. Possible reasons for this observation include the existence of less pathogenic Plasmodium falciparum genotypes prevailing in the dry season, or the effect of a reduced incidence density during the dry season.
Collapse
Affiliation(s)
- Carolin Geiger
- Department for Infectious Diseases, Parasitology, University Hospital Heidelberg, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Genotipificación de Plasmodium falciparum por PCR múltiple por medio de los genes msp1, msp2 y glurp, en cuatro localidades de Colombia. BIOMÉDICA 2011. [DOI: 10.7705/biomedica.v30i4.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Beck HP, Blake D, Dardé ML, Felger I, Pedraza-Díaz S, Regidor-Cerrillo J, Gómez-Bautista M, Ortega-Mora LM, Putignani L, Shiels B, Tait A, Weir W. Molecular approaches to diversity of populations of apicomplexan parasites. Int J Parasitol 2009; 39:175-89. [PMID: 18983997 DOI: 10.1016/j.ijpara.2008.10.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/14/2008] [Accepted: 10/14/2008] [Indexed: 11/30/2022]
Affiliation(s)
- Hans-Peter Beck
- Swiss Tropical Institute, Socinstrasse 57, CH 4002 Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
McKenzie FE, Smith DL, O'Meara WP, Riley EM. Strain theory of malaria: the first 50 years. ADVANCES IN PARASITOLOGY 2008; 66:1-46. [PMID: 18486688 PMCID: PMC2483841 DOI: 10.1016/s0065-308x(08)00201-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
From the 1920s to the 1970s, a large body of principles and evidence accumulated about the existence and character of 'strains' among the Plasmodium species responsible for human malaria. An extensive research literature examined the degree to which strains were autonomous, stable biological entities, distinguishable by clinical, epidemiological or other features, and how this knowledge could be used to benefit medical and public health practice. Strain theory in this era was based largely on parasite phenotypes related to clinical virulence, reactions to anti-malarial drugs, infectivity to mosquitoes, antigenic properties and host immunity, latency and relapse. Here we review the search for a definition of 'strain', suggest how the data and discussion shaped current understandings of many aspects of malaria and sketch a number of specific connections with perspectives from the past 30 years.
Collapse
Affiliation(s)
- F Ellis McKenzie
- Fogarty International Center, Building 16, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
13
|
El-Sayed B, El-Zaki SE, Babiker H, Gadalla N, Ageep T, Mansour F, Baraka O, Milligan P, Babiker A. A randomized open-label trial of artesunate- sulfadoxine-pyrimethamine with or without primaquine for elimination of sub-microscopic P. falciparum parasitaemia and gametocyte carriage in eastern Sudan. PLoS One 2007; 2:e1311. [PMID: 18074034 PMCID: PMC2111052 DOI: 10.1371/journal.pone.0001311] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In areas of seasonal malaria transmission, treatment of asymptomatic carriers of malaria parasites, whose parasitaemia persists at low densities throughout the dry season, could be a useful strategy for malaria control. We carried out a randomized trial to compare two drug regimens for clearance of parasitaemia in order to identify the optimum regimen for use in mass drug administration in the dry season. METHODOLOGY AND PRINCIPAL FINDINGS A two-arm open-label randomized controlled trial was conducted during the dry season in an area of distinct seasonal malaria in two villages in Gedarif State in eastern Sudan. Participants were asymptomatic adults and children aged over 6 months, with low-density P. falciparum infection detected by PCR. Participants were randomized to receive artesunate/sulfadoxine-pyrimethamine (AS+SP) combination for three days with or without a dose of primaquine (PQ) on the fourth day. Parasitaemia detected by PCR on days 3, 7 and 14 after the start of treatment and gametocytes detected by RT-PCR on days 7 and 14 were then recorded. 104 individuals who had low density parasitaemia at screening were randomized and treated during the dry season. On day 7, 8.3% were positive by PCR in the AS+SP+PQ group and 6.5% in the AS+SP group (risk difference 1.8%, 95%CI -10.3% to +13.8%). At enrolment, 12% (12/100) were carrying gametocytes. This was reduced to 6.4% and 4.4% by day 14 (Risk difference 1.9% (95%CI -9.3% to +13.2%) in AS+SP+PQ and AS+SP groups, respectively. CONCLUSION Addition of primaquine to artemisinin combination treatment did not improve elimination of parasitaemia and prevention of gametocyte carriage in carriers with low-density parasitaemia in the dry season. TRIAL REGISTRATION ClinicalTrials.gov NCT00330902.
Collapse
Affiliation(s)
- Badria El-Sayed
- Department of Epidemiology, Tropical Medicine Research Institute, National Centre for Research, Khartoum, Sudan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wargo AR, Huijben S, de Roode JC, Shepherd J, Read AF. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model. Proc Natl Acad Sci U S A 2007; 104:19914-9. [PMID: 18056635 PMCID: PMC2148397 DOI: 10.1073/pnas.0707766104] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Indexed: 11/18/2022] Open
Abstract
Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance.
Collapse
Affiliation(s)
- Andrew R Wargo
- Institutes of Evolutionary Biology and Immunology and Infection Research, Ashworth Laboratories, School of Biological Science, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom.
| | | | | | | | | |
Collapse
|
15
|
Vardo AM, Schall JJ. Clonal diversity of a lizard malaria parasite, Plasmodium mexicanum, in its vertebrate host, the western fence lizard: role of variation in transmission intensity over time and space. Mol Ecol 2007; 16:2712-20. [PMID: 17594442 DOI: 10.1111/j.1365-294x.2007.03355.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Within the vertebrate host, infections of a malaria parasite (Plasmodium) could include a single genotype of cells (single-clone infections) or two to several genotypes (multiclone infections). Clonal diversity of infection plays an important role in the biology of the parasite, including its life history, virulence, and transmission. We determined the clonal diversity of Plasmodium mexicanum, a lizard malaria parasite at a study region in northern California, using variable microsatellite markers, the first such study for any malaria parasite of lizards or birds (the most common hosts for Plasmodium species). Multiclonal infections are common (50-88% of infections among samples), and measures of genetic diversity for the metapopulation (expected heterozygosity, number of alleles per locus, allele length variation, and effective population size) all indicated a substantial overall genetic diversity. Comparing years with high prevalence (1996-1998 = 25-32% lizards infected), and years with low prevalence (2001-2005 = 6-12%) found fewer alleles in samples taken from the low-prevalence years, but no reduction in overall diversity (H = 0.64-0.90 among loci). In most cases, rare alleles appeared to be lost as prevalence declined. For sites chronically experiencing low transmission intensity (prevalence approximately 1%), overall diversity was also high (H = 0.79-0.91), but there were fewer multiclonal infections. Theory predicts an apparent excess in expected heterozygosity follows a genetic bottleneck. Evidence for such a distortion in genetic diversity was observed after the drop in parasite prevalence under the infinite alleles mutation model but not for the stepwise mutation model. The results are similar to those reported for the human malaria parasite, Plasmodium falciparum, worldwide, and support the conclusion that malaria parasites maintain high genetic diversity in host populations despite the potential for loss in alleles during the transmission cycle or during periods/locations when transmission intensity is low.
Collapse
Affiliation(s)
- A M Vardo
- Department of Biology, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
16
|
Shekalaghe SA, Bousema JT, Kunei KK, Lushino P, Masokoto A, Wolters LR, Mwakalinga S, Mosha FW, Sauerwein RW, Drakeley CJ. Submicroscopic Plasmodium falciparum gametocyte carriage is common in an area of low and seasonal transmission in Tanzania. Trop Med Int Health 2007; 12:547-53. [PMID: 17445146 DOI: 10.1111/j.1365-3156.2007.01821.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Recently developed molecular gametocyte detection techniques have shown that submicroscopic Plasmodium falciparum gametocytes are common in symptomatic patients and can infect mosquitoes. The relevance for the infectious reservoir of malaria in the general population remains unknown. In this study, we investigated submicroscopic asexual parasitaemia and gametocytaemia in inhabitants of an area of hypoendemic and seasonal malaria in Tanzania. METHODS Two cross-sectional malariometric surveys were conducted in the dry and wet seasons of 2005 in villages in lower Moshi, Tanzania. Finger prick blood samples were taken to determine the prevalence of P. falciparum parasites by microscopy, rapid diagnostic test and real-time nucleic acid sequence-based amplification (QT-NASBA). RESULTS 2752 individuals participated in the surveys, of whom 1.9% (51/2721) had microscopically confirmed asexual parasites and 0.4% (10/2721) had gametocytes. In contrast, QT-NASBA revealed that 32.5% (147/453) of the individuals harboured asexual parasites and 15.0% (68/453) had gametocytes. No age dependency or seasonality was observed in submicroscopic parasite carriage. DISCUSSION Molecular detection techniques reveal that carriage of submicroscopic asexual parasite and gametocyte densities is relatively common in this low transmission area. Submicroscopic gametocytaemia is likely to be responsible for maintaining malarial transmission in the study area.
Collapse
Affiliation(s)
- Seif A Shekalaghe
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dubey ML, Malla N, Mahajan RC. Plasmodium falciparum: Polymorphism in the MSP-1 gene in Indian isolates and predominance of certain alleles in cerebral malaria. Exp Parasitol 2006; 112:139-43. [PMID: 16300763 DOI: 10.1016/j.exppara.2005.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 10/07/2005] [Accepted: 10/08/2005] [Indexed: 11/22/2022]
Abstract
Polymorphism in the block-2 region of merozoite surface protein-1 gene in 69 North Indian Plasmodium falciparum isolates was studied by PCR and RFLP using Dra-1 endonuclease. On the basis of molecular weight of the PCR products, considerable size polymorphism in target gene was seen and 69 isolates were classified into five allelic types. On RFLP, the isolates in three allelic types were further divided into two sub-allelic types each and thus eight genetic types could be identified. Interestingly, all five allelic types were identified in 47 isolates from uncomplicated (non-cerebral) malaria patients while only two allelic types (Type 2 and 3) were seen amongst 22 isolates from cerebral malaria patients. Furthermore, on RFLP, one subtype (2A) was predominantly seen in cerebral malaria patients and one subtype (3A) was exclusively found in cerebral malaria patients. These observations suggest that a few, comparatively more virulent isolates prevalent in an area may cause severe disease (cerebral malaria) which can be identified by molecular techniques like PCR-RFLP.
Collapse
|
18
|
Wargo AR, Randle N, Chan BHK, Thompson J, Read AF, Babiker HA. Plasmodium chabaudi: reverse transcription PCR for the detection and quantification of transmission stage malaria parasites. Exp Parasitol 2005; 112:13-20. [PMID: 16256988 DOI: 10.1016/j.exppara.2005.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 11/28/2022]
Abstract
We have developed two reverse transcription polymerase chain reaction (RT-PCR) techniques to detect and quantify the transmission stages (gametocytes) of Plasmodium chabaudi malaria parasites. Both the qualitative and quantitative techniques are based on the amplification of mRNA coding for the P. chabaudi protein Pcs230, which is expressed exclusively in gametocytes. The quantitative RT-PCR (qRT-PCR) technique was developed and validated by examining serial dilutions of known gametocyte densities. The method generated a high correlation between calibration curves of blind samples (R(2)=0.86). The technique was found to be specific, reproducible, and time efficient for quantification of both patent and sub-patent gametocytemia with a sensitivity level 100-1000 times greater than microscopy. The qualitative RT-PCR (RT-PCR) technique was used to monitor the persistence and dynamics of P. chabaudi gametocytes following acute infection. Mice in two independent experiments were sampled for up to 87 days post-infection. RT-PCR showed that gametocytes can persist for up to 8 weeks, post-infection, whereas microscopy could only detect gametocytes up to 6 weeks. Potential applications of the above techniques for studying the ecology, evolution, and epidemiology of malaria transmission are discussed.
Collapse
Affiliation(s)
- Andrew R Wargo
- Institutes of Evolution, Immunology and Infection Research, Ashworth Laboratories, School of Biological Science, University of Edinburgh, The Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | |
Collapse
|
19
|
Babiker HA, Satti G, Ferguson H, Bayoumi R, Walliker D. Drug resistant Plasmodium falciparum in an area of seasonal transmission. Acta Trop 2005; 94:260-8. [PMID: 15857801 DOI: 10.1016/j.actatropica.2005.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Eastern Sudan lies at the edge of the malaria endemicity stratum, where transmission intensity is low and seasonal. The main malaria parasite in the region, Plasmodium falciparum, survives the long dry and transmission-free season as asymptomatic sub-patent infections, and resurges following annual rains. The short-lived annual transmission in this area precipitates cyclical malaria epidemics among the semi-immune inhabitants who resort to excessive anti-malarial drugs usage at this time of the year. Chloroquine resistance (CQR) first emerged in this area in the mid 1980s; however, subsequent surveys demonstrated that the rate of parasitological failure to CQ remained stable over a period of 8 years (1986-1993). Nevertheless, the CQR level varied between years in association with the amount of annual rain. Detailed molecular surveys revealed significant temporal fluctuations in the frequency of resistant P. falciparum genotypes, increasing during the dry season but dwindling at the start of the next transmission season. The pattern of spread of drug resistance in the area is discussed in the context of parasite biology and malaria epidemiology of this region.
Collapse
Affiliation(s)
- Hamza A Babiker
- School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, Scotland, UK.
| | | | | | | | | |
Collapse
|
20
|
Abstract
The main factors affecting the evolution of drug resistance in malaria according to theoretical models are reviewed here. The overwhelming influence on the emergence and rate of spread of drug resistance is the proportion of infected hosts that are treated with drugs. A second important effect is drug efficacy in killing parasites. Factors such as average transmission rate, recombination, the biological cost of resistance, and the mode of gene action also influence the rate of spread but have relatively minor impacts. A simple population dynamics model that captures the epidemiological effects of drug treatment and resistance, as opposed to a population genetics model that does not, is presented in order to illustrate the main conclusions.
Collapse
Affiliation(s)
- M J Mackinnon
- School of Biological Sciences, University of Edinburgh, West Mains Rd., Edinburgh EH9 3JT, UK.
| |
Collapse
|
21
|
Bruce MC, Day KP. Cross-species regulation of Plasmodium parasitemia in semi-immune children from Papua New Guinea. Trends Parasitol 2003; 19:271-7. [PMID: 12798085 DOI: 10.1016/s1471-4922(03)00116-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Malariologists have long been fascinated by the question of whether Plasmodium spp. interact in the human host. The first genetic study of the longitudinal dynamics of multiple Plasmodium spp. and genotypes in humans has been completed in Papua New Guinea, where all four Plasmodium spp. that infect humans are present. The broad implications of the data from this study are covered here and they show that the total parasite density of Plasmodium species oscillates around a threshold and that peaks of infection with each species do not coincide. It is proposed that malaria parasitemia is controlled in a density-dependent manner in these semi-immune children and that a cross-species mechanism of parasite regulation exists. A model of how multiple immune responses could act in concert to explain these within-host dynamics are discussed here in relation to observed epidemiological patterns of mixed-species infections.
Collapse
Affiliation(s)
- Marian C Bruce
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | |
Collapse
|
22
|
Abstract
Longitudinal genetic analysis of the composition of malaria parasites infecting humans has demonstrated that individuals living in endemic areas are chronically infected with multiple genotypes and species of Plasmodium. The accumulation of infections is a consequence of superinfection from the bites of many infected anopheline mosquitoes. The clinical outcome of infection is determined by the host's ability to regulate the density of malaria parasites in the blood. Interestingly, most infections do not cause symptoms of malarial disease after a degree of immunity is acquired. Here, we review data from the first genetic study of the longitudinal dynamics of multiple Plasmodium species and genotypes in humans. The data show that the total parasite density of Plasmodium species oscillates around a threshold and that peaks of infection with each species do not coincide. We propose that malaria parasitaemia is controlled in a density-dependent manner in these semi-immune children. This implies that a cross-species mechanism of parasite regulation exists. A model of how multiple immune responses could act in concert to explain these within host dynamics is discussed in relation to known regulatory mechanisms.
Collapse
Affiliation(s)
- Marian C Bruce
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, G12 8QQ, Glasgow, UK.
| | | |
Collapse
|
23
|
Hamad AA, Nugud AEHD, Arnot DE, Giha HA, Abdel-Muhsin AMA, Satti GMH, Theander TG, Creasey AM, Babiker HA, Elnaiem DEA. A marked seasonality of malaria transmission in two rural sites in eastern Sudan. Acta Trop 2002; 83:71-82. [PMID: 12062795 DOI: 10.1016/s0001-706x(02)00059-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ecology of Anopheles arabiensis and its relationship to malaria transmission was investigated in two villages in eastern Sudan. Seasonal malaria case incidence was compared with the number of vectors detected and with climatic variables. Following the end of the short rainy season in October the number of A. arabiensis detected dropped gradually until February when neither outdoor human bait trapping nor indoor spray catches revealed any mosquitoes. Vectors re-appeared in June as humidity rose with the onset of rain. Despite the apparent absence of the vector at the height of the long, hot dry season between February and May, sporadic asymptomatic malaria infections were detected in the two villages. The low endemicity of malaria in the area was reflected by the relatively low total September-December parasite and sporozoite rates (15 and 1.4%, respectively) measured in the villages. The entomological inoculation rate (EIR) was estimated to be around two to three infective bites per person per year, although heterogeneity in the transmission indices of malaria between the two villages was observed. The implications of these patterns of anopheline population dynamics for the epidemiology and control of malaria in eastern Sudan are considered.
Collapse
Affiliation(s)
- Amel A Hamad
- Malaria Research Unit, National Health Laboratory, Ministry of Health, PO Box 287, Khartoum, Sudan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Branch OH, Takala S, Kariuki S, Nahlen BL, Kolczak M, Hawley W, Lal AA. Plasmodium falciparum genotypes, low complexity of infection, and resistance to subsequent malaria in participants in the Asembo Bay Cohort Project. Infect Immun 2001; 69:7783-92. [PMID: 11705960 PMCID: PMC98874 DOI: 10.1128/iai.69.12.7783-7792.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess the relationship between the within-host diversity of malaria infections and the susceptibility of the host to subsequent infection, we genotyped 60 children's successive infections from birth through 3 years of life. MSP-1 Block2 genotypes were used to estimate the complexity of infection (COI). Malaria transmission and age were positively associated with the number of K1 and Mad20 alleles detected (COI(KM)) (P < 0.003). Controlling for previous parasitemia, transmission, drug treatment, parasite density, sickle cell, and age, COI(KM) was negatively correlated with resistance to parasitemia of > 500/microl (P < 0.0001). Parasitemias with the RO-genotype were more resistant than those without this genotype (P < 0.0000). The resistance in low COI(KM) infections was not genotype specific. We discuss the impact of genotype-transcending immunity to conserved antigenic determinants. We also propose a diversity-driven immunomodulation hypothesis that may explain the delayed development of natural immunity in the first few years of life and suggest that interventions that decrease the COI(KM) could facilitate the development of protective immunity.
Collapse
Affiliation(s)
- O H Branch
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Olivier C, van de Pas S, Lepp PW, Yoder K, Relman DA. Sequence variability in the first internal transcribed spacer region within and among Cyclospora species is consistent with polyparasitism. Int J Parasitol 2001; 31:1475-87. [PMID: 11595235 DOI: 10.1016/s0020-7519(01)00283-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclospora cayetanensis is a coccidian parasite which causes severe gastroenteritis in humans. Molecular information on this newly emerging pathogen is scarce. Our objectives were to assess genetic variation within and between human-associated C. cayetanensis and baboon-associated Cyclospora papionis by examining the internal transcribed spacer (ITS) region of the ribosomal RNA operon, and to develop an efficient polymerase chain reaction- (PCR)-based method to distinguish C. cayetanensis from other closely related organisms. For these purposes, we studied C. cayetanensis ITS-1 nucleotide variability in 24 human faecal samples from five geographic locations and C. papionis ITS-1 variability in four baboon faecal samples from Tanzania. In addition, a continuous sequence encompassing ITS-1, 5.8S rDNA and ITS-2 was determined from two C. cayetanensis samples. The results indicate that C. cayetanensis and C. papionis have distinct ITS-1 sequences, but identical 5.8S rDNA sequences. ITS-1 is highly variable within and between samples, but variability does not correlate with geographic origin of the samples. Despite this variability, conserved species-specific ITS-1 sequences were identified and a single-round, C. cayetanensis-specific PCR-based assay with a sensitivity of one to ten oocysts was developed. This consistent and remarkable diversity among Cyclospora spp. ITS-1 sequences argues for polyparasitism and simultaneous transmission of multiple strains.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cyclospora/chemistry
- Cyclospora/classification
- Cyclospora/genetics
- Cyclosporiasis/parasitology
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Genetic Variation
- Humans
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction/methods
- RNA, Ribosomal, 5.8S/genetics
- Sequence Homology, Nucleic Acid
- Species Specificity
- rRNA Operon/genetics
Collapse
Affiliation(s)
- C Olivier
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
26
|
Mockenhaupt FP, Eggelte TA, Till H, Bienzle U. Plasmodium falciparum pfcrt and pfmdr1 polymorphisms are associated with the pfdhfr N108 pyrimethamine-resistance mutation in isolates from Ghana. Trop Med Int Health 2001; 6:749-55. [PMID: 11679121 DOI: 10.1046/j.1365-3156.2001.00792.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Plasmodium falciparum chloroquine resistance transporter gene (pfcrt) T76 and multidrug resistance gene analogue (pfmdr1) Y86 mutations are associated with chloroquine(CQ)-resistance. In isolates from 172 pregnant women living in the area of Agogo, Ghana, pfcrt T76 was detected in 69% and pfmdr1 Y86 in 66%. Pfcrt T76 but not pfmdr1 Y86 was more prevalent in samples from women with residual CQ in urine or serum. Parasite densities and multiplicity of infection of pfmdr wild type but not of resistant isolates were reduced by CQ. Adjusted for CQ and pyrimethamine (PYR) in urine, the P. falciparum dihydrofolate reductase (pfdhfr) N108 mutation which confers PYR-resistance was 3.1 and 3 times, respectively, more likely to be detected in isolates containing pfcrt and pfmdr1 mutations than in those comprising wild type alleles. Pfcrt, pfmdr, and pfdhfr mutations are frequent in P. falciparum from this part of Ghana which may limit the choice of drugs for the prevention of malaria in pregnancy. The association of CQ- and PYR-resistance mutations independent of recent drug use could indicate accelerated development of resistance to structurally unrelated drugs. Alternatively, it may reflect selection of resistance in persisting infections due to no longer detectable drug pressure.
Collapse
Affiliation(s)
- F P Mockenhaupt
- Institut für Tropenmedizin, Medizinische Fakultät Charité, Humboldt Universität zu Berlin, Germany.
| | | | | | | |
Collapse
|
27
|
Mockenhaupt FP, May J, Bergqvist Y, Meyer CG, Falusi AG, Bienzle U. Evidence for a reduced effect of chloroquine against Plasmodium falciparum in alpha-thalassaemic children. Trop Med Int Health 2001; 6:102-7. [PMID: 11251905 DOI: 10.1046/j.1365-3156.2001.00688.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alpha-thalassaemia is common in malaria-endemic regions and is considered to confer protection from clinical disease due to infection with Plasmodium falciparum. In vitro, sensitivity to chloroquine (CQ) of P. falciparum infecting alpha-thalassaemic erythrocytes is reduced. We examined, in a cross-sectional study of 405 Nigerian children, associations between alpha-globin genotypes, blood concentrations of CQ, and P. falciparum parasitaemia. Of the children, 44% were alpha+-thalassaemic (36.8% heterozygous, 7.6% homozygous). CQ in blood and P. falciparum-infection were observed in 52 and 80%, respectively. CQ was more frequently found in homozygous alpha+-thalassaemic (71%) than in non-thalassaemic children (50%; odds ratio, 2.42; 95% confidence interval, 1.01-5.8). Among children with CQ in blood and despite similar drug concentrations, alpha+-thalassaemic individuals had fewer infections below the threshold of microscopy which were detectable by PCR only, and they had a higher prevalence of elevated parasitaemia than non-thalassaemic children. No such differences were discernible among drug-free children. CQ displays a lowered efficacy in the suppression of P. falciparum parasitaemia in alpha+-thalassaemic children; hence protection against malaria due to alpha+-thalassaemia may be obscured in areas of intense CQ usage. Moreover, alpha+-thalassaemia may contribute to the expansion of CQ resistance.
Collapse
Affiliation(s)
- F P Mockenhaupt
- Institute of Tropical Medicine and Medical Faculty Charité, Humboldt-University Berlin, Germany.
| | | | | | | | | | | |
Collapse
|