1
|
Makowski C, Nichols TE, Dale AM. Quality over quantity: powering neuroimaging samples in psychiatry. Neuropsychopharmacology 2024; 50:58-66. [PMID: 38902353 PMCID: PMC11525971 DOI: 10.1038/s41386-024-01893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Neuroimaging has been widely adopted in psychiatric research, with hopes that these non-invasive methods will provide important clues to the underpinnings and prediction of various mental health symptoms and outcomes. However, the translational impact of neuroimaging has not yet reached its promise, despite the plethora of computational methods, tools, and datasets at our disposal. Some have lamented that too many psychiatric neuroimaging studies have been underpowered with respect to sample size. In this review, we encourage this discourse to shift from a focus on sheer increases in sample size to more thoughtful choices surrounding experimental study designs. We propose considerations at multiple decision points throughout the study design, data modeling and analysis process that may help researchers working in psychiatric neuroimaging boost power for their research questions of interest without necessarily increasing sample size. We also provide suggestions for leveraging multiple datasets to inform each other and strengthen our confidence in the generalization of findings to both population-level and clinical samples. Through a greater emphasis on improving the quality of brain-based and clinical measures rather than merely quantity, meaningful and potentially translational clinical associations with neuroimaging measures can be achieved with more modest sample sizes in psychiatry.
Collapse
Affiliation(s)
- Carolina Makowski
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| | - Thomas E Nichols
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anders M Dale
- Departments of Radiology and Neurosciences, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
González-Peñas J, Alloza C, Brouwer R, Díaz-Caneja CM, Costas J, González-Lois N, Gallego AG, de Hoyos L, Gurriarán X, Andreu-Bernabeu Á, Romero-García R, Fañanás L, Bobes J, González-Pinto A, Crespo-Facorro B, Martorell L, Arrojo M, Vilella E, Gutiérrez-Zotes A, Perez-Rando M, Moltó MD, Buimer E, van Haren N, Cahn W, O'Donovan M, Kahn RS, Arango C, Pol HH, Janssen J, Schnack H. Accelerated Cortical Thinning in Schizophrenia Is Associated With Rare and Common Predisposing Variation to Schizophrenia and Neurodevelopmental Disorders. Biol Psychiatry 2024; 96:376-389. [PMID: 38521159 DOI: 10.1016/j.biopsych.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Schizophrenia is a highly heritable disorder characterized by increased cortical thinning throughout the life span. Studies have reported a shared genetic basis between schizophrenia and cortical thickness. However, no genes whose expression is related to abnormal cortical thinning in schizophrenia have been identified. METHODS We conducted linear mixed models to estimate the rates of accelerated cortical thinning across 68 regions from the Desikan-Killiany atlas in individuals with schizophrenia compared with healthy control participants from a large longitudinal sample (ncases = 169 and ncontrols = 298, ages 16-70 years). We studied the correlation between gene expression data from the Allen Human Brain Atlas and accelerated thinning estimates across cortical regions. Finally, we explored the functional and genetic underpinnings of the genes that contribute most to accelerated thinning. RESULTS We found a global pattern of accelerated cortical thinning in individuals with schizophrenia compared with healthy control participants. Genes underexpressed in cortical regions that exhibit this accelerated thinning were downregulated in several psychiatric disorders and were enriched for both common and rare disrupting variation for schizophrenia and neurodevelopmental disorders. In contrast, none of these enrichments were observed for baseline cross-sectional cortical thickness differences. CONCLUSIONS Our findings suggest that accelerated cortical thinning, rather than cortical thickness alone, serves as an informative phenotype for neurodevelopmental disruptions in schizophrenia. We highlight the genetic and transcriptomic correlates of this accelerated cortical thinning, emphasizing the need for future longitudinal studies to elucidate the role of genetic variation and the temporal-spatial dynamics of gene expression in brain development and aging in schizophrenia.
Collapse
Affiliation(s)
- Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain.
| | - Clara Alloza
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain
| | - Rachel Brouwer
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Costas
- Instituto de Investigación Sanitària de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde, Santiago de Compostela, Galicia, Spain
| | - Noemí González-Lois
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain
| | - Ana Guil Gallego
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain
| | - Lucía de Hoyos
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain
| | - Xaquín Gurriarán
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain
| | - Rafael Romero-García
- Department of Medical Physiology and Biophysics, Instituto de Biomedicina de Sevilla, HUVR/CSIC/Universidad de Sevilla/CIBERSAM, Instituto de Salud Carlos III, Sevilla, Spain; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Lourdes Fañanás
- CIBERSAM, Madrid, Spain; Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Julio Bobes
- CIBERSAM, Madrid, Spain; Faculty of Medicine and Health Sciences-Psychiatry, Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias, Instituto de Neurociencias del Principado de Asturias, Oviedo, Spain
| | - Ana González-Pinto
- CIBERSAM, Madrid, Spain; BIOARABA Health Research Institute, Organización Sanitaria Integrada Araba, University Hospital, University of the Basque Country, Vitoria, Spain
| | - Benedicto Crespo-Facorro
- CIBERSAM, Madrid, Spain; Hospital Universitario Virgen del Rocío, Department of Psychiatry, Universidad de Sevilla, Sevilla, Spain
| | - Lourdes Martorell
- CIBERSAM, Madrid, Spain; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-Centres de Recerca de Catalunya, Universitat Rovira i Virgili, Reus, Spain
| | - Manuel Arrojo
- Instituto de Investigación Sanitària de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago de Compostela, Servizo Galego de Saúde, Santiago de Compostela, Galicia, Spain
| | - Elisabet Vilella
- CIBERSAM, Madrid, Spain; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-Centres de Recerca de Catalunya, Universitat Rovira i Virgili, Reus, Spain
| | - Alfonso Gutiérrez-Zotes
- CIBERSAM, Madrid, Spain; Hospital Universitari Institut Pere Mata, Institut d'Investigació Sanitària Pere Virgili-Centres de Recerca de Catalunya, Universitat Rovira i Virgili, Reus, Spain
| | - Marta Perez-Rando
- Fundación Investigación Hospital Clínico de València, Fundación Investigación Hospital Clínico de Valencia, València, Spain; Unidad de Neurobiología, Instituto de Biotecnología y Biomedicina, Universitat de València, València, Spain
| | - María Dolores Moltó
- CIBERSAM, Madrid, Spain; Unidad de Neurobiología, Instituto de Biotecnología y Biomedicina, Universitat de València, València, Spain; Department of Genetics, Universitat de València, Campus of Burjassot, València, Spain
| | - Elizabeth Buimer
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Neeltje van Haren
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Altrecht Mental Health Institute, Altrecht Science, Utrecht, the Netherlands
| | - Michael O'Donovan
- Medical Research Council for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - René S Kahn
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; School of Medicine, Universidad Complutense, Madrid, Spain
| | - Hilleke Hulshoff Pol
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitària Gregorio Marañón, Madrid, Spain; CIBERSAM, Madrid, Spain; Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hugo Schnack
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
3
|
Karantonis JA, Carruthers SP, Rossell SL, Pantelis C, Hughes M, Wannan C, Cropley V, Van Rheenen TE. A Systematic Review of Cognition-Brain Morphology Relationships on the Schizophrenia-Bipolar Disorder Spectrum. Schizophr Bull 2021; 47:1557-1600. [PMID: 34097043 PMCID: PMC8530395 DOI: 10.1093/schbul/sbab054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The nature of the relationship between cognition and brain morphology in schizophrenia-spectrum disorders (SSD) and bipolar disorder (BD) is uncertain. This review aimed to address this, by providing a comprehensive systematic investigation of links between several cognitive domains and brain volume, cortical thickness, and cortical surface area in SSD and BD patients across early and established illness stages. An initial search of PubMed and Scopus databases resulted in 1486 articles, of which 124 met inclusion criteria and were reviewed in detail. The majority of studies focused on SSD, while those of BD were scarce. Replicated evidence for specific regions associated with indices of cognition was minimal, however for several cognitive domains, the frontal and temporal regions were broadly implicated across both recent-onset and established SSD, and to a lesser extent BD. Collectively, the findings of this review emphasize the significance of both frontal and temporal regions for some domains of cognition in SSD, while highlighting the need for future BD-related studies on this topic.
Collapse
Affiliation(s)
- James A Karantonis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Sean P Carruthers
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Susan L Rossell
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
- St Vincent’s Mental Health, St Vincent’s Hospital, Melbourne, Australia
| | - Christos Pantelis
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Australia
| | - Matthew Hughes
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Cassandra Wannan
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Vanessa Cropley
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Tamsyn E Van Rheenen
- Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne and Melbourne Health, Melbourne, Australia
| |
Collapse
|
4
|
Rodriguez-Perez N, Ayesa-Arriola R, Ortiz-García de la Foz V, Setien-Suero E, Tordesillas-Gutierrez D, Crespo-Facorro B. Long term cortical thickness changes after a first episode of non- affective psychosis: The 10 year follow-up of the PAFIP cohort. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110180. [PMID: 33212193 DOI: 10.1016/j.pnpbp.2020.110180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Cortical thickness has been widely studied in individuals with schizophrenia and, in particular, first-episode psychosis. Abnormalities have been described, although there is, to date, a lack of consensus regarding changes across time and correlations with clinical and functional outcomes of the illness. One hundred and twenty-three first-episode psychosis patients and 74 healthy volunteers were subjected to magnetic resonance imaging scans and clinical and functional assessments by different scales at four consecutive visits during a 10 year follow-up period. Linear mixed effects models were applied to our data to compute cortical thickness changes over time in (1) schizophrenia patients versus healthy controls and (2) in patients with good versus poor functional outcome. The associations between cortical thickness percentage changes and clinical and functional status at 10 years were also assessed. The patients presented a thinner cortex than the controls at baseline (b's = -0.06; q ≤ 0.00023) with non-significant coefficients for the interaction term (follow-up time x group) (b's = -0.001; q ≥ 0.681). Poor functioning patients presented statistically significant coefficients for the interaction term (follow-up time x functionality) (left: b = -0.005, q = 0.019; right: b = -0.005, q = 0.022). In contrast, no correlations were found between cortical thickness measurements and clinical variables at 10 years. Overall, there were widespread thickness anomalies in first-episode psychosis patients across cortical regions that remained stable across time. Progressive thickness changes were related to patient functional outcomes, with progressive and steeper cortical thinning in patients with worse functional outcomes and a stabilization in those with better outcomes.
Collapse
Affiliation(s)
- Noelia Rodriguez-Perez
- Hospital Universitario Virgen del Rocío, Department of Psychiatry, Instituto de Investigación Sanitaria de Sevilla, IBiS, Sevilla, Spain; CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain.
| | - Rosa Ayesa-Arriola
- University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Victor Ortiz-García de la Foz
- University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Esther Setien-Suero
- University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Diana Tordesillas-Gutierrez
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain; Neuroimaging Unit, Technological Facilities, IDIVAL, Santander, Spain
| | - Benedicto Crespo-Facorro
- Hospital Universitario Virgen del Rocío, Department of Psychiatry, Instituto de Investigación Sanitaria de Sevilla, IBiS, Sevilla, Spain; CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Madrid, Spain; University of Sevilla, Sevilla, Spain.
| | | |
Collapse
|
5
|
Akudjedu TN, Tronchin G, McInerney S, Scanlon C, Kenney JPM, McFarland J, Barker GJ, McCarthy P, Cannon DM, McDonald C, Hallahan B. Progression of neuroanatomical abnormalities after first-episode of psychosis: A 3-year longitudinal sMRI study. J Psychiatr Res 2020; 130:137-151. [PMID: 32818662 DOI: 10.1016/j.jpsychires.2020.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
The location, extent and progression of longitudinal morphometric changes after first-episode of psychosis (FEP) remains unclear. We investigated ventricular and cortico-subcortical regions over a 3-year period in FEP patients compared with healthy controls. High resolution 1.5T T1-weighted MR images were obtained at baseline from 28 FEP patients at presentation and 28 controls, and again after 3-years. The longitudinal FreeSurfer pipeline (v.5.3.0) was used for regional volumetric and cortical reconstruction image analyses. Repeated-measures ANCOVA and vertex-wise linear regression analyses compared progressive changes between groups in subcortical structures and cortical thickness respectively. Compared with controls, patients displayed progressively reduced volume of the caudate [F (1,51)=5.86, p=0.02, Hedges' g=0.66], putamen [F (1,51)=6.06, p=0.02, g=0.67], thalamus [F (1,51)=6.99, p=0.01, g=0.72] and increased right lateral ventricular volume [F (1, 51)=4.03, p=0.05], and significantly increased rate of cortical thinning [F (1,52)=5.11, p=0.028)] at a mean difference of 0.84% [95% CI (0.10, 1.59)] in the left lateral orbitofrontal region over the 3-year period. In patients, greater reduction in putamen volume over time was associated with lower cumulative antipsychotic medication dose (r=0.49, p=0.01), and increasing lateral ventricular volume over time was associated with worsening negative symptoms (r=0.41, p=0.04) and poorer global functioning (r= -0.41, p=0.04). This study demonstrates localised progressive structural abnormalities in the cortico-striato-thalamo-cortical circuit after the onset of psychosis, with increasing ventricular volume noted as a neuroanatomical marker of poorer clinical and functional outcome.
Collapse
Affiliation(s)
- Theophilus N Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33, Galway, Ireland; Institute of Medical Imaging & Visualisation, Department of Medical Science and Public Health, Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, UK.
| | - Giulia Tronchin
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33, Galway, Ireland
| | - Shane McInerney
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33, Galway, Ireland; Department of Psychiatry, University of Toronto, 250 College Street, 8th Floor, Toronto, Canada
| | - Cathy Scanlon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33, Galway, Ireland
| | - Joanne P M Kenney
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - John McFarland
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33, Galway, Ireland
| | - Gareth J Barker
- King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, London, UK
| | - Peter McCarthy
- Department of Radiology, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33, Galway, Ireland
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33, Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33, Galway, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91TK33, Galway, Ireland
| |
Collapse
|
6
|
Makowski C, Lewis JD, Lepage C, Malla AK, Joober R, Evans AC, Lepage M. Intersection of verbal memory and expressivity on cortical contrast and thickness in first episode psychosis. Psychol Med 2020; 50:1923-1936. [PMID: 31456533 DOI: 10.1017/s0033291719002071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Longitudinal studies of first episode of psychosis (FEP) patients are critical to understanding the dynamic clinical factors influencing functional outcomes; negative symptoms and verbal memory (VM) deficits are two such factors that remain a therapeutic challenge. This study uses white-gray matter contrast at the inner edge of the cortex, in addition to cortical thickness, to probe changes in microstructure and their relation with negative symptoms and possible intersections with verbal memory. METHODS T1-weighted images and clinical data were collected longitudinally for patients (N = 88) over a two-year period. Cognitive data were also collected at baseline. Relationships between baseline VM (immediate/delayed recall) and rate of change in two negative symptom dimensions, amotivation and expressivity, were assessed at the behavioral level, as well as at the level of brain structure. RESULTS VM, particularly immediate recall, was significantly and positively associated with a steeper rate of expressivity symptom decline (r = 0.32, q = 0.012). Significant interaction effects between baseline delayed recall and change in expressivity were uncovered in somatomotor regions bilaterally for both white-gray matter contrast and cortical thickness. Furthermore, interaction effects between immediate recall and change in expressivity on cortical thickness rates were uncovered across higher-order regions of the language processing network. CONCLUSIONS This study shows common neural correlates of language-related brain areas underlying expressivity and VM in FEP, suggesting deficits in these domains may be more linked to speech production rather than general cognitive capacity. Together, white-gray matter contrast and cortical thickness may optimally inform clinical investigations aiming to capture peri-cortical microstructural changes.
Collapse
Affiliation(s)
- Carolina Makowski
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
- Department of Psychiatry, McGill University, Verdun, Canada
| | - John D Lewis
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Claude Lepage
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Ashok K Malla
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, Canada
| | - Martin Lepage
- Department of Psychiatry, McGill University, Verdun, Canada
- Prevention and Early Intervention Program for Psychosis, Douglas Mental Health University Institute, Verdun, Canada
| |
Collapse
|
7
|
Bornheimer LA, Zhang A, Li J, Hiller M, Tarrier N. Effectiveness of Suicide-Focused Psychosocial Interventions in Psychosis: A Systematic Review and Meta-Analysis. Psychiatr Serv 2020; 71:829-838. [PMID: 32340594 DOI: 10.1176/appi.ps.201900487] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Suicide ideation, plan, attempt, and death are significant and prevalent concerns among individuals with psychosis. Previous studies have focused on risk factors, but few have systematically evaluated the effect of psychosocial interventions on these experiences among individuals with psychosis. This study evaluated the effectiveness of psychosocial interventions in reducing suicide ideation, plan, attempt, and death among individuals with psychotic symptoms. METHODS Eight electronic databases were systematically searched from inception until June 30, 2019. Identified studies included both randomized controlled trials and controlled trials without randomization that examined psychosocial interventions for suicide ideation, plan, attempt, and death among individuals with psychotic symptoms. A random-effects model was used to pool the effect sizes for synthesis. RESULTS Eleven studies with 14 effect sizes (N=4,829 participants) were analyzed. The average age of participants ranged from 21 to 51, and most participants identified as male and non-Hispanic Caucasian or Chinese and were in an early or first-episode stage of illness. On average, participants who received psychosocial interventions were less likely than their counterparts in the control group to report suicide ideation, plan, and attempt and die by suicide (odds ratio [OR]=0.57, 95% confidence interval [CI]=0.41-0.78). Subgroup analyses further revealed significant reductions in suicide ideation (OR=0.73, 95% CI=0.55-0.97) and suicide death (OR=0.45, 95% CI=0.30-0.68) among intervention participants. CONCLUSIONS Preliminary evidence indicated that psychosocial interventions are effective in reducing suicide ideation, plan, attempt, and death among individuals with psychotic symptoms. Intervention characteristics, however, varied across studies, which suggests a lack of consensus on best clinical practices.
Collapse
Affiliation(s)
- Lindsay A Bornheimer
- School of Social Work, University of Michigan, Ann Arbor (Bornheimer, Zhang, Li, Hiller); School of Psychological Science, University of Manchester, Manchester, England (Tarrier)
| | - Anao Zhang
- School of Social Work, University of Michigan, Ann Arbor (Bornheimer, Zhang, Li, Hiller); School of Psychological Science, University of Manchester, Manchester, England (Tarrier)
| | - Juliann Li
- School of Social Work, University of Michigan, Ann Arbor (Bornheimer, Zhang, Li, Hiller); School of Psychological Science, University of Manchester, Manchester, England (Tarrier)
| | - Matthew Hiller
- School of Social Work, University of Michigan, Ann Arbor (Bornheimer, Zhang, Li, Hiller); School of Psychological Science, University of Manchester, Manchester, England (Tarrier)
| | - Nicholas Tarrier
- School of Social Work, University of Michigan, Ann Arbor (Bornheimer, Zhang, Li, Hiller); School of Psychological Science, University of Manchester, Manchester, England (Tarrier)
| |
Collapse
|
8
|
Gallardo-Ruiz R, Crespo-Facorro B, Setién-Suero E, Tordesillas-Gutierrez D. Long-Term Grey Matter Changes in First Episode Psychosis: A Systematic Review. Psychiatry Investig 2019; 16:336-345. [PMID: 31132837 PMCID: PMC6539265 DOI: 10.30773/pi.2019.02.10.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/21/2018] [Accepted: 02/10/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To determine possible progressive changes of the grey matter at the first stages of the schizophrenia spectrum disorders, and to determine what regions are involved in these changes. METHODS We searched the literature concerning studies on longitudinal changes in grey matter in first-episode psychosis using magnetic resonance imaging, especially studies with an interval between scans of more than a year. Only articles published before 2018 were searched. We selected 19 magnetic resonance imaging longitudinal studies that used different neuroimaging analysis techniques to study changes in cerebral grey matter in a group of patients with a first episode of psychosis. RESULTS Patients with first episode of psychosis showed a decrease over time in cortical grey matter compared with a group of control subjects in frontal, temporal (specifically in superior regions), parietal, and subcortical regions. In addition to the above, studies indicate that patients showed a grey matter decrease in cerebellum and lateral ventricles volume. CONCLUSION The results suggest a decrease in grey matter in the years after the first episode of psychosis. Furthermore, the results of the studies showed consistency, regardless of the methods used in their analyses, as well as the time intervals between image collections.
Collapse
Affiliation(s)
- Ruth Gallardo-Ruiz
- Neuroimaging Unit, Technological Facilities,Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Benedicto Crespo-Facorro
- Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Esther Setién-Suero
- Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Diana Tordesillas-Gutierrez
- Neuroimaging Unit, Technological Facilities,Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
9
|
Vita A, Minelli A, Barlati S, Deste G, Giacopuzzi E, Valsecchi P, Turrina C, Gennarelli M. Treatment-Resistant Schizophrenia: Genetic and Neuroimaging Correlates. Front Pharmacol 2019; 10:402. [PMID: 31040787 PMCID: PMC6476957 DOI: 10.3389/fphar.2019.00402] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a severe neuropsychiatric disorder that affects approximately 0.5–1% of the population. Response to antipsychotic therapy is highly variable, and it is not currently possible to predict those patients who will or will not respond to antipsychotic medication. Furthermore, a high percentage of patients, approximately 30%, are classified as treatment-resistant (treatment-resistant schizophrenia; TRS). TRS is defined as a non-response to at least two trials of antipsychotic medication of adequate dose and duration. These patients are usually treated with clozapine, the only evidence-based pharmacotherapy for TRS. However, clozapine is associated with severe adverse events. For these reasons, there is an increasing interest to identify better targets for drug development of new compounds and to establish better biomarkers for existing medications. The ability of antipsychotics to improve psychotic symptoms is dependent on their antagonist and reverse agonist activities at different neuroreceptors, and some genetic association studies of TRS have focused on different pharmacodynamic factors. Some genetic studies have shown an association between antipsychotic response or TRS and neurodevelopment candidate genes, antipsychotic mechanisms of action (such as dopaminergic, serotonergic, GABAergic, and glutamatergic) or pharmacokinetic factors (i.e., differences in the cytochrome families). Moreover, there is a growing body of literature on the structural and functional neuroimaging research into TRS. Neuroimaging studies can help to uncover the underlying neurobiological reasons for such resistance and identify resistant patients earlier. Studies examining the neuropharmacological mechanisms of antipsychotics, including clozapine, can help to improve our knowledge of their action on the central nervous system, with further implications for the discovery of biomarkers and the development of new treatments. The identification of the underlying mechanisms of TRS is a major challenge for developing personalized medicine in the psychiatric field for schizophrenia treatment. The main goal of precision medicine is to use genetic and brain-imaging information to improve the safety, effectiveness, and health outcomes of patients via more efficiently targeted risk stratification, prevention, and tailored medication and treatment management approaches. The aim of this review is to summarize the state of art of pharmacogenetic, pharmacogenomic and neuroimaging studies in TRS.
Collapse
Affiliation(s)
- Antonio Vita
- Department of Mental Health and Addiction Services, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Barlati
- Department of Mental Health and Addiction Services, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Giacomo Deste
- Department of Mental Health and Addiction Services, ASST Spedali Civili, Brescia, Italy
| | - Edoardo Giacopuzzi
- Genetic Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Paolo Valsecchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Cesare Turrina
- Department of Mental Health and Addiction Services, ASST Spedali Civili, Brescia, Italy.,Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Genetic Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
10
|
Abstract
In recent years there has been growing interest in early intervention in psychotic disorders and a number of clinical and research programmes have been developed. The clinical staging model has been an essential part of early intervention as it provides the rationale of existing programmes. In medicine, clinical staging is a valuable approach in disorders where primary pathology is progressive in nature. However, the clinical staging model of psychosis has been proposed without establishing first that schizophrenia is a primarily progressive disorder. In reviewing existing evidence, this current paper argues that cross-sectional data interpreted as supportive of clinical staging data does not consider the effects of sampling bias, problems in reliability in assessing 'soft symptoms', or false positives. Longitudinal neurobiological studies do not provide a convincing case for primarily progressive pathology in schizophrenia. Clinical progression in schizophrenia can be better conceptualised as neuroplastic changes in response to interaction between core developmental pathology and environmental stimuli. An alternative rationale for early and continuous intervention targeting neurodevelopmental abnormality and neuroplastic changes, as well as medical and psychological comorbidities, is proposed in this paper.
Collapse
Affiliation(s)
- E Bora
- Department of Psychiatry,Faculty of Medicine,Dokuz Eylül University,Izmir,Turkey
| |
Collapse
|
11
|
Savjani RR, Taylor BA, Acion L, Wilde EA, Jorge RE. Accelerated Changes in Cortical Thickness Measurements with Age in Military Service Members with Traumatic Brain Injury. J Neurotrauma 2017; 34:3107-3116. [PMID: 28657432 DOI: 10.1089/neu.2017.5022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Finding objective and quantifiable imaging markers of mild traumatic brain injury (TBI) has proven challenging, especially in the military population. Changes in cortical thickness after injury have been reported in animals and in humans, but it is unclear how these alterations manifest in the chronic phase, and it is difficult to characterize accurately with imaging. We used cortical thickness measures derived from Advanced Normalization Tools (ANTs) to predict a continuous demographic variable: age. We trained four different regression models (linear regression, support vector regression, Gaussian process regression, and random forests) to predict age from healthy control brains from publicly available datasets (n = 762). We then used these models to predict brain age in military Service Members with TBI (n = 92) and military Service Members without TBI (n = 34). Our results show that all four models overpredicted age in Service Members with TBI, and the predicted age difference was significantly greater compared with military controls. These data extend previous civilian findings and show that cortical thickness measures may reveal an association of accelerated changes over time with military TBI.
Collapse
Affiliation(s)
- Ricky R Savjani
- 1 Michael E. DeBakey Veterans Affairs Medical Center , Houston, Texas.,2 Department of Neuroscience, Baylor College of Medicine , Houston, Texas.,7 Texas A&M Health Science Center College of Medicine , Bryan, Texas
| | - Brian A Taylor
- 1 Michael E. DeBakey Veterans Affairs Medical Center , Houston, Texas.,3 Department of Radiology, Baylor College of Medicine , Houston, Texas.,4 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas
| | - Laura Acion
- 6 Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine , Houston, Texas.,8 Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET , Buenos Aires, Argentina
| | - Elisabeth A Wilde
- 1 Michael E. DeBakey Veterans Affairs Medical Center , Houston, Texas.,3 Department of Radiology, Baylor College of Medicine , Houston, Texas.,4 Department of Physical Medicine and Rehabilitation, Baylor College of Medicine , Houston, Texas.,5 Department of Neurology, Baylor College of Medicine , Houston, Texas
| | - Ricardo E Jorge
- 1 Michael E. DeBakey Veterans Affairs Medical Center , Houston, Texas.,6 Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
12
|
Neuroadaptations to antipsychotic drugs: Insights from pre-clinical and human post-mortem studies. Neurosci Biobehav Rev 2017; 76:317-335. [DOI: 10.1016/j.neubiorev.2016.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 07/07/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
|
13
|
Age-related cortical thickness trajectories in first episode psychosis patients presenting with early persistent negative symptoms. NPJ SCHIZOPHRENIA 2016; 2:16029. [PMID: 27602388 PMCID: PMC5007985 DOI: 10.1038/npjschz.2016.29] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022]
Abstract
Recent work has clearly established that early persistent negative symptoms (ePNS) can be observed following a first episode of psychosis (FEP), and can negatively affect functional outcome. There is also evidence for cortical changes associated with ePNS. Given that a FEP often occurs during a period of ongoing complex brain development and maturation, neuroanatomical changes may have a specific age-related component. The current study examines cortical thickness (CT) and trajectories with age using longitudinal structural imaging. Structural T1 volumes were acquired at three time points for ePNS (N=21), PNS due to secondary factors (N=31), non-PNS (N=45) patients, and controls (N=48). Images were processed using the CIVET pipeline. Linear mixed models were applied to test for the main effects of (a) group, (b) time, and interactions between (c) time and group membership, and (d) age and group membership. Compared with the non-PNS and secondary PNS patient groups, the ePNS group showed cortical thinning over time in temporal regions and a thickening with age primarily in prefrontal areas. Early PNS patients also had significantly different linear and quadratic age relationships with CT compared with other groups within cingulate, prefrontal, and temporal cortices. The current study demonstrates that FEP patients with ePNS show significantly different CT trajectories with age. Increased CT may be indicative of disruptions in cortical maturation processes within higher-order brain regions. Individuals with ePNS underline a unique subgroup of FEP patients that are differentiated at the clinical level and who exhibit distinct neurobiological patterns compared with their non-PNS peers.
Collapse
|
14
|
Variations in Disrupted-in-Schizophrenia 1 gene modulate long-term longitudinal differences in cortical thickness in patients with a first-episode of psychosis. Brain Imaging Behav 2015. [DOI: 10.1007/s11682-015-9433-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|