1
|
Nickel K, Perlov E, Reisert M, Runge K, Friedel E, Denzel D, Ebert D, Endres D, Domschke K, Tebartz van Elst L, Maier S. Altered transcallosal fiber count and volume in high-functioning adults with autism spectrum disorder. Psychiatry Res Neuroimaging 2022; 322:111464. [PMID: 35220205 DOI: 10.1016/j.pscychresns.2022.111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
An altered pattern of information processing has been hypothesized in autism spectrum disorder (ASD), characterized by enhanced local network connectivity and reduced long-distance communication. Previous findings of impaired white matter integrity in the genu and the body of the corpus callosum already indicated reduced long-distance connectivity in patients with ASD. However, it remained unclear how this reduced white matter integrity affects the structural connectivity of the corresponding brain areas. To this end, we analyzed magnetic resonance images (MRI) from 30 participants with high-functioning ASD and 30 typically developed individuals using a global tracking approach to estimate the fiber count and volume of the transcallosal fiber tracts of the five corpus callosum subsections. A reduced fiber count and fiber volume in the anterior subsection of the corpus callosum was detected, supporting the hypothesis of reduced long-distance connectivity in ASD.
Collapse
Affiliation(s)
- Kathrin Nickel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Evgeniy Perlov
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Luzerner Psychiatrie, Hospital St. Urban, St. Urban, Switzerland
| | - Marco Reisert
- Department of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Evelyn Friedel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Denzel
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dieter Ebert
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Section for Experimental Neuropsychiatry, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Shiota Y, Matsudaira I, Takeuchi H, Ono C, Tomita H, Kawashima R, Taki Y. The influence of NRXN1 on systemizing and the brain structure in healthy adults. Brain Imaging Behav 2021; 16:692-701. [PMID: 34529206 DOI: 10.1007/s11682-021-00530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
Certain behavioral characteristics of autism spectrum disorder can be found in otherwise healthy people. Individuals with difficulties in social adaptation may have subclinical autistic traits; however, effective biomarkers of these traits have not yet been established. There is a dire need for objective indices of these traits that combine behavior, brain images, and genetic information. In this study, we examined the association among a single nucleotide polymorphism of NRXN1 (rs858932; C/G), autistic traits, and brain structure in 311 healthy adults. We found that carriers of minor alleles (carriers of the G-allele) had significantly higher systemizing scores than major-allele (C-allele) homozygotes. Furthermore, the regional white matter volume in the right anterior limb of the internal capsule was significantly greater in carriers of the G-allele than in C-allele homozygotes. To the best of our knowledge, this is the first report of NRXN1 rs858932 being involved in systemizing and the brain structure of healthy adults. Our findings provide insight into the effects of genetics on autistic traits and their respective neural substrates.
Collapse
Affiliation(s)
- Yuka Shiota
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Izumi Matsudaira
- Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Department of Psychiatry, Tohoku University Hospital, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart-Aging Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Ben-Reuven L, Reiner O. Dynamics of cortical progenitors and production of subcerebral neurons are altered in embryos of a maternal inflammation model for autism. Mol Psychiatry 2021; 26:1535-1550. [PMID: 31740755 DOI: 10.1038/s41380-019-0594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 11/09/2022]
Abstract
The broad impairments in cognitive and neurologic functioning found in Autism Spectrum Disorder (ASD) patients are thought to originate during early prenatal developmental stages. Indeed, postmortem and imaging studies in ASD patients detected white-matter abnormalities, as well as prefrontal and temporal cortex deficits, evident from early childhood. Here, we used Maternal Immune Activation (MIA), a mouse model for ASD, in which the offsprings exhibit Autistic-like behaviors as well as cortical abnormalities. However, the dynamics that influence the number and the identity of newly born cortical neurons following maternal inflammation remains unknown. Our study shows early changes in the duration of the S-phase of PAX6+ progenitors, leading to an increased proportion of neurogenic divisions and a reciprocal decrease in the proliferative divisions. In two different time points of maternal inflammation, MIA resulted in an overproduction of CTIP2+ cortical neurons, which remained overrepresented at the end of gestation and in postnatal mice. Interestingly, MIA-resistant IL6-KO mice did not exhibit these changes. Lastly, we propose that elevated levels of the transcription factor PAX6 following MIA supports the overproduction of CTIP2+ neurons. Taken together, our data reveals a possible link between maternal immune activation and the excess of cortical neurons found in the cortex of ASD patients.
Collapse
Affiliation(s)
- Lihi Ben-Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Role of Oligodendrocytes and Myelin in the Pathophysiology of Autism Spectrum Disorder. Brain Sci 2020; 10:brainsci10120951. [PMID: 33302549 PMCID: PMC7764453 DOI: 10.3390/brainsci10120951] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is an early neurodevelopmental disorder that involves deficits in interpersonal communication, social interaction, and repetitive behaviors. Although ASD pathophysiology is still uncertain, alterations in the abnormal development of the frontal lobe, limbic areas, and putamen generate an imbalance between inhibition and excitation of neuronal activity. Interestingly, recent findings suggest that a disruption in neuronal connectivity is associated with neural alterations in white matter production and myelination in diverse brain regions of patients with ASD. This review is aimed to summarize the most recent evidence that supports the notion that abnormalities in the oligodendrocyte generation and axonal myelination in specific brain regions are involved in the pathophysiology of ASD. Fundamental molecular mediators of these pathological processes are also examined. Determining the role of alterations in oligodendrogenesis and myelination is a fundamental step to understand the pathophysiology of ASD and identify possible therapeutic targets.
Collapse
|
5
|
Yeung MK, Chan AS. Executive function, motivation, and emotion recognition in high-functioning autism spectrum disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 105:103730. [PMID: 32682219 DOI: 10.1016/j.ridd.2020.103730] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Several neurocognitive theories have been put forward to explain autism spectrum disorder (ASD). However, the specificity of executive cognitive, motivational (i.e., reward-related), and emotion-recognition impairments in ASD, and the role of early language delay in these impairments remain largely unclear. AIM This study aimed to examine executive cognitive, motivational, and emotion-recognition functions while considering the potential effect of language delay in ASD. METHODS Twenty-two adolescents with high-functioning ASD (20 males) and 22 typically developing (TD) adolescents (16 males) aged 11-18 years were recruited. Each completed seven computerized tasks measuring executive cognitive (i.e., set-shifting, inhibition, updating, and access/generativity), motivational (i.e., flexible reinforcement learning and affective decision-making), and emotion-recognition functions (i.e., facial emotion recognition). RESULTS We found that ASD participants with early language delay (n = 10) had poorer executive cognitive, motivational, and emotion-recognition functioning than TD controls, and had poorer executive cognitive and motivational functioning than ASD participants without language delay (n = 12). ASD participants without language delay only had poorer emotion recognition than TD controls. CONCLUSION AND IMPLICATIONS These preliminary findings suggest impairments in executive cognitive and motivational functions as well as emotion recognition in ASD with language delay, and impairment only in emotion recognition in ASD without language delay. They implicate a potential partial distinction in mental abilities between ASD with and without early language delay, highlighting the importance of considering language delay when evaluating executive cognitive and motivational functions in ASD.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Chanwuyi Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Ahtam B, Braeutigam S, Bailey A. Semantic Processing in Autism Spectrum Disorders Is Associated With the Timing of Language Acquisition: A Magnetoencephalographic Study. Front Hum Neurosci 2020; 14:267. [PMID: 32754020 PMCID: PMC7366733 DOI: 10.3389/fnhum.2020.00267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
Individuals with autism show difficulties in using sentence context to identify the correct meaning of ambiguous words, such as homonyms. In this study, the brain basis of sentence context effects on word understanding during reading was examined in autism spectrum disorder (ASD) and typical development (TD) using magnetoencephalography. The correlates of a history of developmental language delay in ASD were also investigated. Event related field responses at early (150 ms after the onset of a final word) and N400 latencies are reported for three different types of sentence final words: dominant homonyms, subordinate homonyms, and unambiguous words. Clear evidence for semantic access was found at both early and conventional N400 latencies in both TD participants and individuals with ASD with no history of language delay. By contrast, modulation of evoked activity related to semantic access was weak and not significant at early latencies in individuals with ASD with a history of language delay. The reduced sensitivity to semantic context in individuals with ASD and language delay was accompanied by strong right hemisphere lateralization at early and N400 latencies; such strong activity was not observed in TD individuals and individuals with ASD without a history of language delay at either latency. These results provide new evidence and support for differential neural mechanisms underlying semantic processing in ASD, and indicate that delayed language acquisition in ASD is associated with different lateralization and processing of language.
Collapse
Affiliation(s)
- Banu Ahtam
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Department of Pediatrics, Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Anthony Bailey
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Abstract
The current diagnostic practices are linked to a 20-fold increase in the reported prevalence of ASD over the last 30 years. Fragmenting the autism phenotype into dimensional "autistic traits" results in the alleged recognition of autism-like symptoms in any psychiatric or neurodevelopemental condition and in individuals decreasingly distant from the typical population, and prematurely dismisses the relevance of a diagnostic threshold. Non-specific socio-communicative and repetitive DSM 5 criteria, combined with four quantitative specifiers as well as all their possible combinations, render limitless variety of presentations consistent with the categorical diagnosis of ASD. We propose several remedies to this problem: maintain a line of research on prototypical autism; limit the heterogeneity compatible with a categorical diagnosis to situations with a phenotypic overlap and a validated etiological link with prototypical autism; reintroduce the qualitative properties of autism presentations and of current dimensional specifiers, language, intelligence, comorbidity, and severity in the criteria used to diagnose autism in replacement of quantitative "social" and "repetitive" criteria; use these qualitative features combined with the clinical intuition of experts and machine-learning algorithms to differentiate coherent subgroups in today's autism spectrum; study these subgroups separately, and then compare them; and question the autistic nature of "autistic traits".
Collapse
|
8
|
Wang S, Tan N, Zhu X, Yao M, Wang Y, Zhang X, Xu Z. Sh3rf2 Haploinsufficiency Leads to Unilateral Neuronal Development Deficits and Autistic-Like Behaviors in Mice. Cell Rep 2019; 25:2963-2971.e6. [PMID: 30540932 DOI: 10.1016/j.celrep.2018.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/20/2018] [Accepted: 11/09/2018] [Indexed: 11/15/2022] Open
Abstract
Autism spectrum disorders (ASDs) include a variety of developmental brain disorders with clinical findings implicating the dysfunction of the left hemisphere. Here, we generate mice lacking one copy of Sh3rf2, which was detected in ASD patients, to determine whether Sh3rf2 is involved in brain development and whether mutation of SH3RF2 is causative for ASD and the mechanisms linking it to ASD traits. We find that mice with Sh3rf2 haploinsufficiency display significant deficits in social interaction and communication, as well as stereotyped or repetitive behaviors and hyperactivity and seizures. Disturbances in hippocampal dendritic spine development, aberrant composition of glutamatergic receptor subunits, and abnormal excitatory synaptic transmission were detected in heterozygous mutants. Remarkably, these defects are selectively unilateral. Our results support a notion that Sh3rf2 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis most likely resulting from deficits in synaptic function in the left hemisphere of the brain.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ningdong Tan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xingliang Zhu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Minghui Yao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China.
| |
Collapse
|
9
|
Mitelman SA. Transdiagnostic neuroimaging in psychiatry: A review. Psychiatry Res 2019; 277:23-38. [PMID: 30639090 DOI: 10.1016/j.psychres.2019.01.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023]
Abstract
Transdiagnostic approach has a long history in neuroimaging, predating its recent ascendance as a paradigm for new psychiatric nosology. Various psychiatric disorders have been compared for commonalities and differences in neuroanatomical features and activation patterns, with different aims and rationales. This review covers both structural and functional neuroimaging publications with direct comparison of different psychiatric disorders, including schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorder, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, conduct disorder, anorexia nervosa, and bulimia nervosa. Major findings are systematically presented along with specific rationales for each comparison.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY 11373, USA.
| |
Collapse
|
10
|
Lukito SD, O'Daly OG, Lythgoe DJ, Whitwell S, Debnam A, Murphy CM, Ashwood K, Stoencheva V, Simonoff E, Rubia K. Neural Correlates of Duration Discrimination in Young Adults with Autism Spectrum Disorder, Attention-Deficit/Hyperactivity Disorder and Their Comorbid Presentation. Front Psychiatry 2018; 9:569. [PMID: 30487760 PMCID: PMC6246684 DOI: 10.3389/fpsyt.2018.00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) often co-occur and share neurocognitive deficits. One such shared impairment is in duration discrimination. However, no studies using functional magnetic resonance imaging (fMRI) have investigated whether these duration discrimination deficits are underpinned by the same or different underlying neurofunctional processes. In this study, we used fMRI to compare the neurofunctional correlates of duration discrimination between young adult males with ASD (n = 23), ADHD (n = 25), the comorbid condition of ASD+ADHD (n = 24), and typical development (TD, n = 26) using both region of interest (ROI) and whole brain analyses. Both the ROI and the whole-brain analyses showed that the comorbid ASD+ADHD group compared to controls, and for the ROI analysis relative to the other patient groups, had significant under-activation in right inferior frontal cortex (IFG) a key region for duration discrimination that is typically under-activated in boys with ADHD. The findings show that in young adult males with pure ASD, pure ADHD and comorbid ASD+ADHD with no intellectual disability, only the comorbid group demonstrates neurofunctional deficits in a typical duration discrimination region.
Collapse
Affiliation(s)
- Steve D. Lukito
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Owen G. O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - David J. Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Susannah Whitwell
- The Adult Attention-Deficit Hyperactivity Disorder National Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Amanda Debnam
- The Adult Attention-Deficit Hyperactivity Disorder National Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Clodagh M. Murphy
- The Adult Attention-Deficit Hyperactivity Disorder National Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Karen Ashwood
- The Adult Attention-Deficit Hyperactivity Disorder National Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Vladimira Stoencheva
- The Adult Attention-Deficit Hyperactivity Disorder National Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Andrews DS, Marquand A, Ecker C, McAlonan G. Using Pattern Classification to Identify Brain Imaging Markers in Autism Spectrum Disorder. Curr Top Behav Neurosci 2018; 40:413-436. [PMID: 29626339 DOI: 10.1007/7854_2018_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, as well as repetitive and restrictive behaviours. The etiological and phenotypic complexity of ASD has so far hindered the development of clinically useful biomarkers for the condition. Neuroimaging studies have been valuable in establishing a biological basis for ASD. Increasingly, neuroimaging has been combined with 'machine learning'-based pattern classification methods to make individual diagnostic predictions. Moving forward, the hope is that these techniques may not only facilitate the diagnostic process but may also aid in fractionating the ASD phenotype into more biologically homogeneous sub-groups, with defined pathophysiology, predictable outcomes and/or responses to targeted treatments and/or interventions. This review chapter will first introduce 'machine learning' and pattern recognition methods in general, with a focus on their application to diagnostic classification. It will highlight why such approaches to biomarker discovery may have advantages over more conventional analytical methods. Magnetic resonance imaging (MRI) findings of atypical brain structure, function and connectivity in ASD will be briefly reviewed before we describe how pattern recognition has been applied to generate predictive models for ASD. Last, we will discuss some limitations and pitfalls of pattern recognition analyses in ASD and consider how the field can advance beyond the prediction of binary outcomes.
Collapse
Affiliation(s)
- Derek Sayre Andrews
- The Medical Investigation of Neurodevelopmental Disorders (MIND) Institute and Department of Psychiatry and Behavioural Sciences, UC Davis School of Medicine, University of California Davis, Sacramento, CA, USA.,Department of Forensic and Neurodevelopmental Sciences, The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andre Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.,Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Universitätsklinikum Frankfurt am Main, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
12
|
Abstract
Asperger syndrome (AS) is a subtype of Autism Spectrum Disorder (ASD) characterized by major problems in social and nonverbal communication, together with limited and repetitive forms of behavior and interests. The linguistic and cognitive development in AS is preserved which help us to differentiate it from other subtypes of ASD. However, significant effects of AS on cognitive abilities and brain functions still need to be researched. Although a clear cut pathology for Asperger has not been identified yet, recent studies have largely focused on brain imaging techniques to investigate AS. In this regard, we carried out a systematic review on behavioral, cognitive, and neural markers (specifically using MRI and fMRI) studies on AS. In this paper, behavior, motor skills and language capabilities of individuals with Asperger are compared to those in healthy controls. In addition, common findings across MRI and fMRI based studies associated with behavior and cognitive disabilities are highlighted.
Collapse
Affiliation(s)
- Farnaz Faridi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
13
|
Bravo F, Cross I, Hawkins S, Gonzalez N, Docampo J, Bruno C, Stamatakis EA. Neural mechanisms underlying valence inferences to sound: The role of the right angular gyrus. Neuropsychologia 2017; 102:144-162. [PMID: 28602997 DOI: 10.1016/j.neuropsychologia.2017.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 01/03/2023]
Abstract
We frequently infer others' intentions based on non-verbal auditory cues. Although the brain underpinnings of social cognition have been extensively studied, no empirical work has yet examined the impact of musical structure manipulation on the neural processing of emotional valence during mental state inferences. We used a novel sound-based theory-of-mind paradigm in which participants categorized stimuli of different sensory dissonance level in terms of positive/negative valence. Whilst consistent with previous studies which propose facilitated encoding of consonances, our results demonstrated that distinct levels of consonance/dissonance elicited differential influences on the right angular gyrus, an area implicated in mental state attribution and attention reorienting processes. Functional and effective connectivity analyses further showed that consonances modulated a specific inhibitory interaction from associative memory to mental state attribution substrates. Following evidence suggesting that individuals with autism may process social affective cues differently, we assessed the relationship between participants' task performance and self-reported autistic traits in clinically typical adults. Higher scores on the social cognition scales of the AQ were associated with deficits in recognising positive valence in consonant sound cues. These findings are discussed with respect to Bayesian perspectives on autistic perception, which highlight a functional failure to optimize precision in relation to prior beliefs.
Collapse
Affiliation(s)
- Fernando Bravo
- University of Cambridge, Centre for Music and Science, Cambridge, UK; TU Dresden, Institut für Kunst- und Musikwissenschaft (E.A.R.S.), Dresden, Germany.
| | - Ian Cross
- University of Cambridge, Centre for Music and Science, Cambridge, UK
| | - Sarah Hawkins
- University of Cambridge, Centre for Music and Science, Cambridge, UK
| | - Nadia Gonzalez
- Fundación Científica del Sur Imaging Centre, Buenos Aires, Argentina
| | - Jorge Docampo
- Fundación Científica del Sur Imaging Centre, Buenos Aires, Argentina
| | - Claudio Bruno
- Fundación Científica del Sur Imaging Centre, Buenos Aires, Argentina
| | | |
Collapse
|
14
|
Chovsepian A, Empl L, Correa D, Bareyre FM. Heterotopic Transcallosal Projections Are Present throughout the Mouse Cortex. Front Cell Neurosci 2017; 11:36. [PMID: 28270750 PMCID: PMC5318386 DOI: 10.3389/fncel.2017.00036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/06/2017] [Indexed: 11/13/2022] Open
Abstract
Transcallosal projection neurons are a population of pyramidal excitatory neurons located in layers II/III and to a lesser extent layer V of the cortex. Their axons form the corpus callosum thereby providing an inter-hemispheric connection in the brain. While transcallosal projection neurons have been described in some detail before, it is so far unclear whether they are uniformly organized throughout the cortex or whether different functional regions of the cortex contain distinct adaptations of their transcallosal connectivity. To address this question, we have therefore conducted a systematic analysis of transcallosal projection neurons and their axons across six distinct stereotactic coordinates in the mouse cortex that cover different areas of the motor and somatosensory cortices. Using anterograde and retrograde tracing techniques, we found that in agreement with previous studies, most of the transcallosal projections show a precise homotopic organization. The somata of these neurons are predominantly located in layer II/III and layer V but notably smaller numbers of these cells are also found in layer IV and layer VI. In addition, regional differences in the distribution of their somata and the precision of their projections exist indicating that while transcallosal neurons show a uniform organization throughout the mouse cortex, there is a sizeable fraction of these connections that are heterotopic. Our study thus provides a comprehensive characterization of transcallosal connectivity in different cortical areas that can serve as the basis for further investigations of the establishment of inter-hemispheric projections in development and their alterations in disease.
Collapse
Affiliation(s)
- Alexandra Chovsepian
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München Munich, Germany
| | - Laura Empl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München Munich, Germany
| | - Daphne Correa
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität München Munich, Germany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Ludwig-Maximilians Universität MünchenMunich, Germany; Munich Cluster of System Neurology (SyNergy), Ludwig-Maximilians Universität MünchenMunich, Germany
| |
Collapse
|
15
|
Giuliano A, Saviozzi I, Brambilla P, Muratori F, Retico A, Calderoni S. The effect of age, sex and clinical features on the volume of Corpus Callosum in pre-schoolers with Autism Spectrum Disorder: a case-control study. Eur J Neurosci 2017; 47:568-578. [PMID: 28112456 DOI: 10.1111/ejn.13527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/31/2016] [Accepted: 01/14/2017] [Indexed: 11/30/2022]
Abstract
A growing body of literature has identified volume alterations of the corpus callosum (CC) in subjects with autism spectrum disorders (ASD). However, to date very few investigations have been conducted on pre-school-age ASD children. This study aims to compare the volume of CC and its sub-regions between pre-schoolers with ASD and controls (CON) and to examine their relationship to demographic and clinical variables (sex, age, non-verbal IQ -NVIQ-, expressive non-echolalic language, emotional and behavioural problems, and autism severity). The volume of CC of 40 pre-schoolers with ASD (20 males and 20 females; mean age: 49 ± 12 months; mean NVIQ: 73 ± 22) and 40 sex-, age-, and NVIQ-matched CON subjects (20 M and 20 F; mean age: 49 ± 14 months; mean NVIQ: 73 ± 23) were quantified applying the FreeSurfer automated parcellation software on Magnetic Resonance images. No significant volumetric differences in CC total volume and in its sub-regions between ASD and CON were found using total brain volume as a covariate. Analogously, absence of CC volumetric differences was evident when boys and girls with ASD were compared with their matched controls. The CC total volume of younger ASD male subjects was found significantly larger with respect to matched CON, which is consistent with the atypical growth trajectory widely reported in these young children. The CC total volume was negatively correlated with autism severity, whereas no association between CC volume and other clinical variables was detected. If replicated, the indirect relationship between CC volume and autism severity suggests the involvement of CC in core ASD symptoms.
Collapse
Affiliation(s)
- Alessia Giuliano
- Physics Department, University of Pisa, Pisa, Italy.,Pisa Division, National Institute for Nuclear Physics, Largo Pontecorvo 3, 56127, Pisa, Italy
| | | | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Psychiatric Clinic, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy.,Department of Psychiatry and Behavioural Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Filippo Muratori
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Alessandra Retico
- Pisa Division, National Institute for Nuclear Physics, Largo Pontecorvo 3, 56127, Pisa, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
16
|
D'Mello AM, Moore DM, Crocetti D, Mostofsky SH, Stoodley CJ. Cerebellar gray matter differentiates children with early language delay in autism. Autism Res 2016; 9:1191-1204. [PMID: 27868392 PMCID: PMC11079618 DOI: 10.1002/aur.1622] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/20/2022]
Abstract
Early language delay (ELD) is one of the earliest indicators of autism spectrum disorder (ASD), and predicts later cognitive and behavioral outcomes. We aimed to determine the neural correlates of ELD in autism, and examine the relationships between gray matter (GM), age of first word/phrase, and core ASD symptoms. We used voxel-based morphometry to examine whole-brain differences in GM in 8-13 year old children with autism (n = 13 ELD; n = 22 non-ELD) and 35 age-matched typically developing (TD) children. Multiple regression analyses examined the relationships between GM, age of first word/phrase, and autism diagnostic observation schedule (ADOS) scores. Composite age of first word/phrase negatively correlated with GM throughout the cerebellum. Both ASD groups (ELD and non-ELD) had reduced GM in right cerebellar Crus I/II when compared to TD children. Left cerebellar Crus I/II was the only region in the brain that differentiated ELD and non-ELD children, with ELD children showing reduced GM relative to both non-ELD and TD groups. Group×score interactions converged in left Crus I/II, such that the non-ELD group showed poorer ADOS scores with increasing GM, whereas the ELD group showed poorer ADOS scores as GM decreased. Reduced GM in right cerebellar Crus I/I was related ASD diagnosis, while children with ELD showed additional reduced GM in left Crus I/II. These findings highlight the importance of specific cerebellar networks in both ASD and early language development, and suggest that bilateral disruption in cerebellar regions that interconnect with fronto-parietal networks could impact language acquisition in ASD. Autism Res 2016, 9: 1191-1204. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anila M D'Mello
- Developmental Neuroscience Lab, Department of Psychology, and Center for Behavioral Neuroscience, American University, Washington, DC
| | - Dorothea M Moore
- Developmental Neuroscience Lab, Department of Psychology, and Center for Behavioral Neuroscience, American University, Washington, DC
| | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research (CNIR), Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Catherine J Stoodley
- Developmental Neuroscience Lab, Department of Psychology, and Center for Behavioral Neuroscience, American University, Washington, DC
| |
Collapse
|
17
|
Murphy CM, Wilson CE, Robertson DM, Ecker C, Daly EM, Hammond N, Galanopoulos A, Dud I, Murphy DG, McAlonan GM. Autism spectrum disorder in adults: diagnosis, management, and health services development. Neuropsychiatr Dis Treat 2016; 12:1669-86. [PMID: 27462160 PMCID: PMC4940003 DOI: 10.2147/ndt.s65455] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by pervasive difficulties since early childhood across reciprocal social communication and restricted, repetitive interests and behaviors. Although early ASD research focused primarily on children, there is increasing recognition that ASD is a lifelong neurodevelopmental disorder. However, although health and education services for children with ASD are relatively well established, service provision for adults with ASD is in its infancy. There is a lack of health services research for adults with ASD, including identification of comorbid health difficulties, rigorous treatment trials (pharmacological and psychological), development of new pharmacotherapies, investigation of transition and aging across the lifespan, and consideration of sex differences and the views of people with ASD. This article reviews available evidence regarding the etiology, legislation, diagnosis, management, and service provision for adults with ASD and considers what is needed to support adults with ASD as they age. We conclude that health services research for adults with ASD is urgently warranted. In particular, research is required to better understand the needs of adults with ASD, including health, aging, service development, transition, treatment options across the lifespan, sex, and the views of people with ASD. Additionally, the outcomes of recent international legislative efforts to raise awareness of ASD and service provision for adults with ASD are to be determined. Future research is required to identify high-quality, evidence-based, and cost-effective models of care. Furthermore, future health services research is also required at the beginning and end of adulthood, including improved transition from youth to adult health care and increased understanding of aging and health in older adults with ASD.
Collapse
Affiliation(s)
- Clodagh M Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK
| | - C Ellie Wilson
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK
- Individual Differences, Language and Cognition Lab, Department of Developmental and Educational Psychology, University of Seville, Spain
| | - Dene M Robertson
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK
| | - Christine Ecker
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Eileen M Daly
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK
| | - Neil Hammond
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK
| | - Anastasios Galanopoulos
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK
| | - Iulia Dud
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK
| | - Declan G Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK
| | - Grainne M McAlonan
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, King’s College London, Institute of Psychiatry, Psychology & Neuroscience
- Behavioural and Developmental Psychiatry Clinical Academic Group, Behavioural Genetics Clinic, National Adult Autism Service, South London and Maudsley Foundation NHS Trust, London, UK
| |
Collapse
|
18
|
Jumah F, Ghannam M, Jaber M, Adeeb N, Tubbs RS. Neuroanatomical variation in autism spectrum disorder: A comprehensive review. Clin Anat 2016; 29:454-65. [PMID: 27004599 DOI: 10.1002/ca.22717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 01/27/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by impairments in socialization, communication, and behavior. Many investigators have described the anatomical abnormalities in autistic brains, in an attempt to correlate them with the manifestations of ASD. Herein, we reviewed all the available literature about the neuroanatomical findings in ASD available via "PubMed" and "Google Scholar." References found in review articles were also searched manually. There was substantial discrepancy throughout the literature regarding the reported presence and significance of neuroanatomical findings in ASD, and this is thoroughly discussed in the present review.
Collapse
Affiliation(s)
- Fareed Jumah
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Malik Ghannam
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Mohammad Jaber
- Department of Neuroscience, an-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
19
|
Barahona-Corrêa JB, Filipe CN. A Concise History of Asperger Syndrome: The Short Reign of a Troublesome Diagnosis. Front Psychol 2016; 6:2024. [PMID: 26834663 PMCID: PMC4725185 DOI: 10.3389/fpsyg.2015.02024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
First described in 1944 by Hans Asperger (1944), it was not before 1994 that Asperger Syndrome (AS) was included in the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders, only to disappear in the Manual's fifth edition in 2013. During its brief existence as a diagnostic entity, AS aroused immense interest and controversy. Similar to patients with autism, AS patients show deficits in social interaction, inappropriate communication skills, and interest restriction, but also display a rich variety of subtle clinical characteristics that for many distinguish AS from autism. However, difficulties operationalising diagnostic criteria and differentiating AS from autism ultimately led to its merging into the unifying category of Autistic Spectrum Disorders. Here we briefly review the short history of this fascinating condition.
Collapse
Affiliation(s)
- J. B. Barahona-Corrêa
- Department of Psychiatry and Mental Health, Nova Medical School/Faculdade de Ciências Médicas - Universidade Nova de LisboaLisbon, Portugal
- Neuropsychiatry Unit, Champalimaud Clinical Centre, Fundação ChampalimaudLisbon, Portugal
- Centro de Apoio ao Desenvolvimento Infantil – CADINCascais, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa OcidentalLisbon, Portugal
| | - Carlos N. Filipe
- Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas - Universidade Nova de LisboaLisbon, Portugal
| |
Collapse
|
20
|
Balardin JB, Comfort WE, Daly E, Murphy C, Andrews D, Murphy DGM, Ecker C, Sato JR. Decreased centrality of cortical volume covariance networks in autism spectrum disorders. J Psychiatr Res 2015; 69:142-9. [PMID: 26343606 DOI: 10.1016/j.jpsychires.2015.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions characterized by atypical structural and functional brain connectivity. Complex network analysis has been mainly used to describe altered network-level organization for functional systems and white matter tracts in ASD. However, atypical functional and structural connectivity are likely to be also linked to abnormal development of the correlated structure of cortical gray matter. Such covariations of gray matter are particularly well suited to the investigation of the complex cortical pathology of ASD, which is not confined to isolated brain regions but instead acts at the systems level. In this study, we examined network centrality properties of gray matter networks in adults with ASD (n = 84) and neurotypical controls (n = 84) using graph theoretical analysis. We derived a structural covariance network for each group using interregional correlation matrices of cortical volumes extracted from a surface-based parcellation scheme containing 68 cortical regions. Differences between groups in closeness network centrality measures were evaluated using permutation testing. We identified several brain regions in the medial frontal, parietal and temporo-occipital cortices with reductions in closeness centrality in ASD compared to controls. We also found an association between an increased number of autistic traits and reduced centrality of visual nodes in neurotypicals. Our study shows that ASD are accompanied by atypical organization of structural covariance networks by means of a decreased centrality of regions relevant for social and sensorimotor processing. These findings provide further evidence for the altered network-level connectivity model of ASD.
Collapse
Affiliation(s)
- Joana Bisol Balardin
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo Andre, Brazil
| | - William Edgar Comfort
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo Andre, Brazil
| | - Eileen Daly
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Clodagh Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Derek Andrews
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Declan G M Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Christine Ecker
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | - João Ricardo Sato
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo Andre, Brazil.
| |
Collapse
|
21
|
Lai MC, Lombardo MV, Ecker C, Chakrabarti B, Suckling J, Bullmore ET, Happé F, Murphy DGM, Baron-Cohen S. Neuroanatomy of Individual Differences in Language in Adult Males with Autism. Cereb Cortex 2015; 25:3613-28. [PMID: 25249409 PMCID: PMC4585508 DOI: 10.1093/cercor/bhu211] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
One potential source of heterogeneity within autism spectrum conditions (ASC) is language development and ability. In 80 high-functioning male adults with ASC, we tested if variations in developmental and current structural language are associated with current neuroanatomy. Groups with and without language delay differed behaviorally in early social reciprocity, current language, but not current autistic features. Language delay was associated with larger total gray matter (GM) volume, smaller relative volume at bilateral insula, ventral basal ganglia, and right superior, middle, and polar temporal structures, and larger relative volume at pons and medulla oblongata in adulthood. Despite this heterogeneity, those with and without language delay showed significant commonality in morphometric features when contrasted with matched neurotypical individuals (n = 57). In ASC, better current language was associated with increased GM volume in bilateral temporal pole, superior temporal regions, dorsolateral fronto-parietal and cerebellar structures, and increased white matter volume in distributed frontal and insular regions. Furthermore, current language-neuroanatomy correlation patterns were similar across subgroups with or without language delay. High-functioning adult males with ASC show neuroanatomical variations associated with both developmental and current language characteristics. This underscores the importance of including both developmental and current language as specifiers for ASC, to help clarify heterogeneity.
Collapse
Affiliation(s)
- Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei 10051, Taiwan
| | - Michael V. Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK,Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia CY 1678, Cyprus
| | - Christine Ecker
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, PO23, Institute of Psychiatry, London SE5 8AF, UK
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK,School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK,GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Francesca Happé
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, PO80, Institute of Psychiatry, London SE5 8AF, UK
| | | | - Declan G. M. Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, PO23, Institute of Psychiatry, London SE5 8AF, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| |
Collapse
|
22
|
Backenson EM, Holland SC, Kubas HA, Fitzer KR, Wilcox G, Carmichael JA, Fraccaro RL, Smith AD, Macoun SJ, Harrison GL, Hale JB. Psychosocial and Adaptive Deficits Associated With Learning Disability Subtypes. JOURNAL OF LEARNING DISABILITIES 2015; 48:511-522. [PMID: 24300589 DOI: 10.1177/0022219413511861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Children with specific learning disabilities (SLD) have deficits in the basic psychological processes that interfere with learning and academic achievement, and for some SLD subtypes, these deficits can also lead to emotional and/or behavior problems. This study examined psychosocial functioning in 123 students, aged 6 to 11, who underwent comprehensive evaluations for learning and/or behavior problems in two Pacific Northwest school districts. Using concordance-discordance model (C-DM) processing strengths and weaknesses SLD identification criteria, results revealed working memory SLD (n = 20), processing speed SLD (n = 30), executive SLD (n = 32), and no disability groups (n = 41). Of the SLD subtypes, repeated measures MANOVA results revealed the processing speed SLD subtype exhibited the greatest psychosocial and adaptive impairment according to teacher behavior ratings. Findings suggest processing speed deficits may be behind the cognitive and psychosocial disturbances found in what has been termed "nonverbal" SLD. Limitations, implications, and future research needs are addressed.
Collapse
Affiliation(s)
| | - Sara C Holland
- University of Calgary, AB, Canada Fielding Graduate University, Santa Barbara, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Clarke AR, Barry RJ, Indraratna A, Dupuy FE, McCarthy R, Selikowitz M. EEG activity in children with Asperger's Syndrome. Clin Neurophysiol 2015; 127:442-451. [PMID: 26187351 DOI: 10.1016/j.clinph.2015.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 04/29/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study investigated differences in the EEG power and coherence of children with Asperger's Syndrome. METHOD Twenty boys with Asperger's Syndrome, aged 7-12 years, and an age and sex matched control group, participated in this study. The EEG was recorded during an eyes-closed resting condition from 19 electrode sites, which were clustered into nine regions prior to analysis. One minute of trace was analysed using Fourier transformations to obtain both absolute and relative power estimates in the delta, theta, alpha and beta frequency bands. Wave-shape coherence was calculated for 8 intrahemispheric and 8 interhemispheric electrode pairs. RESULTS The Asperger's group had a global increase in absolute delta and an anterior increase in relative delta. Both absolute and relative theta were globally increased and relative alpha was globally decreased. Subjects with Asperger's Syndrome exhibited a broad pattern of reduced hemispheric asymmetry in intrahemispheric coherence. Reduced anterior interhemispheric coherence in the alpha and beta bands was also found in the Asperger's Syndrome group. CONCLUSIONS These results suggest the existence of frontal lobe abnormalities in children with Asperger's Syndrome, and possible abnormalities in normal CNS maturational processes. SIGNIFICANCE This is the first major study to investigate EEG power and coherence anomalies in children with Asperger's Syndrome.
Collapse
Affiliation(s)
- Adam R Clarke
- School of Psychology, University of Wollongong, Wollongong 2522, Australia; Brain & Behaviour Research Institute, University of Wollongong, Wollongong 2522, Australia.
| | - Robert J Barry
- School of Psychology, University of Wollongong, Wollongong 2522, Australia; Brain & Behaviour Research Institute, University of Wollongong, Wollongong 2522, Australia
| | - Amrit Indraratna
- School of Psychology, University of Wollongong, Wollongong 2522, Australia; Brain & Behaviour Research Institute, University of Wollongong, Wollongong 2522, Australia
| | - Franca E Dupuy
- School of Psychology, University of Wollongong, Wollongong 2522, Australia; Brain & Behaviour Research Institute, University of Wollongong, Wollongong 2522, Australia
| | - Rory McCarthy
- Sydney Developmental Clinic, 6/30 Carrington St., Sydney 2000, Australia
| | - Mark Selikowitz
- Sydney Developmental Clinic, 6/30 Carrington St., Sydney 2000, Australia
| |
Collapse
|
24
|
Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder. Mol Autism 2015; 6:30. [PMID: 26023326 PMCID: PMC4446946 DOI: 10.1186/s13229-015-0026-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/12/2015] [Indexed: 11/11/2022] Open
Abstract
Background Previous autism research has hypothesized that abnormalities of functional connectivity in autism spectrum disorder (ASD) may vary with the spatial distance between two brain regions. Although several resting-state functional magnetic resonance imaging (rsfMRI) studies have extensively examined long-range (or distant) connectivity in the adult ASD brain, short-range (or local) connectivity has been investigated in less depth. Furthermore, the possible relationship between functional connectivity and brain activity level during the resting state remains unclear. Methods We acquired rsfMRI data from 50 adults with high-functioning ASD and 50 matched controls to examine the properties of spontaneous brain activity using measures of local and distant connectivity together with a measure of the amplitude of brain activity, known as fractional amplitude of low-frequency fluctuation (fALFF). The two connectivity measures were calculated using a common graph-theoretic framework. We also examined the spatial overlaps between these measures and possible relationships of these disrupted functional measures with autistic traits assessed by the Autism-Spectrum Quotient (AQ). Results Compared to the controls, participants with ASD exhibited local over-connectivity in the right superior frontal gyrus and middle frontal gyrus, accompanied by local under-connectivity in the bilateral fusiform gyri (FG) and right middle temporal gyrus (MTG). On the other hand, we did not find any significant alterations in distant connectivity. Participants with ASD also exhibited reduced fALFF in the right middle occipital gyrus, lingual gyrus, and FG. Further conjunction and spatial overlap analyses confirmed that the spatial pattern of reduced fALFF substantially overlapped with that of local under-connectivity, demonstrating the co-occurrence of disrupted connectivity and spontaneous activity level in the right inferior occipital gyrus, posterior MTG (pMTG), and FG. Finally, within the ASD group, disrupted local connectivity in the right pMTG significantly correlated with the “social interaction” subscale score of the AQ. Conclusions These findings revealed local functional disruptions in the occipital and temporal regions, especially the right FG and pMTG, in the form of co-occurrence of spontaneous brain activity level and local connectivity, which may underline social and communicative dysfunctions in adult ASD. Electronic supplementary material The online version of this article (doi:10.1186/s13229-015-0026-z) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Balardin JB, Sato JR, Vieira G, Feng Y, Daly E, Murphy C, Murphy D, Ecker C. Relationship Between Surface-Based Brain Morphometric Measures and Intelligence in Autism Spectrum Disorders: Influence of History of Language Delay. Autism Res 2015; 8:556-66. [PMID: 25735789 DOI: 10.1002/aur.1470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/04/2015] [Indexed: 11/07/2022]
Abstract
Autism spectrum disorders (ASD) are a group of conditions that show abnormalities in the neuroanatomy of multiple brain regions. The variability in the development of intelligence and language among individuals on the autism spectrum has long been acknowledged, but it remains unknown whether these differences impact on the neuropathology of ASD. In this study, we aimed to compare associations between surface-based regional brain measures and general intelligence (IQ) scores in ASD individuals with and without a history of language delay. We included 64 ASD adults of normal intelligence (37 without a history of language delay and 27 with a history of language delay and 80 neurotypicals). Regions with a significant association between verbal and nonverbal IQ and measures of cortical thickness (CT), surface area, and cortical volume were first identified in the combined sample of individuals with ASD and controls. Thicker dorsal frontal and temporal cortices, and thinner lateral orbital frontal and parieto-occipital cortices were associated with greater and lower verbal IQ scores, respectively. Correlations between cortical volume and verbal IQ were observed in similar regions as revealed by the CT analysis. A significant difference between ASD individuals with and without a history of language delay in the association between CT and verbal IQ was evident in the parieto-occipital region. These results indicate that ASD subgroups defined on the basis of differential language trajectories in childhood can have different associations between verbal IQ and brain measures in adulthood despite achieving similar levels of cognitive performance.
Collapse
Affiliation(s)
- Joana Bisol Balardin
- Department of Neurology and NIF-LIM44, FMUSP, University of Sao Paulo, Sao Paulo, Brazil
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo Andre, Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computation and Cognition, Universidade Federal do ABC, Santo Andre, Brazil
| | - Gilson Vieira
- Department of Neurology and NIF-LIM44, FMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | - Yeu Feng
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Clodagh Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Declan Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| | - Christine Ecker
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College, London, UK
| |
Collapse
|
26
|
Moseley RL, Shtyrov Y, Mohr B, Lombardo MV, Baron-Cohen S, Pulvermüller F. Lost for emotion words: what motor and limbic brain activity reveals about autism and semantic theory. Neuroimage 2015; 104:413-22. [PMID: 25278250 PMCID: PMC4265725 DOI: 10.1016/j.neuroimage.2014.09.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/03/2014] [Accepted: 09/20/2014] [Indexed: 12/28/2022] Open
Abstract
Autism spectrum conditions (ASC) are characterised by deficits in understanding and expressing emotions and are frequently accompanied by alexithymia, a difficulty in understanding and expressing emotion words. Words are differentially represented in the brain according to their semantic category and these difficulties in ASC predict reduced activation to emotion-related words in limbic structures crucial for affective processing. Semantic theories view 'emotion actions' as critical for learning the semantic relationship between a word and the emotion it describes, such that emotion words typically activate the cortical motor systems involved in expressing emotion actions such as facial expressions. As ASC are also characterised by motor deficits and atypical brain structure and function in these regions, motor structures would also be expected to show reduced activation during emotion-semantic processing. Here we used event-related fMRI to compare passive processing of emotion words in comparison to abstract verbs and animal names in typically-developing controls and individuals with ASC. Relatively reduced brain activation in ASC for emotion words, but not matched control words, was found in motor areas and cingulate cortex specifically. The degree of activation evoked by emotion words in the motor system was also associated with the extent of autistic traits as revealed by the Autism Spectrum Quotient. We suggest that hypoactivation of motor and limbic regions for emotion word processing may underlie difficulties in processing emotional language in ASC. The role that sensorimotor systems and their connections might play in the affective and social-communication difficulties in ASC is discussed.
Collapse
Affiliation(s)
- Rachel L Moseley
- MRC Cognition and Brain Sciences Unit, Cambridge, UK; Autism Research Centre, Department of Psychiatry, University of Cambridge, UK.
| | - Yury Shtyrov
- MRC Cognition and Brain Sciences Unit, Cambridge, UK; Centre for Functionally Integrative Neuroscience, Aarhus University, Denmark; Centre for Cognition & Decision Making, Faculty of Psychology, Higher School of Economics, Moscow, Russia
| | - Bettina Mohr
- Charité Universitätsmedizin, Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Berlin, Germany
| | - Michael V Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, UK; Department of Psychology, University of Cyprus, Cyprus; Center for Applied Neuroscience, University of Cyprus, Cyprus
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, CLASS Clinic, UK
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Germany
| |
Collapse
|
27
|
Itahashi T, Yamada T, Nakamura M, Watanabe H, Yamagata B, Jimbo D, Shioda S, Kuroda M, Toriizuka K, Kato N, Hashimoto R. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: a multimodal brain imaging study. NEUROIMAGE-CLINICAL 2014; 7:155-69. [PMID: 25610777 PMCID: PMC4299973 DOI: 10.1016/j.nicl.2014.11.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 11/17/2022]
Abstract
Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD) can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI) or diffusion tensor imaging (DTI), and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA), to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM) volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA) in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder. Structural alterations of gray (GM) and white matter (WM) in ASD were investigated. Linked independent component analysis was used for multimodal data analysis. Alterations of GM and WM in ASD co-occurred in cognitive and affective networks. Results reveal an integrative view of multiple aspects of structural changes in ASD.
Collapse
Affiliation(s)
- Takashi Itahashi
- Department of Pharmacognosy and Phytochemistry, Showa University School of Pharmacy, Tokyo, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Takashi Yamada
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Motoaki Nakamura
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
- Kinko Hospital, Kanagawa Psychiatric Center, Kanagawa, Japan
| | - Hiromi Watanabe
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Bun Yamagata
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
| | - Daiki Jimbo
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Miho Kuroda
- Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan
- Child Mental Health-care Center, Fukushima University, Fukushima, Japan
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuo Toriizuka
- Department of Pharmacognosy and Phytochemistry, Showa University School of Pharmacy, Tokyo, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Ryuichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
- Corresponding author at: Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11, Kita-karasuyama, Setagaya-ku, Tokyo 157-8577, Japan. Tel.: +81 3 5315 9357.
| |
Collapse
|
28
|
Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. NEUROIMAGE-CLINICAL 2014; 7:525-36. [PMID: 25844306 PMCID: PMC4375647 DOI: 10.1016/j.nicl.2014.11.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/20/2014] [Accepted: 11/11/2014] [Indexed: 11/24/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in social communication and restrictive, repetitive behaviors. While behavioral symptoms are well-documented, investigations into the neurobiological underpinnings of ASD have not resulted in firm biomarkers. Variability in findings across structural neuroimaging studies has contributed to difficulty in reliably characterizing the brain morphology of individuals with ASD. These inconsistencies may also arise from the heterogeneity of ASD, and wider age-range of participants included in MRI studies and in previous meta-analyses. To address this, the current study used coordinate-based anatomical likelihood estimation (ALE) analysis of 21 voxel-based morphometry (VBM) studies examining high-functioning individuals with ASD, resulting in a meta-analysis of 1055 participants (506 ASD, and 549 typically developing individuals). Results consisted of grey, white, and global differences in cortical matter between the groups. Modeled anatomical maps consisting of concentration, thickness, and volume metrics of grey and white matter revealed clusters suggesting age-related decreases in grey and white matter in parietal and inferior temporal regions of the brain in ASD, and age-related increases in grey matter in frontal and anterior-temporal regions. White matter alterations included fiber tracts thought to play key roles in information processing and sensory integration. Many current theories of pathobiology ASD suggest that the brains of individuals with ASD may have less-functional long-range (anterior-to-posterior) connections. Our findings of decreased cortical matter in parietal-temporal and occipital regions, and thickening in frontal cortices in older adults with ASD may entail altered cortical anatomy, and neurodevelopmental adaptations.
Collapse
|
29
|
Abstract
This review focuses on identifying up-to-date number of publications that compared DSM-IV/ICD-10 Asperger's disorder (AspD) to Autistic Disorder/High-functioning Autism (AD/HFA). One hundred and twenty-eight publications were identified through an extensive search of major electronic databases and journals. Based on more than 90 clinical variables been investigated, 94 publications concluded that there were statistically significant or near significant level of quantitative and/or qualitative differences between AspD and AD/HFA groups; 4 publications found both similarities and differences between the two groups; 30 publications concluded with no differences between the two groups. Although DSM-5 ASD will eliminate Asperger's disorder. However, it is plausible to predict that the field of ASD would run full circle during the next decade or two and that AspD will be back in the next edition of DSM.
Collapse
Affiliation(s)
- Luke Y Tsai
- Department of Psychiatry, University of Michigan Medical School, 2385 Placid Way, Ann Arbor, MI, 48105, USA,
| |
Collapse
|
30
|
Faust M, Kenett YN. Rigidity, chaos and integration: hemispheric interaction and individual differences in metaphor comprehension. Front Hum Neurosci 2014; 8:511. [PMID: 25071534 PMCID: PMC4095568 DOI: 10.3389/fnhum.2014.00511] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/24/2014] [Indexed: 11/30/2022] Open
Abstract
Neurotypical individuals cope flexibly with the full range of semantic relations expressed in human language, including metaphoric relations. This impressive semantic ability may be associated with distinct and flexible patterns of hemispheric interaction, including higher right hemisphere (RH) involvement for processing novel metaphors. However, this ability may be impaired in specific clinical conditions, such as Asperger syndrome (AS) and schizophrenia. The impaired semantic processing is accompanied by different patterns of hemispheric interaction during semantic processing, showing either reduced (in Asperger syndrome) or excessive (in schizophrenia) RH involvement. This paper interprets these individual differences using the terms Rigidity, Chaos and Integration, which describe patterns of semantic memory network states that either lead to semantic well-being or are disruptive of it. We argue that these semantic network states lie on a rigidity-chaos semantic continuum. We define these terms via network science terminology and provide network, cognitive and neural evidence to support our claim. This continuum includes left hemisphere (LH) hyper-rigid semantic memory state on one end (e.g., in persons with AS), and RH chaotic and over-flexible semantic memory state on the other end (e.g., in persons with schizophrenia). In between these two extremes lie different states of semantic memory structure which are related to individual differences in semantic creativity. We suggest that efficient semantic processing is achieved by semantic integration, a balance between semantic rigidity and semantic chaos. Such integration is achieved via intra-hemispheric communication. However, impairments to this well-balanced and integrated pattern of hemispheric interaction, e.g., when one hemisphere dominates the other, may lead to either semantic rigidity or semantic chaos, moving away from semantic integration and thus impairing the processing of metaphoric language.
Collapse
Affiliation(s)
- Miriam Faust
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; Department of Psychology, Bar-Ilan University Ramat-Gan, Israel
| | - Yoed N Kenett
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel
| |
Collapse
|
31
|
Reinvall O, Voutilainen A, Kujala T, Korkman M. Neurocognitive functioning in adolescents with autism spectrum disorder. J Autism Dev Disord 2014; 43:1367-79. [PMID: 23104618 DOI: 10.1007/s10803-012-1692-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a paucity of research studying comprehensive neurocognitive profiles of adolescents with higher functioning autism spectrum disorders (ASD). This study compared the neurocognitive profiles of higher functioning adolescents with ASD (n = 30, mean age 13.5) with that of typically developing adolescents (n = 30; mean age 13.7). Adolescents with ASD demonstrated a significantly higher mean Verbal Intelligence Quotient compared to the standardized mean. However, the ASD group had significantly lower scores than the control group on the subtests Auditory Attention and Response Set, Memory for Faces, Visuomotor Precision, and Design Copying. Thus, particular strengths were seen in verbal reasoning, while weaknesses were observed in auditory attention, facial recognition memory, and visuomotor functions in adolescents with ASD.
Collapse
Affiliation(s)
- Outi Reinvall
- Institute of Behavioural Sciences, University of Helsinki, P.O. Box 9, 00014, Helsinki, Finland.
| | | | | | | |
Collapse
|
32
|
Abstract
Over the past decade, human neuroimaging studies have provided invaluable insights into the neural substrates that underlie autism spectrum disorder (ASD). Although observations from multiple neuroimaging approaches converge in suggesting that changes in brain structure, functioning and connectivity are associated with ASD, the neurobiology of this disorder is complex, and considerable aetiological and phenotypic heterogeneity exists among individuals on the autism spectrum. Characterization of the neurobiological alterations that underlie ASD and development of novel pharmacotherapies for ASD, therefore, requires multidisciplinary collaboration. Consequently, pressure is growing to combine neuroimaging data with information provided by other disciplines to translate research findings into clinically useful biomarkers. So far, however, neuroimaging studies in patients with ASD have mainly been conducted in isolation, and the low specificity of neuroimaging measures has hindered the development of biomarkers that could aid clinical trials and/or facilitate patient identification. Novel approaches to acquiring and analysing data on brain characteristics are currently being developed to overcome these inherent limitations, and to integrate neuroimaging into translational research. Here, we discuss promising new studies of cortical pathology in patients with ASD, and outline how the novel insights thereby obtained could inform diagnosis and treatment of ASD in the future.
Collapse
|
33
|
Woods AG, Mahdavi E, Ryan JP. Treating clients with Asperger's syndrome and autism. Child Adolesc Psychiatry Ment Health 2013; 7:32. [PMID: 24020859 PMCID: PMC3851204 DOI: 10.1186/1753-2000-7-32] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Asperger's syndrome (AS) is a form of autism spectrum disorder (ASD) affecting many individuals today. Although neurobiological correlates for AS have been identified, like many ASDs, AS is not completely understood. AS as a distinct disorder is also not universally accepted and in the DSM-5 AS is not considered a separate nosological entity. In contrast to some other ASDs, individuals with AS are commonly characterized by having standard or higher than average intelligence, yet difficulties in social skills and communication can present challenges for these individuals in everyday functioning. Counseling a person with AS or autism presents a unique challenge for the mental health care provider. We have compiled this review consisting of some recent ideas regarding counseling the client with AS with the goal of providing some clinical insights and practical clues. Although the focus of the present paper is largely on AS, many of these strategies could also apply to individuals with high-functioning autism (HFA).
Collapse
Affiliation(s)
- Alisa G Woods
- Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5810, USA
- Neuropsychology Clinic and Psychoeducation Services, SUNY Plattsburgh, Plattsburgh, NY 12901, USA
| | - Esmaeil Mahdavi
- Mental Health Counseling Program, College of Education and Human Development, University of Massachusetts, Boston, 100 Morrissey Blvd, Boston, MA 02125, USA
| | - Jeanne P Ryan
- Neuropsychology Clinic and Psychoeducation Services, SUNY Plattsburgh, Plattsburgh, NY 12901, USA
| |
Collapse
|
34
|
Abstract
This brief review aims to examine the structural magnetic resonance imaging (sMRI) studies on corpus callosum in autism spectrum disorders (ASD) and discuss the clinical and demographic factors involved in the interpretation of results.
Collapse
|
35
|
Duffy FH, Shankardass A, McAnulty GB, Als H. The relationship of Asperger's syndrome to autism: a preliminary EEG coherence study. BMC Med 2013; 11:175. [PMID: 23902729 PMCID: PMC3729538 DOI: 10.1186/1741-7015-11-175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 07/10/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND It has long been debated whether Asperger's Syndrome (ASP) should be considered part of the Autism Spectrum Disorders (ASD) or whether it constitutes a unique entity. The Diagnostic and Statistical Manual, fourth edition (DSM-IV) differentiated ASP from high functioning autism. However, the new DSM-5 umbrellas ASP within ASD, thus eliminating the ASP diagnosis. To date, no clear biomarkers have reliably distinguished ASP and ASD populations. This study uses EEG coherence, a measure of brain connectivity, to explore possible neurophysiological differences between ASP and ASD. METHODS Voluminous coherence data derived from all possible electrode pairs and frequencies were previously reduced by principal components analysis (PCA) to produce a smaller number of unbiased, data-driven coherence factors. In a previous study, these factors significantly and reliably differentiated neurotypical controls from ASD subjects by discriminant function analysis (DFA). These previous DFA rules are now applied to an ASP population to determine if ASP subjects classify as control or ASD subjects. Additionally, a new set of coherence based DFA rules are used to determine whether ASP and ASD subjects can be differentiated from each other. RESULTS Using prior EEG coherence based DFA rules that successfully classified subjects as either controls or ASD, 96.2% of ASP subjects are classified as ASD. However, when ASP subjects are directly compared to ASD subjects using new DFA rules, 92.3% ASP subjects are identified as separate from the ASD population. By contrast, five randomly selected subsamples of ASD subjects fail to reach significance when compared to the remaining ASD populations. When represented by the discriminant variable, both the ASD and ASD populations are normally distributed. CONCLUSIONS Within a control-ASD dichotomy, an ASP population falls closer to ASD than controls. However, when compared directly with ASD, an ASP population is distinctly separate. The ASP population appears to constitute a neurophysiologically identifiable, normally distributed entity within the higher functioning tail of the ASD population distribution. These results must be replicated with a larger sample given their potentially immense clinical, emotional and financial implications for affected individuals, their families and their caregivers.
Collapse
Affiliation(s)
- Frank H Duffy
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Aditi Shankardass
- Department of Psychiatry (Psychology), Boston Children’s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Gloria B McAnulty
- Department of Psychiatry (Psychology), Boston Children’s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Heidelise Als
- Department of Psychiatry (Psychology), Boston Children’s Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
36
|
Cauda F, Costa T, Palermo S, D'Agata F, Diano M, Bianco F, Duca S, Keller R. Concordance of white matter and gray matter abnormalities in autism spectrum disorders: a voxel-based meta-analysis study. Hum Brain Mapp 2013; 35:2073-98. [PMID: 23894001 DOI: 10.1002/hbm.22313] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 03/18/2013] [Accepted: 04/02/2013] [Indexed: 11/09/2022] Open
Abstract
There are at least two fundamental unanswered questions in the literature on autism spectrum disorders (ASD): Are abnormalities in white (WM) and gray matter (GM) consistent with one another? Are WM morphometric alterations consistent with alterations in the GM of regions connected by these abnormal WM bundles and vice versa? The aim of this work is to bridge this gap. After selecting voxel-based morphometry and diffusion tensor imaging studies comparing autistic and normally developing groups of subjects, we conducted an activation likelihood estimation (ALE) meta-analysis to estimate consistent brain alterations in ASD. Multidimensional scaling was used to test the similarity of the results. The ALE results were then analyzed to identify the regions of concordance between GM and WM areas. We found statistically significant topological relationships between GM and WM abnormalities in ASD. The most numerous were negative concordances, found bilaterally but with a higher prevalence in the right hemisphere. Positive concordances were found in the left hemisphere. Discordances reflected the spatial distribution of negative concordances. Thus, a different hemispheric contribution emerged, possibly related to pathogenetic factors affecting the right hemisphere during early developmental stages. Besides, WM fiber tracts linking the brain structures involved in social cognition showed abnormalities, and most of them had a negative concordance with the connected GM regions. We interpreted the results in terms of altered brain networks and their role in the pervasive symptoms dramatically impairing communication and social skills in ASD patients.
Collapse
Affiliation(s)
- Franco Cauda
- CCS fMRI, Koelliker Hospital, Turin, Italy; Department of Psychology, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Johnson B, Rinehart N, White O, Millist L, Fielding J. Saccade adaptation in autism and Asperger’s disorder. Neuroscience 2013; 243:76-87. [DOI: 10.1016/j.neuroscience.2013.03.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
|
38
|
Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study. PLoS One 2013; 8:e67329. [PMID: 23825652 PMCID: PMC3688993 DOI: 10.1371/journal.pone.0067329] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 05/19/2013] [Indexed: 12/20/2022] Open
Abstract
Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.
Collapse
|
39
|
Mueller S, Keeser D, Reiser MF, Teipel S, Meindl T. Functional and structural MR imaging in neuropsychiatric disorders, part 2: application in schizophrenia and autism. AJNR Am J Neuroradiol 2012; 33:2033-7. [PMID: 22173749 DOI: 10.3174/ajnr.a2800] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SUMMARY During the past decade, the application of advanced MR imaging techniques in neuropsychiatric disorders has seen a rapid increase. Disease-specific alterations in brain function can be assessed by fMRI. Structural GM and WM properties are increasingly investigated by DTI and voxel-based approaches like VBM. These methods provide neurobiologic correlates for brain architecture and function, evaluation tools for therapeutic approaches, and potential early markers for diagnosis. Having provided insight into principles of functional and structural imaging and delineated common findings in mild cognitive impairment and Alzheimer disease in Part 1 of this review, we will now focus on autism and schizophrenia as common psychiatric disorders covering different stages of the life span. This review concludes by summarizing current applications, limitations, and future prospects in the field of MR imaging-based neuroimaging.
Collapse
Affiliation(s)
- S Mueller
- Institute of Clinical Radiology, University Hospitals Munich, Marchioninistr 15, 81377 Munich.
| | | | | | | | | |
Collapse
|
40
|
Baez S, Rattazzi A, Gonzalez-Gadea ML, Torralva T, Vigliecca NS, Decety J, Manes F, Ibanez A. Integrating intention and context: assessing social cognition in adults with Asperger syndrome. Front Hum Neurosci 2012; 6:302. [PMID: 23162450 PMCID: PMC3492863 DOI: 10.3389/fnhum.2012.00302] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/19/2012] [Indexed: 11/13/2022] Open
Abstract
Deficits in social cognition are an evident clinical feature of the Asperger syndrome (AS). Although many daily life problems of adults with AS are related to social cognition impairments, few studies have conducted comprehensive research in this area. The current study examined multiple domains of social cognition in adults with AS assessing the executive functions (EF) and exploring the intra and inter-individual variability. Fifteen adult's diagnosed with AS and 15 matched healthy controls completed a battery of social cognition tasks. This battery included measures of emotion recognition, theory of mind (ToM), empathy, moral judgment, social norms knowledge, and self-monitoring behavior in social settings. We controlled for the effect of EF and explored the individual variability. The results indicated that adults with AS had a fundamental deficit in several domains of social cognition. We also found high variability in the social cognition tasks. In these tasks, AS participants obtained mostly subnormal performance. EF did not seem to play a major role in the social cognition impairments. Our results suggest that adults with AS present a pattern of social cognition deficits characterized by the decreased ability to implicitly encode and integrate contextual information in order to access to the social meaning. Nevertheless, when social information is explicitly presented or the situation can be navigated with abstract rules, performance is improved. Our findings have implications for the diagnosis and treatment of individuals with AS as well as for the neurocognitive models of this syndrome.
Collapse
Affiliation(s)
- Sandra Baez
- Institute of Cognitive Neurology and Institute of Neuroscience, Favaloro UniversityBuenos Aires, Argentina
- National Scientific and Technical Research CouncilBuenos Aires, Argentina
- Pontifical Catholic University of ArgentinaBuenos Aires, Argentina
| | - Alexia Rattazzi
- Argentinean Program for Children, Adolescents and Adults with Autism Spectrum Disorders (PANAACEA)Buenos Aires, Argentina
| | - María L. Gonzalez-Gadea
- Institute of Cognitive Neurology and Institute of Neuroscience, Favaloro UniversityBuenos Aires, Argentina
- National Scientific and Technical Research CouncilBuenos Aires, Argentina
| | - Teresa Torralva
- Institute of Cognitive Neurology and Institute of Neuroscience, Favaloro UniversityBuenos Aires, Argentina
| | - Nora Silvana Vigliecca
- National Scientific and Technical Research CouncilBuenos Aires, Argentina
- Research Centre of the Faculty of Philosophy and Humanities, National University of CórdobaCórdoba, Argentina
| | - Jean Decety
- Departments of Psychology and Psychiatry, and Center for Cognitive and Social Neuroscience, University of ChicagoChicago, IL, USA
| | - Facundo Manes
- Institute of Cognitive Neurology and Institute of Neuroscience, Favaloro UniversityBuenos Aires, Argentina
| | - Agustin Ibanez
- Institute of Cognitive Neurology and Institute of Neuroscience, Favaloro UniversityBuenos Aires, Argentina
- National Scientific and Technical Research CouncilBuenos Aires, Argentina
- Laboratory of Cognitive Neuroscience, Universidad Diego PortalesSantiago, Chile
| |
Collapse
|
41
|
Johnson BP, Rinehart NJ, Papadopoulos N, Tonge B, Millist L, White O, Fielding J. A closer look at visually guided saccades in autism and Asperger's disorder. Front Integr Neurosci 2012; 6:99. [PMID: 23162442 PMCID: PMC3491344 DOI: 10.3389/fnint.2012.00099] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/13/2012] [Indexed: 11/30/2022] Open
Abstract
Motor impairments have been found to be a significant clinical feature associated with autism and Asperger’s disorder (AD) in addition to core symptoms of communication and social cognition deficits. Motor deficits in high-functioning autism (HFA) and AD may differentiate these disorders, particularly with respect to the role of the cerebellum in motor functioning. Current neuroimaging and behavioral evidence suggests greater disruption of the cerebellum in HFA than AD. Investigations of ocular motor functioning have previously been used in clinical populations to assess the integrity of the cerebellar networks, through examination of saccade accuracy and the integrity of saccade dynamics. Previous investigations of visually guided saccades in HFA and AD have only assessed basic saccade metrics, such as latency, amplitude, and gain, as well as peak velocity. We used a simple visually guided saccade paradigm to further characterize the profile of visually guided saccade metrics and dynamics in HFA and AD. It was found that children with HFA, but not AD, were more inaccurate across both small (5°) and large (10°) target amplitudes, and final eye position was hypometric at 10°. These findings suggest greater functional disturbance of the cerebellum in HFA than AD, and suggest fundamental difficulties with visual error monitoring in HFA.
Collapse
Affiliation(s)
- Beth P Johnson
- Centre for Developmental Psychiatry and Psychology, School of Psychology and Psychiatry, Monash University Melbourne, VIC, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Kaufmann L, Zotter S, Pixner S, Starke M, Haberlandt E, Steinmayr-Gensluckner M, Egger K, Schocke M, Weiss EM, Marksteiner J. Brief Report: CANTAB Performance and Brain Structure in Pediatric Patients with Asperger Syndrome. J Autism Dev Disord 2012; 43:1483-90. [DOI: 10.1007/s10803-012-1686-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Delmonte S, Balsters JH, McGrath J, Fitzgerald J, Brennan S, Fagan AJ, Gallagher L. Social and monetary reward processing in autism spectrum disorders. Mol Autism 2012; 3:7. [PMID: 23014171 PMCID: PMC3499449 DOI: 10.1186/2040-2392-3-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/21/2012] [Indexed: 01/29/2023] Open
Abstract
Background Social motivation theory suggests that deficits in social reward processing underlie social impairments in autism spectrum disorders (ASD). However, the extent to which abnormalities in reward processing generalize to other classes of stimuli remains unresolved. The aim of the current study was to examine if reward processing abnormalities in ASD are specific to social stimuli or can be generalized to other classes of reward. Additionally, we sought to examine the results in the light of behavioral impairments in ASD. Methods Participants performed adapted versions of the social and monetary incentive delay tasks. Data from 21 unmedicated right-handed male participants with ASD and 21 age- and IQ-matched controls were analyzed using a factorial design to examine the blood-oxygen-level-dependent (BOLD) response during the anticipation and receipt of both reward types. Results Behaviorally, the ASD group showed less of a reduction in reaction time (RT) for rewarded compared to unrewarded trials than the control group. In terms of the fMRI results, there were no significant group differences in reward circuitry during reward anticipation. During the receipt of rewards, there was a significant interaction between group and reward type in the left dorsal striatum (DS). The ASD group showed reduced activity in the DS compared to controls for social rewards but not monetary rewards and decreased activation for social rewards compared to monetary rewards. Controls showed no significant difference between the two reward types. Increased activation in the DS during social reward processing was associated with faster response times for rewarded trials, compared to unrewarded trials, in both groups. This is in line with behavioral results indicating that the ASD group showed less of a reduction in RT for rewarded compared to unrewarded trials. Additionally, de-activation to social rewards was associated with increased repetitive behavior in ASD. Conclusions In line with social motivation theory, the ASD group showed reduced activation, compared to controls, during the receipt of social rewards in the DS. Groups did not differ significantly during the processing of monetary rewards. BOLD activation in the DS, during social reward processing, was associated with behavioral impairments in ASD.
Collapse
Affiliation(s)
- Sonja Delmonte
- Department of Psychiatry, Trinity College Dublin, Dublin, 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Predictive models for subtypes of autism spectrum disorder based on single-nucleotide polymorphisms and magnetic resonance imaging. Adv Med Sci 2012; 56:334-42. [PMID: 22037176 DOI: 10.2478/v10039-011-0042-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Autism spectrum disorder (ASD) is a neurodevelopmental disorder, of which Asperger syndrome and high-functioning autism are subtypes. Our goal is: 1) to determine whether a diagnostic model based on single-nucleotide polymorphisms (SNPs), brain regional thickness measurements, or brain regional volume measurements can distinguish Asperger syndrome from high-functioning autism; and 2) to compare the SNP, thickness, and volume-based diagnostic models. MATERIAL AND METHODS Our study included 18 children with ASD: 13 subjects with high-functioning autism and 5 subjects with Asperger syndrome. For each child, we obtained 25 SNPs for 8 ASD-related genes; we also computed regional cortical thicknesses and volumes for 66 brain structures, based on structural magnetic resonance (MR) examination. To generate diagnostic models, we employed five machine-learning techniques: decision stump, alternating decision trees, multi-class alternating decision trees, logistic model trees, and support vector machines. RESULTS For SNP-based classification, three decision-tree-based models performed better than the other two machine-learning models. The performance metrics for three decision-tree-based models were similar: decision stump was modestly better than the other two methods, with accuracy = 90%, sensitivity = 0.95 and specificity = 0.75. All thickness and volume-based diagnostic models performed poorly. The SNP-based diagnostic models were superior to those based on thickness and volume. For SNP-based classification, rs878960 in GABRB3 (gamma-aminobutyric acid A receptor, beta 3) was selected by all tree-based models. CONCLUSION Our analysis demonstrated that SNP-based classification was more accurate than morphometry-based classification in ASD subtype classification. Also, we found that one SNP--rs878960 in GABRB3--distinguishes Asperger syndrome from high-functioning autism.
Collapse
|
45
|
Enticott PG, Kennedy HA, Rinehart NJ, Tonge BJ, Bradshaw JL, Fitzgerald PB. GABAergic activity in autism spectrum disorders: an investigation of cortical inhibition via transcranial magnetic stimulation. Neuropharmacology 2012; 68:202-9. [PMID: 22727823 DOI: 10.1016/j.neuropharm.2012.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 05/11/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
Mounting evidence suggests a possible role for γ-aminobutyric acid (GABA) in the neuropathophysiology of autism spectrum disorders (ASD), but the extent of this impairment is unclear. A non-invasive, in vivo measure of GABA involves transcranial magnetic stimulation (TMS) of the primary motor cortex to probe cortical inhibition. Individuals diagnosed with ASD (high-functioning autism or Asperger's disorder) (n = 36 [28 male]; mean age: 26.00 years) and a group of healthy individuals (n = 34 [23 male]; mean age: 26.21 years) (matched for age, gender, and cognitive function) were administered motor cortical TMS paradigms putatively measuring activity at GABAA and GABAB receptors (i.e., short and long interval paired pulse TMS, cortical silent period). All cortical inhibition paradigms yielded no difference between ASD and control groups. There was, however, evidence for short interval cortical inhibition (SICI) deficits among those ASD participants who had experienced early language delay, suggesting that GABA may be implicated in an ASD subtype. The current findings do not support a broad role for GABA in the neuropathophysiology of ASD, but provide further indication that GABAA could be involved in ASD where there is a delay in language acquisition. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Peter G Enticott
- Monash Alfred Psychiatry Research Centre, The Alfred and Central Clinical School, Monash University, St. Kilda Road, Melbourne, Victoria 3004, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Duerden EG, Mak-Fan KM, Taylor MJ, Roberts SW. Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta-analysis. Autism Res 2011; 5:49-66. [PMID: 22139976 DOI: 10.1002/aur.235] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 09/19/2011] [Accepted: 10/20/2011] [Indexed: 01/08/2023]
Abstract
Structural alterations in brain morphology have been inconsistently reported in children compared to adults with autism spectrum disorder (ASD). We assessed these differences by performing meta-analysis on the data from 19 voxel-based morphometry studies. Common findings across the age groups were grey matter reduction in left putamen and medial prefrontal cortex (mPFC) and grey matter increases in the lateral PFC, while white matter decreases were seen mainly in the children in frontostriatal pathways. In the ASD sample, children/adolescents were more likely than adults to have increased grey matter in bilateral fusiform gyrus, right cingulate and insula. Results show that clear maturational differences exist in social cognition and limbic processing regions only in children/adolescents and not in adults with ASD, and may underlie the emotional regulation that improves with age in this population.
Collapse
Affiliation(s)
- Emma G Duerden
- Autism Research Unit, The Hospital for Sick Children, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
47
|
Yu KK, Cheung C, Chua SE, McAlonan GM. Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies. J Psychiatry Neurosci 2011; 36:412-21. [PMID: 21406158 PMCID: PMC3201995 DOI: 10.1503/jpn.100138] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The question of whether Asperger syndrome can be distinguished from autism has attracted much debate and may even incur delay in diagnosis and intervention. Accordingly, there has been a proposal for Asperger syndrome to be subsumed under autism in the forthcoming Diagnostic and Statistical Manual of Mental Disorders, fifth edition, in 2013. One approach to resolve this question has been to adopt the criterion of absence of clinically significant language or cognitive delay--essentially, the "absence of language delay." To our knowledge, this is the first meta-analysis of magnetic resonance imaging (MRI) studies of people with autism to compare absence with presence of language delay. It capitalizes on the voxel-based morphometry (VBM) approach to systematically explore the whole brain for anatomic correlates of delay and no delay in language acquisition in people with autism spectrum disorders. METHODS We conducted a systematic search for VBM MRI studies of grey matter volume in people with autism. Studies with a majority (at least 70%) of participants with autism diagnoses and a history of language delay were assigned to the autism group (n = 151, control n = 190). Those with a majority (at least 70%) of individuals with autism diagnoses and no language delay were assigned to the Asperger syndrome group (n = 149, control n = 214). We entered study coordinates into anatomic likelihood estimation meta-analysis software with sampling size weighting to compare grey matter summary maps driven by Asperger syndrome or autism. RESULTS The summary autism grey matter map showed lower volumes in the cerebellum, right uncus, dorsal hippocampus and middle temporal gyrus compared with controls; grey matter volumes were greater in the bilateral caudate, prefrontal lobe and ventral temporal lobe. The summary Asperger syndrome map indicated lower grey matter volumes in the bilateral amygdala/hippocampal gyrus and prefrontal lobe, left occipital gyrus, right cerebellum, putamen and precuneus compared with controls; grey matter volumes were greater in more limited regions, including the bilateral inferior parietal lobule and the left fusiform gyrus. Both Asperger syndrome and autism studies reported volume increase in clusters in the ventral temporal lobe of the left hemisphere. LIMITATIONS We assigned studies to autism and Asperger syndrome groups for separate analyses of the data and did not carry out a direct statistical group comparison. In addition, studies available for analysis did not capture the entire spectrum, therefore we cannot be certain that our findings apply to a wider population than that sampled. CONCLUSION Whereas grey matter differences in people with Asperger syndrome compared with controls are sparser than those reported in studies of people with autism, the distribution and direction of differences in each category are distinctive.
Collapse
Affiliation(s)
| | | | | | - Gráinne M. McAlonan
- Correspondence to: Dr. G.M. McAlonan, Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong;
| |
Collapse
|
48
|
May T, Brewer WJ, Rinehart NJ, Enticott PG, Brereton AV, Tonge BJ. Differential olfactory identification in children with autism and Asperger's disorder: a comparative and longitudinal study. J Autism Dev Disord 2011; 41:837-47. [PMID: 20853022 DOI: 10.1007/s10803-010-1101-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Key theories of autism implicate orbitofrontal cortex (OFC) compromise, while olfactory identification (OI) deficits are associated with OFC dysfunction. This study aimed to complete a 5-year follow-up of children with high-functioning autism (HFA) who previously lacked the normal age-OI association; and compare unirhinal-OI in children with HFA, Asperger's disorder (ASP), and controls. While both HFA and controls had improved birhinal-OI at follow-up, reduced OI in some HFA participants suggested OFC deterioration and heterogeneous OFC development. Unirhinal-OI was impaired in HFA but not ASP relative to controls, suggesting orbitofrontal compromise in HFA but integrity in ASP. Differing IQ-OI relationships existed between HFA and ASP. Findings support the hypothesis of separate neurobiological underpinnings in ASP and HFA, specifically differential orbitofrontal functioning.
Collapse
Affiliation(s)
- Tamara May
- Centre for Developmental Psychiatry and Psychology, School of Psychology and Psychiatry, Monash University, Clayton, VIC, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Papadopoulos N, McGinley J, Tonge B, Bradshaw J, Saunders K, Murphy A, Rinehart N. Motor proficiency and emotional/behavioural disturbance in autism and Asperger's disorder: another piece of the neurological puzzle? AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2011; 16:627-40. [PMID: 21949004 DOI: 10.1177/1362361311418692] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The relationship of motor proficiency with emotional/behavioural disturbance, autistic symptoms and communication disturbance was investigated in children diagnosed with autism and Asperger's disorder (AD). The Movement Assessment Battery for Children was used as a measure of motor impairment, and the Developmental Behavioural Checklist was used as a measure of emotional/behavioural disturbance in the following groups: AD (n = 22), high functioning autism (HFA) (n = 23), LFA (n = 8) and typically developing children (n = 20). The HFA group had more difficulty with motor items, such as ball skills and balance, than did the AD group. There were significant positive correlations between impairments in motor proficiency (in particular ball skills and balance) and emotional/behavioural disturbance, autistic symptoms and communication disturbance. These findings are consistent with the hypothesis that there are qualitative and quantitative differences in the motor profile between autism and AD. In addition, the association between motor proficiency impairment and emotional/behavioural disturbance in autism and AD emphasizes the importance for screening of co-occurring emotional/behavioural symptoms in individuals with motor difficulties. These findings have implications for the potential use of adjunct motor measures in the diagnosis and definition of autism spectrum disorders.
Collapse
Affiliation(s)
- Nicole Papadopoulos
- Centre for Developmental Psychiatry & Psychology, School of Psychology & Psychiatry, Monash University, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Murphy CM, Deeley Q, Daly E, Ecker C, O'Brien F, Hallahan B, Loth E, Toal F, Reed S, Hales S, Robertson D, Craig M, Mullins D, Barker G, Lavender T, Johnston P, Murphy K, Murphy D. Anatomy and aging of the amygdala and hippocampus in autism spectrum disorder: an in vivo magnetic resonance imaging study of Asperger syndrome. Autism Res 2011; 5:3-12. [DOI: 10.1002/aur.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 07/20/2011] [Indexed: 11/08/2022]
|