1
|
Choe E, Kim M, Choi S, Oh H, Jang M, Park S, Kwon JS. MRI textural plasticity in limbic gray matter associated with clinical response to electroconvulsive therapy for psychosis. Mol Psychiatry 2024:10.1038/s41380-024-02755-7. [PMID: 39327507 DOI: 10.1038/s41380-024-02755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
Electroconvulsive therapy (ECT) is effective against treatment-resistant psychosis, but its mechanisms remain unclear. Conventional volumetry studies have revealed plasticity in limbic structures following ECT but with inconsistent clinical relevance, as they potentially overlook subtle histological alterations. Our study analyzed microstructural changes in limbic structures after ECT using MRI texture analysis and demonstrated a correlation with clinical response. 36 schizophrenia or schizoaffective patients treated with ECT and medication, 27 patients treated with medication only, and 70 healthy controls (HCs) were included in this study. Structural MRI data were acquired before and after ECT for the ECT group and at equivalent intervals for the medication-only group. The gray matter volume and MRI texture, calculated from the gray level size zone matrix (GLSZM), were extracted from limbic structures. After normalizing texture features to HC data, group-time interactions were estimated with repeated-measures mixed models. Repeated-measures correlations between clinical variables and texture were analyzed. Volumetric group-time interactions were observed in seven of fourteen limbic structures. Group-time interactions of the normalized GLSZM large area emphasis of the left hippocampus and the right amygdala reached statistical significance. Changes in these texture features were correlated with changes in psychotic symptoms in the ECT group but not in the medication-only group. These findings provide in vivo evidence that microstructural changes in key limbic structures, hypothetically reflected by MRI texture, are associated with clinical response to ECT for psychosis. These findings support the neuroplasticity hypothesis of ECT and highlight the hippocampus and amygdala as potential targets for neuromodulation in psychosis.
Collapse
Affiliation(s)
- Eugenie Choe
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Sunah Choi
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Harin Oh
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Moonyoung Jang
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sunghyun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Hanyang University Hospital, Seoul, South Korea
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, South Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
2
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
3
|
Klug M, Enneking V, Borgers T, Jacobs CM, Dohm K, Kraus A, Grotegerd D, Opel N, Repple J, Suslow T, Meinert S, Lemke H, Leehr EJ, Bauer J, Dannlowski U, Redlich R. Persistence of amygdala hyperactivity to subliminal negative emotion processing in the long-term course of depression. Mol Psychiatry 2024; 29:1501-1509. [PMID: 38278993 PMCID: PMC11189807 DOI: 10.1038/s41380-024-02429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Biased emotion processing has been suggested to underlie the etiology and maintenance of depression. Neuroimaging studies have shown mood-congruent alterations in amygdala activity in patients with acute depression, even during early, automatic stages of emotion processing. However, due to a lack of prospective studies over periods longer than 8 weeks, it is unclear whether these neurofunctional abnormalities represent a persistent correlate of depression even in remission. In this prospective case-control study, we aimed to examine brain functional correlates of automatic emotion processing in the long-term course of depression. In a naturalistic design, n = 57 patients with acute major depressive disorder (MDD) and n = 37 healthy controls (HC) were assessed with functional magnetic resonance imaging (fMRI) at baseline and after 2 years. Patients were divided into two subgroups according to their course of illness during the study period (n = 37 relapse, n = 20 no-relapse). During fMRI, participants underwent an affective priming task that assessed emotion processing of subliminally presented sad and happy compared to neutral face stimuli. A group × time × condition (3 × 2 × 2) ANOVA was performed for the amygdala as region-of-interest (ROI). At baseline, there was a significant group × condition interaction, resulting from amygdala hyperactivity to sad primes in patients with MDD compared to HC, whereas no difference between groups emerged for happy primes. In both patient subgroups, amygdala hyperactivity to sad primes persisted after 2 years, regardless of relapse or remission at follow-up. The results suggest that amygdala hyperactivity during automatic processing of negative stimuli persists during remission and represents a trait rather than a state marker of depression. Enduring neurofunctional abnormalities may reflect a consequence of or a vulnerability to depression.
Collapse
Affiliation(s)
- Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Charlotte M Jacobs
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Goethe University Frankfurt, University Hospital, Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Frankfurt, Germany
| | - Thomas Suslow
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
- German Center for Mental Health (DZPG), Halle-Jena-Magdeburg, Germany.
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Halle-Jena-Magdeburg, Germany.
- Department of Psychology, Martin-Luther University of Halle, Halle, Germany.
| |
Collapse
|
4
|
Domke AK, Hempel M, Hartling C, Stippl A, Carstens L, Gruzman R, Herrera Melendez AL, Bajbouj M, Gärtner M, Grimm S. Functional connectivity changes between amygdala and prefrontal cortex after ECT are associated with improvement in distinct depressive symptoms. Eur Arch Psychiatry Clin Neurosci 2023; 273:1489-1499. [PMID: 36715751 PMCID: PMC10465635 DOI: 10.1007/s00406-023-01552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression. However, the underlying mechanisms of action are not yet fully understood. The investigation of depression-specific networks using resting-state fMRI and the relation to differential symptom improvement might be an innovative approach providing new insights into the underlying processes. In this naturalistic study, we investigated the relationship between changes in resting-state functional connectivity (rsFC) and symptom improvement after ECT in 21 patients with treatment-resistant depression. We investigated rsFC before and after ECT and focused our analyses on FC changes directly related to symptom reduction and on FC at baseline to identify neural targets that might predict individual clinical responses to ECT. Additional analyses were performed to identify the direct relationship between rsFC change and symptom dimensions such as sadness, negative thoughts, detachment, and neurovegetative symptoms. An increase in rsFC between the left amygdala and left dorsolateral prefrontal cortex (DLPFC) after ECT was related to overall symptom reduction (Bonferroni-corrected p = 0.033) as well as to a reduction in specific symptoms such as sadness (r = 0.524, uncorrected p = 0.014), negative thoughts (r = 0.700, Bonferroni-corrected p = 0.002) and detachment (r = 0.663, p = 0.004), but not in neurovegetative symptoms. Furthermore, high baseline rsFC between the left amygdala and the right frontal pole (FP) predicted treatment outcome (uncorrected p = 0.039). We conclude that changes in FC in regions of the limbic-prefrontal network are associated with symptom improvement, particularly in affective and cognitive dimensions. Frontal-limbic connectivity has the potential to predict symptom improvement after ECT. Further research combining functional imaging biomarkers and a symptom-based approach might be promising.
Collapse
Affiliation(s)
- Ann-Kathrin Domke
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Moritz Hempel
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Corinna Hartling
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anna Stippl
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Luisa Carstens
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Rebecca Gruzman
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Ana Lucia Herrera Melendez
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Matti Gärtner
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| |
Collapse
|
5
|
Wang YB, Song NN, Ding YQ, Zhang L. Neural plasticity and depression treatment. IBRO Neurosci Rep 2023; 14:160-184. [PMID: 37388497 PMCID: PMC10300479 DOI: 10.1016/j.ibneur.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 12/08/2022] Open
Abstract
Depression is one of the most common mental disorders, which can lead to a variety of emotional problems and even suicide at its worst. As this neuropsychiatric disorder causes the patients to suffer a lot and function poorly in everyday life, it is imposing a heavy burden on the affected families and the whole society. Several hypotheses have been proposed to elucidate the pathogenesis of depression, such as the genetic mutations, the monoamine hypothesis, the hypothalamic-pituitary-adrenal (HPA) axis hyperactivation, the inflammation and the neural plasticity changes. Among these models, neural plasticity can occur at multiple levels from brain regions, cells to synapses structurally and functionally during development and in adulthood. In this review, we summarize the recent progresses (especially in the last five years) on the neural plasticity changes in depression under different organizational levels and elaborate different treatments for depression by changing the neural plasticity. We hope that this review would shed light on the etiological studies for depression and on the development of novel treatments.
Collapse
Affiliation(s)
- Yu-Bing Wang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudfan University, Shanghai 200032, China
| | - Lei Zhang
- Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center) and Department of Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
6
|
Runia N, Bergfeld IO, de Kwaasteniet BP, Luigjes J, van Laarhoven J, Notten P, Beute G, van den Munckhof P, Schuurman R, Denys D, van Wingen GA. Deep brain stimulation normalizes amygdala responsivity in treatment-resistant depression. Mol Psychiatry 2023; 28:2500-2507. [PMID: 36991129 DOI: 10.1038/s41380-023-02030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
Deep brain stimulation (DBS) of the ventral anterior limb of the internal capsule (vALIC) is a promising intervention for treatment-resistant depression (TRD). However, the working mechanisms of vALIC DBS in TRD remain largely unexplored. As major depressive disorder has been associated with aberrant amygdala functioning, we investigated whether vALIC DBS affects amygdala responsivity and functional connectivity. To investigate the long-term effects of DBS, eleven patients with TRD performed an implicit emotional face-viewing paradigm during functional magnetic resonance imaging (fMRI) before DBS surgery and after DBS parameter optimization. Sixteen matched healthy controls performed the fMRI paradigm at two-time points to control for test-retest effects. To investigate the short-term effects of DBS de-activation after parameter optimization, thirteen patients additionally performed the fMRI paradigm after double-blind periods of active and sham stimulation. Results showed that TRD patients had decreased right amygdala responsivity compared to healthy controls at baseline. Long-term vALIC DBS normalized right amygdala responsivity, which was associated with faster reaction times. This effect was not dependent on emotional valence. Furthermore, active compared to sham DBS increased amygdala connectivity with sensorimotor and cingulate cortices, which was not significantly different between responders and non-responders. These results suggest that vALIC DBS restores amygdala responsivity and behavioral vigilance in TRD, which may contribute to the DBS-induced antidepressant effect.
Collapse
Affiliation(s)
- Nora Runia
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Isidoor O Bergfeld
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bart P de Kwaasteniet
- Isala Hospital, Department of Radiology and Nuclear Medicine, Zwolle, The Netherlands
| | - Judy Luigjes
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jan van Laarhoven
- Department of Psychiatry, ETZ, location Elisabeth, Tilburg, The Netherlands
| | - Peter Notten
- Department of Psychiatry, ETZ, location Elisabeth, Tilburg, The Netherlands
| | - Guus Beute
- Department of Neurosurgery, ETZ, location Elisabeth, Tilburg, The Netherlands
| | - Pepijn van den Munckhof
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
| | - Rick Schuurman
- Amsterdam UMC location University of Amsterdam, Department of Neurosurgery, Amsterdam, The Netherlands
| | - Damiaan Denys
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Guido A van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Gruzman R, Hartling C, Domke AK, Stippl A, Carstens L, Bajbouj M, Gärtner M, Grimm S. Investigation of Neurofunctional Changes Over the Course of Electroconvulsive Therapy. Int J Neuropsychopharmacol 2022; 26:20-31. [PMID: 36173403 PMCID: PMC9850659 DOI: 10.1093/ijnp/pyac063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is an effective treatment for patients suffering from depression. Yet the exact neurobiological mechanisms underlying the efficacy of ECT and indicators of who might respond best to it remain to be elucidated. Identifying neural markers that can inform about an individual's response to ECT would enable more optimal treatment strategies and increase clinical efficacy. METHODS Twenty-one acutely depressed inpatients completed an emotional working memory task during functional magnetic resonance imaging before and after receiving treatment with ECT. Neural activity was assessed in 5 key regions associated with the pathophysiology of depression: bilateral dorsolateral prefrontal cortex and pregenual, subgenual, and dorsal anterior cingulate cortex. Associations between brain activation and clinical improvement, as reflected by Montgomery-Åsberg Depression Rating Scale scores, were computed using linear regression models, t tests, and Pearson correlational analyses. RESULTS Significant neurobiological prognostic markers or changes in neural activity from pre- to post ECT did not emerge. CONCLUSIONS We could not confirm normalization effects and did not find significant neural markers related to treatment response. These results demonstrate that the search for reliable and clinically useful biomarkers for ECT treatment remains in its initial stages and still faces challenges.
Collapse
Affiliation(s)
- Rebecca Gruzman
- Correspondence: Rebecca Gruzman, MSc, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany ()
| | | | - Ann-Kathrin Domke
- Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Anna Stippl
- Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | | | - Malek Bajbouj
- Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Matti Gärtner
- MSB Medical School Berlin, Berlin, Germany,Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Simone Grimm
- MSB Medical School Berlin, Berlin, Germany,Charité Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Switzerland
| |
Collapse
|
8
|
Enneking V, Klug M, Borgers T, Dohm K, Grotegerd D, Frankenberger LM, Hülsmann C, Lemke H, Meinert S, Leehr EJ, Opel N, Goltermann J, Richter M, Waltemate L, Böhnlein J, Sindermann L, Repple J, Bauer J, Thomas M, Dannlowski U, Redlich R. Changes in brain function during negative emotion processing in the long-term course of depression. Br J Psychiatry 2022; 221:476-484. [PMID: 35082002 DOI: 10.1192/bjp.2021.223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Relapses in major depression are frequent and are associated with a high burden of disease. Although short-term studies suggest a normalisation of depression-associated brain functional alterations directly after treatment, long-term investigations are sparse. AIMS To examine brain function during negative emotion processing in association with course of illness over a 2-year span. METHOD In this prospective case-control study, 72 in-patients with current depression and 42 healthy controls were investigated during a negative emotional face processing paradigm, at baseline and after 2 years. According to their course of illness during the study interval, patients were divided into subgroups (n = 25 no-relapse, n = 47 relapse). The differential changes in brain activity were investigated by a group × time analysis of covariance for the amygdala, hippocampus, insula and at whole-brain level. RESULTS A significant relapse × time interaction emerged within the amygdala (PTFCE-FWE = 0.011), insula (PTFCE-FWE = 0.001) and at the whole-brain level mainly in the temporal and prefrontal cortex (PTFCE-FWE = 0.027), resulting from activity increases within the no-relapse group, whereas in the relapse group, activity decreased during the study interval. At baseline, the no-relapse group showed amygdala, hippocampus and insula hypoactivity compared with healthy controls and the relapse group. CONCLUSIONS This study reveals course of illness-associated activity changes in emotion processing areas. Patients in full remission show a normalisation of their baseline hypo-responsiveness to the activation level of healthy controls after 2 years. Brain function during emotion processing could further serve as a potential predictive marker for future relapse.
Collapse
Affiliation(s)
- Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Tiana Borgers
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Germany
| | | | - Carina Hülsmann
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Germany; and Institute for Translational Neuroscience, University of Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Maike Richter
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Joscha Böhnlein
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Lisa Sindermann
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Münster, Germany
| | - Mareike Thomas
- Institute of Psychology, Martin-Luther University of Halle, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Germany; and Institute of Psychology, Martin-Luther University of Halle, Germany
| |
Collapse
|
9
|
Dahlén AD, Schofield A, Schiöth HB, Brooks SJ. Subliminal Emotional Faces Elicit Predominantly Right-Lateralized Amygdala Activation: A Systematic Meta-Analysis of fMRI Studies. Front Neurosci 2022; 16:868366. [PMID: 35924231 PMCID: PMC9339677 DOI: 10.3389/fnins.2022.868366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Prior research suggests that conscious face processing occurs preferentially in right hemisphere occipito-parietal regions. However, less is known about brain regions associated with non-conscious processing of faces, and whether a right-hemispheric dominance persists in line with specific affective responses. We aim to review the neural responses systematically, quantitatively, and qualitatively underlying subliminal face processing. PubMed was searched for Functional Magnetic Resonance Imaging (fMRI) publications assessing subliminal emotional face stimuli up to March 2022. Activation Likelihood Estimation (ALE) meta-analyses and narrative reviews were conducted on all studies that met ALE requirements. Risk of bias was assessed using the AXIS tool. In a meta-analysis of all 22 eligible studies (merging clinical and non-clinical populations, whole brain and region of interest analyses), bilateral amygdala activation was reported in the left (x = −19.2, y = 1.5, z = −17.1) in 59% of studies, and in the right (x = 24.4, y = −1.7, z = −17.4) in 68% of studies. In a second meta-analysis of non-clinical participants only (n = 18), bilateral amygdala was again reported in the left (x = −18, y = 3.9, z = −18.4) and right (x = 22.8, y = −0.9, z = −17.4) in 56% of studies for both clusters. In a final meta-analysis of whole-brain studies only (n=14), bilateral amygdala was also reported in the left (x = −20.2, y = 2.9, z = −17.2) in 64% of studies, and right (x = 24.2, y = −0.7, z = −17.8) in 71% of studies. The findings suggest that non-consciously detected emotional faces may influence amygdala activation, especially right-lateralized (a higher percentage of convergence in studies), which are integral for pre-conscious affect and long-term memory processing.
Collapse
Affiliation(s)
- Amelia D. Dahlén
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Aphra Schofield
- Faculty of Health, School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helgi B. Schiöth
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Samantha J. Brooks
- Functional Pharmacology and Neuroscience, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Faculty of Health, School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
- Department of Psychology, School of Human and Community Development, University of Witwatersrand, Johannesburg, South Africa
- *Correspondence: Samantha J. Brooks
| |
Collapse
|
10
|
Sydnor VJ, Cieslak M, Duprat R, Deluisi J, Flounders MW, Long H, Scully M, Balderston NL, Sheline YI, Bassett DS, Satterthwaite TD, Oathes DJ. Cortical-subcortical structural connections support transcranial magnetic stimulation engagement of the amygdala. SCIENCE ADVANCES 2022; 8:eabn5803. [PMID: 35731882 PMCID: PMC9217085 DOI: 10.1126/sciadv.abn5803] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/04/2022] [Indexed: 05/31/2023]
Abstract
The amygdala processes valenced stimuli, influences emotion, and exhibits aberrant activity across anxiety disorders, depression, and PTSD. Interventions modulating amygdala activity hold promise as transdiagnostic psychiatric treatments. In 45 healthy participants, we investigated whether transcranial magnetic stimulation (TMS) elicits indirect changes in amygdala activity when applied to ventrolateral prefrontal cortex (vlPFC), a region important for emotion regulation. Harnessing in-scanner interleaved TMS/functional MRI (fMRI), we reveal that vlPFC neurostimulation evoked acute and focal modulations of amygdala fMRI BOLD signal. Larger TMS-evoked changes in the amygdala were associated with higher fiber density in a vlPFC-amygdala white matter pathway when stimulating vlPFC but not an anatomical control, suggesting this pathway facilitated stimulation-induced communication between cortex and subcortex. This work provides evidence of amygdala engagement by TMS, highlighting stimulation of vlPFC-amygdala circuits as a candidate treatment for transdiagnostic psychopathology. More broadly, it indicates that targeting cortical-subcortical structural connections may enhance the impact of TMS on subcortical neural activity and, by extension, subcortex-subserved behaviors.
Collapse
Affiliation(s)
- Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Romain Duprat
- Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph Deluisi
- Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew W. Flounders
- Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hannah Long
- Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Morgan Scully
- Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas L. Balderston
- Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yvette I. Sheline
- Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S. Bassett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Desmond J. Oathes
- Center for Neuromodulation in Depression and Stress (CNDS), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Brain Science, Translation, Innovation, and Modulation Center (brainSTIM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Li XK, Qiu HT, Hu J, Luo QH. Changes in the amplitude of low-frequency fluctuations in specific frequency bands in major depressive disorder after electroconvulsive therapy. World J Psychiatry 2022; 12:708-721. [PMID: 35663299 PMCID: PMC9150034 DOI: 10.5498/wjp.v12.i5.708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) tends to have a high incidence and high suicide risk. Electroconvulsive therapy (ECT) is currently a relatively effective treatment for MDD. However, the mechanism of efficacy of ECT is still unclear.
AIM To investigate the changes in the amplitude of low-frequency fluctuations in specific frequency bands in patients with MDD after ECT.
METHODS Twenty-two MDD patients and fifteen healthy controls (HCs) were recruited to this study. MDD patients received 8 ECT sessions with bitemporal placement. Resting-state functional magnetic resonance imaging was adopted to examine regional cerebellar blood flow in both the MDD patients and HCs. The MDD patients were scanned twice (before the first ECT session and after the eighth ECT session) to acquire data. Then, the amplitude of low-frequency fluctuations (ALFF) was computed to characterize the intrinsic neural oscillations in different bands (typical frequency, slow-5, and slow-4 bands).
RESULTS Compared to before ECT (pre-ECT), we found that MDD patients after the eighth ECT (post-ECT) session had a higher ALFF in the typical band in the right middle frontal gyrus, posterior cingulate, right supramarginal gyrus, left superior frontal gyrus, and left angular gyrus. There was a lower ALFF in the right superior temporal gyrus. Compared to pre-ECT values, the ALFF in the slow-5 band was significantly increased in the right limbic lobe, cerebellum posterior lobe, right middle orbitofrontal gyrus, and frontal lobe in post-ECT patients, whereas the ALFF in the slow-5 band in the left sublobar region, right angular gyrus, and right frontal lobe was lower. In contrast, significantly higher ALFF in the slow-4 band was observed in the frontal lobe, superior frontal gyrus, parietal lobe, right inferior parietal lobule, and left angular gyrus.
CONCLUSION Our results suggest that the abnormal ALFF in pre- and post-ECT MDD patients may be associated with specific frequency bands.
Collapse
Affiliation(s)
- Xin-Ke Li
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Hai-Tang Qiu
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
| | - Jia Hu
- Institute for Advanced Studies in Humanities and Social Science, Chongqing University, Chongqing 400044, China
| | - Qing-Hua Luo
- Mental Health Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
12
|
Li XK, Qiu HT. Current progress in neuroimaging research for the treatment of major depression with electroconvulsive therapy. World J Psychiatry 2022; 12:128-139. [PMID: 35111584 PMCID: PMC8783162 DOI: 10.5498/wjp.v12.i1.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/20/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Electroconvulsive therapy (ECT) uses a certain amount of electric current to pass through the head of the patient, causing convulsions throughout the body, to relieve the symptoms of the disease and achieve the purpose of treatment. ECT can effectively improve the clinical symptoms of patients with major depression, but its therapeutic mechanism is still unclear. With the rapid development of neuroimaging technology, it is necessary to explore the neurobiological mechanism of major depression from the aspects of brain structure, brain function and brain metabolism, and to find that ECT can improve the brain function, metabolism and even brain structure of patients to a certain extent. Currently, an increasing number of neuroimaging studies adopt various neuroimaging techniques including functional magnetic resonance imaging (MRI), positron emission tomography, magnetic resonance spectroscopy, structural MRI, and diffusion tensor imaging to reveal the neural effects of ECT. This article reviews the recent progress in neuroimaging research on ECT for major depression. The results suggest that the neurobiological mechanism of ECT may be to modulate the functional activity and connectivity or neural structural plasticity in specific brain regions to the normal level, to achieve the therapeutic effect.
Collapse
Affiliation(s)
- Xin-Ke Li
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Hai-Tang Qiu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Hu X, Zhao M, Ma Y, Ge Y, He H, Wang S, Qian Y. Alteration of segregation of brain systems in the severe depressive disorder after electroconvulsive therapy. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2021.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
14
|
Zhang T, Hou Q, Bai T, Ji G, Lv H, Xie W, Jin S, Yang J, Qiu B, Tian Y, Wang K. Functional and structural alterations in the pain-related circuit in major depressive disorder induced by electroconvulsive therapy. J Neurosci Res 2021; 100:477-489. [PMID: 34825381 DOI: 10.1002/jnr.24979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/08/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Approximately two-thirds of major depressive disorder (MDD) patients have pain, which exacerbates the severity of depression. Electroconvulsive therapy (ECT) is an efficacious treatment that can alleviate depressive symptoms; however, treatment for pain and the underlying neural substrate is elusive. We enrolled 34 patients with MDD and 33 matched healthy controls to complete clinical assessments and neuroimaging scans. MDD patients underwent second assessments and scans after ECT. We defined a pain-related network with a published meta-analysis and calculated topological patterns to reveal topologic alterations induced by ECT. Using the amplitude of low-frequency fluctuations (ALFFs), we probed local function aberrations of pain-related circuits in MDD patients. Subsequently, we applied gray matter volume (GMV) to reveal structural alterations of ECT relieving pain. The relationships between functional and structural aberrations and pain were determined. ECT significantly alleviated pain. The neural mechanism based on pain-related circuits indicated that ECT weakened the circuit function (ALFF: left amygdala and right supplementary motor area), while augmenting the structure (GMV: bilateral amygdala/insula/hippocampus and anterior cingulate cortex). The topologic patterns became less efficient after ECT. Correlation analysis between the change in pain and GMV had negative results in bilateral amygdala/insula/hippocampus. Similarity, there was a positive correlation between a change in ALFF in the left amygdala and improved clinical symptoms. ECT improved pain by decreasing brain local function and global network patterns, while increasing structure in pain-related circuits. Functional and structural alterations were associated with improvement in pain.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Qiangqiang Hou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Tongjian Bai
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Gongjun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Huaming Lv
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Wen Xie
- Anhui Mental Health Center, Hefei, China
| | | | - Jinying Yang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Stippl A, Kirkgöze FN, Bajbouj M, Grimm S. Differential Effects of Electroconvulsive Therapy in the Treatment of Major Depressive Disorder. Neuropsychobiology 2021; 79:408-416. [PMID: 32344410 DOI: 10.1159/000505553] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIMS/METHODS Electroconvulsive therapy (ECT) is still one of the most potent treatments in the acute phase of major depressive disorder (MDD) and particularly applied in patients considered treatment resistant. However, despite the frequent and widespread use of ECT for >70 years, the exact neurobiological mechanisms underlying its efficacy remain unclear. The present review aims to describe differential antidepressant and cognitive effects of ECT as well as effects on markers of neural activity and connectivity, neurochemistry, and inflammation that might underlie the treatment response and remission. RESULTS Region- specific changes in brain function and volume along with changes in concentrations of neurotransmitters and neuroinflammatory cytokines might serve as potential biomarkers for ECT outcomes. CONCLUSIONS However, as current data is not consistent, future longitudinal investigations should combine modalities such as MRI, MR spectroscopy, and peripheral physiological measures to gain a deeper insight into interconnected time- and modality-specific changes in response to ECT.
Collapse
Affiliation(s)
- Anna Stippl
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Fatma Nur Kirkgöze
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry and Psychotherapy, Charité, University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany, .,MSB Medical School Berlin, Berlin, Germany, .,Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Psychiatric Hospital, Zurich, Switzerland,
| |
Collapse
|
16
|
Janouschek H, Camilleri JA, Peterson Z, Sharkey RJ, Eickhoff CR, Grözinger M, Eickhoff SB, Nickl-Jockschat T. Meta-analytic Evidence for Volume Increases in the Medial Temporal Lobe After Electroconvulsive Therapy. Biol Psychiatry 2021; 90:e11-e17. [PMID: 34119314 PMCID: PMC8324534 DOI: 10.1016/j.biopsych.2021.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/01/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Nickl-Jockschat
- Department of Psychiatry, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa; Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
17
|
Leaver AM, Vasavada M, Kubicki A, Wade B, Loureiro J, Hellemann G, Joshi SH, Woods RP, Espinoza R, Narr KL. Hippocampal subregions and networks linked with antidepressant response to electroconvulsive therapy. Mol Psychiatry 2021; 26:4288-4299. [PMID: 32029885 PMCID: PMC7415508 DOI: 10.1038/s41380-020-0666-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/11/2019] [Accepted: 01/28/2020] [Indexed: 01/29/2023]
Abstract
Electroconvulsive therapy (ECT) has been repeatedly linked to hippocampal plasticity. However, it remains unclear what role hippocampal plasticity plays in the antidepressant response to ECT. This magnetic resonance imaging (MRI) study tracks changes in separate hippocampal subregions and hippocampal networks in patients with depression (n = 44, 23 female) to determine their relationship, if any, with improvement after ECT. Voxelwise analyses were restricted to the hippocampus, amygdala, and parahippocampal cortex, and applied separately for responders and nonresponders to ECT. In analyses of arterial spin-labeled (ASL) MRI, nonresponders exhibited increased cerebral blood flow (CBF) in bilateral anterior hippocampus, while responders showed CBF increases in right middle and left posterior hippocampus. In analyses of gray matter volume (GMV) using T1-weighted MRI, GMV increased throughout bilateral hippocampus and surrounding tissue in nonresponders, while responders showed increased GMV in right anterior hippocampus only. Using CBF loci as seed regions, BOLD-fMRI data from healthy controls (n = 36, 19 female) identified spatially separable neurofunctional networks comprised of different brain regions. In graph theory analyses of these networks, functional connectivity within a hippocampus-thalamus-striatum network decreased only in responders after two treatments and after index. In sum, our results suggest that the location of ECT-related plasticity within the hippocampus may differ according to antidepressant outcome, and that larger amounts of hippocampal plasticity may not be conducive to positive antidepressant response. More focused targeting of hippocampal subregions and/or circuits may be a way to improve ECT outcome.
Collapse
Affiliation(s)
- Amber M. Leaver
- Ahmanson-Lovelace Brain Mapping Center, Department of
Neurology, University of California Los Angeles, Los Angeles, CA, 90095,Center for Translational Imaging, Department of Radiology,
Northwestern University, Chicago, IL, 60611,Corresponding Author: Amber M. Leaver Ph.D.,
Address: 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, Phone 312 694 2966,
Fax 310 926 5991,
| | - Megha Vasavada
- Ahmanson-Lovelace Brain Mapping Center, Department of
Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Antoni Kubicki
- Ahmanson-Lovelace Brain Mapping Center, Department of
Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Benjamin Wade
- Ahmanson-Lovelace Brain Mapping Center, Department of
Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Joana Loureiro
- Ahmanson-Lovelace Brain Mapping Center, Department of
Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Gerhard Hellemann
- Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA, 90095
| | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of
Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Roger P. Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of
Neurology, University of California Los Angeles, Los Angeles, CA, 90095,Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA, 90095
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA, 90095
| | - Katherine L. Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of
Neurology, University of California Los Angeles, Los Angeles, CA, 90095,Department of Psychiatry and Biobehavioral Sciences,
University of California Los Angeles, Los Angeles, CA, 90095
| |
Collapse
|
18
|
Porta-Casteràs D, Cano M, Camprodon JA, Loo C, Palao D, Soriano-Mas C, Cardoner N. A multimetric systematic review of fMRI findings in patients with MDD receiving ECT. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110178. [PMID: 33197507 DOI: 10.1016/j.pnpbp.2020.110178] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is considered the most effective treatment for major depressive disorder (MDD). In recent years, the pursuit of the neurobiological mechanisms of ECT action has generated a significant amount of functional magnetic resonance imaging (fMRI) research. OBJECTIVE In this systematic review, we integrated all fMRI research in patients with MDD receiving ECT and, importantly, evaluated the level of convergence and replicability across multiple fMRI metrics. RESULTS While according to most studies changes in patients with MDD after ECT appear to be widely distributed across the brain, our multimetric review revealed specific changes involving functional connectivity increases in the superior and middle frontal gyri as the most replicated and across-modality convergent findings. Although this modulation of prefrontal connectivity was associated to ECT outcome, we also identified fMRI measurements of the subgenual anterior cingulate cortex as the fMRI signals most significantly linked to clinical response. CONCLUSION We identified specific prefrontal and cingulate territories which activity and connectivity with other brain regions is modulated by ECT, critically accounting for its mechanism of action.
Collapse
Affiliation(s)
- Daniel Porta-Casteràs
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Marta Cano
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan A Camprodon
- Laboratory for Neuropsychiatry and Neuromodulation, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Colleen Loo
- School of Psychiatry, University of New South Wales, Sydney, Australia; The Black Dog Institute, Sydney, Australia; St George Hospital, Sydney, Australia
| | - Diego Palao
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carles Soriano-Mas
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Psychiatry, Bellvitge University Hospital-IDIBELL, CIBERSAM, Carlos III Health Institute, Barcelona, Spain
| | - Narcís Cardoner
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Tauli University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
19
|
Lemke H, Probst S, Warneke A, Waltemate L, Winter A, Thiel K, Meinert S, Enneking V, Breuer F, Klug M, Goltermann J, Hülsmann C, Grotegerd D, Redlich R, Dohm K, Leehr EJ, Repple J, Opel N, Brosch K, Meller T, Pfarr JK, Ringwald K, Schmitt S, Stein F, Krug A, Jansen A, Nenadic I, Kircher T, Hahn T, Dannlowski U. The Course of Disease in Major Depressive Disorder Is Associated With Altered Activity of the Limbic System During Negative Emotion Processing. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:323-332. [PMID: 34102346 DOI: 10.1016/j.bpsc.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Brain functional alterations during emotion processing in patients with major depressive disorder (MDD) compared with healthy control subjects (HCs) are frequently reported. However, evidence for functional correlates of emotion processing with regard to MDD trajectories is scarce. This study investigates the role of lifetime disease course for limbic brain activation during negative emotional face processing in patients with MDD. METHODS In a large sample of patients with MDD (n = 333; 58.55% female) and HCs (n = 333; 60.06% female), brain activation was investigated during a negative emotional face-processing task within a cross-sectional design. Differences between HC and MDD groups were analyzed. Previous disease course, characterized by 2 components, namely hospitalization and duration of illness, was regressed on brain activation of the amygdala, (para-)hippocampus, and insula in patients with MDD. RESULTS Patients with MDD showed increased activation in the amygdala, insula, and hippocampus compared with HCs (all p values corrected for familywise error [pFWE] < .045). The hospitalization component showed negative associations with brain activation in the bilateral insula (right: pFWE = .026, left: pFWE = .019) and (para-)hippocampus (right: pFWE = .038, left: pFWE = .031). No significant association was found for the duration of illness component (all pFWE > .057). CONCLUSIONS This study investigated negative emotion processing in a large sample of patients with MDD and HCs. Our results confirm limbic hyperactivation in patients with MDD during negative emotion processing; however, this hyperactivation may resolve with a more severe lifetime disease course in the insula and (para-)hippocampus-brain regions involved in emotion processing and regulation. These findings need further replication in longitudinal studies.
Collapse
Affiliation(s)
- Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Stefanie Probst
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Antonia Warneke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Melissa Klug
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Carina Hülsmann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Department of Psychology, University of Halle, Halle, Germany
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | | | - Kai Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
20
|
Yang M, Luo CH, Zhu YQ, Liu YC, An YJ, Iqbal J, Wang ZZ, Ma XM. 7, 8-Dihydroxy-4-methylcoumarin reverses depression model-induced depression-like behaviors and alteration of dendritic spines in the mood circuits. Psychoneuroendocrinology 2020; 119:104767. [PMID: 32563935 DOI: 10.1016/j.psyneuen.2020.104767] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/05/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a common mental disorder characterized by a persistent feeling of sadness, slow thought, impaired focus and loss of interest but the underlying mechanisms are largely unknown. Dendritic spines play an important role in the formation and maintenance of emotional circuits in the brain. Abnormalities in this process can lead to psychiatric diseases. 7,8-Dihydroxy-4-methylcoumarin (Dhmc), a precursor in the synthesis of derivatives of 4-methyl coumarin, plays an important role in protecting the nervous system from developing diseases and its most distinctive feature is safety. The aim of this study was to investigate whether Dhmc alleviates chronic unpredictable mild stress (CUMS)-induced depression-like behaviors and reverses CUMS-induced alterations in dendritic spines of principal neurons in brain areas of the emotional circuits including the hippocampus, medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and basolateral amygdala (BLA) in male rats. Our results showed that CUMS-induced depression-like behaviors were accompanied by a decrease in spine density in pyramidal neurons of both the hippocampal CA3 area and the mPFC, and an increase in spine density in both the neurons of BLA and the medium spiny neurons (MSNs) of the NAc, as well as a decrease in the levels of the AMPA receptor subunit GluA1 and Kalirin-7 in the hippocampus compared with the control group. Intraperitoneal injection (i.p.) of Dhmc to the CUMS-exposed rats ameliorated CUMS-induced depression-like behaviors and reversed CUMS-mediated alterations in spine density and the levels of both GluA1 and Kalirin-7. Our results show an important role of Dhmc in reversing CUMS-induced depression-like behaviors and CUMS-mediated alterations in spine density.
Collapse
Affiliation(s)
- Mi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China; Yangling Vocational & Technical College, Yangling, 71210, China
| | - Chang-Hao Luo
- Yangling Vocational & Technical College, Yangling, 71210, China
| | - Ying-Qi Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Yuan-Chu Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Ye-Juan An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Javed Iqbal
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Zhe-Zhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Xin-Ming Ma
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China; Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, United States.
| |
Collapse
|
21
|
Ai H, Opmeer EM, Marsman JBC, Veltman DJ, van der Wee NJA, Aleman A, van Tol MJ. Longitudinal brain changes in MDD during emotional encoding: effects of presence and persistence of symptomatology. Psychol Med 2020; 50:1316-1326. [PMID: 31169102 DOI: 10.1017/s0033291719001259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The importance of the hippocampus and amygdala for disrupted emotional memory formation in depression is well-recognized, but it remains unclear whether functional abnormalities are state-dependent and whether they are affected by the persistence of depressive symptoms. METHODS Thirty-nine patients with major depressive disorder and 28 healthy controls were included from the longitudinal functional magnetic resonance imaging (fMRI) sub-study of the Netherlands Study of Depression and Anxiety. Participants performed an emotional word-encoding and -recognition task during fMRI at baseline and 2-year follow-up measurement. At baseline, all patients were in a depressed state. We investigated state-dependency by relating changes in brain activation over time to changes in symptom severity. Furthermore, the effect of time spent with depressive symptoms in the 2-year interval was investigated. RESULTS Symptom change was linearly associated with higher activation over time of the left anterior hippocampus extending to the amygdala during positive and negative word-encoding. Especially during positive word encoding, this effect was driven by symptomatic improvement. There was no effect of time spent with depression in the 2-year interval on change in brain activation. Results were independent of medication- and psychotherapy-use. CONCLUSION Using a longitudinal within-subjects design, we showed that hippocampal-amygdalar activation during emotional memory formation is related to depressive symptom severity but not persistence (i.e. time spent with depression or 'load'), suggesting functional activation patterns in depression are not subject to functional 'scarring' although this hypothesis awaits future replication.
Collapse
Affiliation(s)
- Hui Ai
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Esther M Opmeer
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Bernard C Marsman
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden University, Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - André Aleman
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie-José van Tol
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Davidov A, Greer TL. Pathology-Congruent Biases as Biomarkers for Psychopathology. Psychiatr Ann 2020. [DOI: 10.3928/00485713-20200504-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Brain functional effects of electroconvulsive therapy during emotional processing in major depressive disorder. Brain Stimul 2020; 13:1051-1058. [PMID: 32388195 DOI: 10.1016/j.brs.2020.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In treatment-resistant major depressive disorder (MDD), electroconvulsive therapy (ECT) is a treatment with high efficacy. While knowledge regarding changes in brain structure following ECT is growing, the effects of ECT on brain function during emotional processing are largely unknown. OBJECTIVE We investigated the effects of ECT on the activity of the anterior cingulate cortex (ACC) and amygdala during negative emotional stimuli processing and its association with clinical response. METHODS In this non-randomized longitudinal study, patients with MDD (n = 37) were assessed before and after treatment with ECT. Healthy controls (n = 37) were matched regarding age and gender. Functional magnetic resonance imaging (fMRI) was obtained twice, at baseline and after six weeks using a supraliminal face-matching paradigm. In order to evaluate effects of clinical response, additional post-hoc analyses were performed comparing responders to non-responders. RESULTS After ECT, patients with MDD showed a statistically significant increase in ACC activity during processing of negative emotional stimuli (pFWE = .039). This effect was driven by responders (pFWE = .023), while non-responders showed no increase. Responders also had lower pre-treatment ACC activity compared to non-responders (pFWE = .025). No significant effects in the amygdala could be observed. CONCLUSIONS ECT leads to brain functional changes in the ACC, a relevant region for emotional regulation during processing of negative stimuli. Furthermore, baseline ACC activity might serve as a biomarker for treatment response. Findings are in accordance with recent studies highlighting properties of pre-treatment ACC to be associated with general antidepressive treatment response.
Collapse
|
24
|
Loureiro JRA, Leaver A, Vasavada M, Sahib AK, Kubicki A, Joshi S, Woods RP, Wade B, Congdon E, Espinoza R, Narr KL. Modulation of amygdala reactivity following rapidly acting interventions for major depression. Hum Brain Mapp 2020; 41:1699-1710. [PMID: 32115848 PMCID: PMC7268016 DOI: 10.1002/hbm.24895] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 12/28/2022] Open
Abstract
Electroconvulsive therapy (ECT) and ketamine treatment both induce rapidly acting antidepressant effects in patients with major depressive disorder unresponsive to standard treatments, yet their specific impact on emotion processing is unknown. Here, we examined the neural underpinnings of emotion processing within and across patients (N = 44) receiving either ECT (N = 17, mean age: 36.8, 11.0 SD) or repeated subanesthetic (0.5 mg/kg) intravenous ketamine therapy (N = 27, mean age: 37.3, 10.8 SD) using a naturalistic study design. MRI and clinical data were collected before (TP1) and after treatment (TP2); healthy controls (N = 31, mean age: 34.5, 13.5 SD) completed one MRI session (TP1). An fMRI face-matching task probed negative- and positive-valence systems. Whole-brain analysis, comparing neurofunctional changes within and across treatment groups, targeted brain regions involved in emotional facial processing, and included regions-of-interest analysis of amygdala responsivity. Main findings revealed a decrease in amygdalar reactivity after both ECT and ketamine for positive and negative emotional face processing (p < .05 family wise-error (FWE) corrected). Subthreshold changes were observed between treatments within the dorsolateral prefrontal cortex and insula (p < .005, uncorrected). BOLD change for positive faces in the inferior parietal cortex significantly correlated with overall symptom improvement, and BOLD change in frontal regions correlated with anxiety for negative faces, and anhedonia for positive faces (p < .05 FWE corrected). Both serial ketamine and ECT treatment modulate amygdala response, while more subtle treatment-specific changes occur in the larger functional network. Findings point to both common and differential mechanistic upstream systems-level effects relating to fast-acting antidepressant response, and symptoms of anxiety and anhedonia, for the processing of emotionally valenced stimuli.
Collapse
Affiliation(s)
- Joana R. A. Loureiro
- Department of NeurologyAhamason‐Lovelace Brain Mapping CenterLos AngelesCalifornia
| | - Amber Leaver
- Northwestern University Clinical and Translational Sciences Institute (NUCATS)ChicagoIllinois
| | - Megha Vasavada
- Department of NeurologyAhamason‐Lovelace Brain Mapping CenterLos AngelesCalifornia
| | - Ashish K. Sahib
- Department of NeurologyAhamason‐Lovelace Brain Mapping CenterLos AngelesCalifornia
| | - Antoni Kubicki
- Department of NeurologyAhamason‐Lovelace Brain Mapping CenterLos AngelesCalifornia
| | - Shantanu Joshi
- Department of NeurologyAhamason‐Lovelace Brain Mapping CenterLos AngelesCalifornia
| | - Roger P. Woods
- Department of NeurologyAhamason‐Lovelace Brain Mapping CenterLos AngelesCalifornia
| | - Benjamin Wade
- Department of NeurologyAhamason‐Lovelace Brain Mapping CenterLos AngelesCalifornia
| | - Eliza Congdon
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCalifornia
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCalifornia
| | - Katherine L. Narr
- Department of NeurologyAhamason‐Lovelace Brain Mapping CenterLos AngelesCalifornia
- Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesCalifornia
| |
Collapse
|
25
|
Enneking V, Leehr EJ, Dannlowski U, Redlich R. Brain structural effects of treatments for depression and biomarkers of response: a systematic review of neuroimaging studies. Psychol Med 2020; 50:187-209. [PMID: 31858931 DOI: 10.1017/s0033291719003660] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antidepressive pharmacotherapy (AD), electroconvulsive therapy (ECT) and cognitive behavioural therapy (CBT) are effective treatments for major depressive disorder. With our review, we aim to provide a systematic overview of neuroimaging studies that investigate the effects of AD, ECT and CBT on brain grey matter volume (GMV) and biomarkers associated with response. After a systematic database research on PubMed, we included 50 studies using magnetic resonance imaging and investigating (1) changes in GMV, (2) pre-treatment GMV biomarkers associated with response, or (3) the accuracy of predictions of response to AD, ECT or CBT based on baseline GMV data. The strongest evidence for brain structural changes was found for ECT, showing volume increases within the temporal lobe and subcortical structures - such as the hippocampus-amygdala complex, anterior cingulate cortex (ACC) and striatum. For AD, the evidence is heterogeneous as only 4 of 11 studies reported significant changes in GMV. The results are not sufficient in order to draw conclusions about the structural brain effects of CBT. The findings show consistently that higher pre-treatment ACC volume is associated with response to AD, ECT and CBT. An association of higher pre-treatment hippocampal volume and response has only been reported for AD. Machine learning approaches based on pre-treatment whole brain patterns reach accuracies of 64-90% for predictions of AD or ECT response on the individual patient level. The findings underline the potential of brain biomarkers for the implementation in clinical practice as an additive feature within the process of treatment selection.
Collapse
Affiliation(s)
- Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Camilleri JA, Hoffstaedter F, Zavorotny M, Zöllner R, Wolf RC, Thomann P, Redlich R, Opel N, Dannlowski U, Grözinger M, Demirakca T, Sartorius A, Eickhoff SB, Nickl-Jockschat T. Electroconvulsive therapy modulates grey matter increase in a hub of an affect processing network. NEUROIMAGE-CLINICAL 2019; 25:102114. [PMID: 31884221 PMCID: PMC6939059 DOI: 10.1016/j.nicl.2019.102114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/21/2019] [Accepted: 12/02/2019] [Indexed: 02/09/2023]
Abstract
We here present a structural neuroimaging study reporting on a large multi-site patient sample with unipolar depression that underwent ECT. Patients showed grey matter increases in the medial temporal lobe. Connectivity modeling revealed that this altered brain region was involved in networks related to affect processing and memory. This provides a potential explanation, how these structural changes during ECT are involved in both main and side effects of the treatment.
A growing number of recent studies has suggested that the neuroplastic effects of electroconvulsive therapy (ECT) might be prominent enough to be detected through changes of regional gray matter volumes (GMV) during the course of the treatment. Given that ECT patients are difficult to recruit for imaging studies, most publications, however, report only on small samples. Addressing this challenge, we here report results of a structural imaging study on ECT patients that pooled patients from five German sites. Whole-brain voxel-based morphometry (VBM) analysis was performed to detect structural differences in 85 patients with unipolar depression before and after ECT, when compared to 86 healthy controls. Both task-independent and task-dependent physiological whole-brain functional connectivity patterns of these regions were modeled using additional data from healthy subjects. All emerging regions were additionally functionally characterized using the BrainMap database. Our VBM analysis detected a significant increase of GMV in the right hippocampus/amygdala region in patients after ECT compared to healthy controls. In healthy subjects this region was found to be enrolled in a network associated with emotional processing and memory. A region in the left fusiform gyrus was additionally found to have higher GMV in controls when compared with patients at baseline. This region showed minor changes after ECT. Our data points to a GMV increase in patients post ECT in regions that seem to constitute a hub of an emotion processing network. This appears as a plausible antidepressant mechanism and could explain the efficacy of ECT not only in the treatment of unipolar depression, but also of affective symptoms across heterogeneous disorders.
Collapse
Affiliation(s)
- Julia A Camilleri
- Institute of Neuroscience and Medicine-7, Juelich Research Center, Juelich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine-7, Juelich Research Center, Juelich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Maxim Zavorotny
- Department of Psychiatry and Psychotherapy, Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35043 Marburg, Germany
| | - Rebecca Zöllner
- Department of Psychiatry and Psychotherapy, Marburg Center for Mind, Brain and Behavior - MCMBB, Philipps-University Marburg, 35043 Marburg, Germany
| | - Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany; Center for Mental Health, Odenwald District Healthcare Center, Erbach, Germany
| | - Philipp Thomann
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Ronny Redlich
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Nils Opel
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Muenster, Muenster, Germany
| | - Michael Grözinger
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | | | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine-7, Juelich Research Center, Juelich, Germany; Institute of Systems Neuroscience, Heinrich Heine University, Duesseldorf, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, USA.
| |
Collapse
|
27
|
Redlich R, Schneider I, Kerkenberg N, Opel N, Bauhaus J, Enneking V, Repple J, Leehr EJ, Grotegerd D, Kähler C, Förster K, Dohm K, Meinert S, Hahn T, Kugel H, Schwarte K, Schettler C, Domschke K, Arolt V, Heindel W, Baune BT, Zhang W, Hohoff C, Dannlowski U. The role of BDNF methylation and Val 66 Met in amygdala reactivity during emotion processing. Hum Brain Mapp 2019; 41:594-604. [PMID: 31617281 PMCID: PMC7268057 DOI: 10.1002/hbm.24825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic alterations of the brain-derived neurotrophic factor (BDNF) gene have been associated with psychiatric disorders in humans and with differences in amygdala BDNF mRNA levels in rodents. This human study aimed to investigate the relationship between the functional BDNF-Val66 Met polymorphism, its surrounding DNA methylation in BDNF exon IX, amygdala reactivity to emotional faces, and personality traits. Healthy controls (HC, n = 189) underwent functional MRI during an emotional face-matching task. Harm avoidance, novelty seeking and reward dependence were measured using the Tridimensional Personality Questionnaire (TPQ). Individual BDNF methylation profiles were ascertained and associated with several BDNF single nucleotide polymorphisms surrounding the BDNF-Val66 Met, amygdala reactivity, novelty seeking and harm avoidance. Higher BDNF methylation was associated with higher amygdala reactivity (x = 34, y = 0, z = -26, t(166) = 3.00, TFCE = 42.39, p(FWE) = .045), whereby the BDNF-Val66 Met genotype per se did not show any significant association with brain function. Furthermore, novelty seeking was negatively associated with BDNF methylation (r = -.19, p = .015) and amygdala reactivity (r = -.17, p = .028), while harm avoidance showed a trend for a positive association with BDNF methylation (r = .14, p = .066). The study provides first insights into the relationship among BDNF methylation, BDNF genotype, amygdala reactivity and personality traits in humans, highlighting the multidimensional relations among genetics, epigenetics, and neuronal functions. The present study suggests a possible involvement of epigenetic BDNF modifications in psychiatric disorders and related brain functions, whereby high BDNF methylation might reduce BDNF mRNA expression and upregulate amygdala reactivity.
Collapse
Affiliation(s)
- Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ilona Schneider
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | | | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonas Bauhaus
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | | | - Claas Kähler
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Kathrin Schwarte
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Katharina Domschke
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Weiqi Zhang
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
28
|
Enneking V, Dzvonyar F, Dannlowski U, Redlich R. [Neuronal effects and biomarkers of antidepressant treatments : Current review from the perspective of neuroimaging]. DER NERVENARZT 2019; 90:319-329. [PMID: 30729991 DOI: 10.1007/s00115-019-0675-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Depression is one of the most frequent and disabling mental disorders worldwide and is accompanied by a severe impairment in the quality of life. There are numerous imaging studies showing differences in the volume of gray and white brain matter and function between patients suffering from depression and healthy controls. Neuroimaging studies show that pharmacotherapy and electroconvulsive therapy are accompanied by an increase of hippocampal gray matter volume while as a result of psychotherapy activity changes in the anterior cingulate cortex (ACC) have repeatedly been reported. By the identification of neuroanatomical markers, baseline volumes of the ACC have also been shown to be associated with therapy response to all treatments. The identification of such neuronal biomarkers in combination with machine learning techniques provide a promising step towards a neurobiologically based application for the prediction of treatment response.
Collapse
Affiliation(s)
- Verena Enneking
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Münster, Universität Münster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Münster, Deutschland
| | - Fanni Dzvonyar
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Münster, Universität Münster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Münster, Deutschland
| | - Udo Dannlowski
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Münster, Universität Münster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Münster, Deutschland
| | - Ronny Redlich
- Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum Münster, Universität Münster, Albert-Schweitzer-Campus 1, Geb. A9, 48149, Münster, Deutschland.
| |
Collapse
|
29
|
Zhuang PC, Tan ZN, Jia ZY, Wang B, Grady JJ, Ma XM. Treadmill Exercise Reverses Depression Model-Induced Alteration of Dendritic Spines in the Brain Areas of Mood Circuit. Front Behav Neurosci 2019; 13:93. [PMID: 31130853 PMCID: PMC6509176 DOI: 10.3389/fnbeh.2019.00093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Depression is one of the most prevalent psychiatric disorders. Exercise has been shown to be effective in the amelioration of depression, but the underlying mechanism remains largely unknown. Alterations in the density and morphology of dendritic spines are associated with psychiatric diseases. Chronic unpredictable mild stress (CUMS) is an established animal model of depression. The aim of this study was to determine whether treadmill exercise reverses CUMS-induced both depression-like behaviors and alterations in spine density and morphology of the principal neurons in the brain areas of the mood circuits including the hippocampus, medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and basolateral amygdala (BLA). Male rats were randomly divided into four groups: control, CUMS, exercise, and CUMS+exercise. CUMS-induced depression-like behaviors were evaluated by the sucrose preference test (SPT). Golgi staining was used to visualize dendritic spines. Our results showed that CUMS-induced depression-like behaviors characterized by a decrease in sucrose consumption were accompanied by a decrease in spine density and a change in spine morphology in the pyramidal neurons of both the hippocampal CA3 area and the mPFC, and an increase in spine density and an alteration in spine shape in both the NAc medium spiny neurons (MSNs) and the BLA neurons; exercise reversed both CUMS-induced depression-like behaviors and alterations in dendritic spines. This study provides important information for understanding the mechanism through which exercise ameliorates CUMS-induced depression-like behaviors.
Collapse
Affiliation(s)
- Pu-Chao Zhuang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Nei Tan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zi-Yan Jia
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biju Wang
- Department of Statistics, University of Connecticut, Storrs, CT, United States.,Connecticut Convergence Institute, University of Connecticut Health, Farmington, CT, United States
| | - James J Grady
- Connecticut Convergence Institute, University of Connecticut Health, Farmington, CT, United States.,Department of Community Medicine, University of Connecticut Health, Farmington, CT, United States
| | - Xin-Ming Ma
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States
| |
Collapse
|
30
|
Weightman MJ, Knight MJ, Baune BT. A systematic review of the impact of social cognitive deficits on psychosocial functioning in major depressive disorder and opportunities for therapeutic intervention. Psychiatry Res 2019; 274:195-212. [PMID: 30807971 DOI: 10.1016/j.psychres.2019.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/01/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
Social cognition is the ability to identify, perceive and interpret socially relevant information from the external world. It is an important adaptive trait, but is frequently affected in major depressive disorder by a mood-congruent interpretive bias. The present review examined the existing body of literature to determine (i) the impact social cognitive deficits in depression have on psychosocial functioning; and (ii) the utility of psychotropic, psychological and procedural interventions employed to target these deficits. A total of 107 studies met inclusion criteria for review. Social cognitive performance was found to adversely impact depressed patients' psychosocial functioning across the key domains of general cognitive functioning and quality of life. Secondly, many current therapies were found to have a normalising effect on the social cognitive abilities of subjects with major depressive disorder, both at a neural and functional level. In particular, certain anti-depressant medications corrected facial affect recognition deficits, while several psychotherapeutic approaches improved impairments in theory of mind and negative interpretive bias.
Collapse
Affiliation(s)
- Michael James Weightman
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Matthew James Knight
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Bernhard Theodor Baune
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia 5005, Australia; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria 3010, Australia; Department of Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
31
|
Leaver AM, Vasavada M, Joshi SH, Wade B, Woods RP, Espinoza R, Narr KL. Mechanisms of Antidepressant Response to Electroconvulsive Therapy Studied With Perfusion Magnetic Resonance Imaging. Biol Psychiatry 2019; 85:466-476. [PMID: 30424864 PMCID: PMC6380917 DOI: 10.1016/j.biopsych.2018.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Converging evidence suggests that electroconvulsive therapy (ECT) induces neuroplasticity in patients with severe depression, though how this relates to antidepressant response is less clear. Arterial spin-labeled functional magnetic resonance imaging tracks absolute changes in cerebral blood flow (CBF) linked with brain function and offers a potentially powerful tool when observing neurofunctional plasticity with functional magnetic resonance imaging. METHODS Using arterial spin-labeled functional magnetic resonance imaging, we measured global and regional CBF associated with clinically prescribed ECT and therapeutic response in patients (n = 57, 30 female) before ECT, after two treatments, after completing an ECT treatment "index" (∼4 weeks), and after long-term follow-up (6 months). Age- and sex-matched control subjects were also scanned twice (n = 36, 19 female), ∼4 weeks apart. RESULTS Patients with lower baseline global CBF were more likely to respond to ECT. Regional CBF increased in the right anterior hippocampus in all patients irrespective of clinical outcome, both after 2 treatments and after ECT index. However, hippocampal CBF increases postindex were more pronounced in nonresponders. ECT responders exhibited CBF increases in the dorsomedial thalamus and motor cortex near the vertex ECT electrode, as well as decreased CBF within lateral frontoparietal regions. CONCLUSIONS ECT induces functional neuroplasticity in the hippocampus, which could represent functional precursors of ECT-induced increases in hippocampal volume reported previously. However, excessive functional neuroplasticity within the hippocampus may not be conducive to positive clinical outcome. Instead, our results suggest that although hippocampal plasticity may contribute to antidepressant response in ECT, balanced plasticity in regions relevant to seizure physiology including thalamocortical networks may also play a critical role.
Collapse
Affiliation(s)
- Amber M. Leaver
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095,Department of Radiology, Northwestern University, Chicago, IL, 60611,Corresponding Author: Amber M. Leaver Ph.D., Address: 737 N Michigan Ave, Suite 1600,Chicago, IL 60611, Phone 312 694 2966, Fax 310 926 5991,
| | - Megha Vasavada
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Benjamin Wade
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095
| | - Roger P. Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095
| | - Katherine L. Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California Los Angeles, Los Angeles, CA, 90095,Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095
| |
Collapse
|
32
|
Schulze L, Schulze A, Renneberg B, Schmahl C, Niedtfeld I. Neural Correlates of Affective Disturbances: A Comparative Meta-analysis of Negative Affect Processing in Borderline Personality Disorder, Major Depressive Disorder, and Posttraumatic Stress Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 4:220-232. [PMID: 30581154 DOI: 10.1016/j.bpsc.2018.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/17/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Borderline personality disorder (BPD), major depressive disorder (MDD), and posttraumatic stress disorder (PTSD) are prominent examples of mental disorders with affective disturbances. Notably, all three disorders share a generally heightened negative affect, which is presumably the result of shared neural abnormalities in affective processing. In this meta-analysis, we aimed to identify transdiagnostic and disorder-specific abnormalities during the processing of negative compared with neutral stimuli. METHODS We synthesized neuroimaging findings of affect processing in BPD, MDD, and PTSD and calculated combined coordinate- and image-based meta-analyses. The analysis comprised 70 distinct study samples with a total of 31 unthresholded statistical parametric maps. Twenty-four studies had a focus on BPD (431 individuals with BPD, 436 healthy control subjects [HCs]), 32 studies on MDD (789 individuals with current MDD, 870 HCs), and 14 studies on PTSD (247 individuals with PTSD, 245 HCs). RESULTS Findings showed limbic hyperactivations in BPD and PTSD compared with limbic activation of HCs. In contrast, patients with MDD showed blunted amygdala activation in comparison with that of HCs. Additionally, the calculation of overlapping brain abnormalities in BPD, MDD, and PTSD highlighted transdiagnostic hyperactivation of the right median cingulate gyri and hypoactivation of the right middle frontal gyrus and the right middle occipital gyrus. Finally, disorder-specific comparisons also illustrate unique abnormalities for each mental disorder. CONCLUSIONS The present results support shared and disorder-specific neural abnormalities in patients with affective disturbances.
Collapse
Affiliation(s)
- Lars Schulze
- Department of Clinical Psychology and Psychotherapy, Freie Universität Berlin, Berlin, Germany.
| | - Andreas Schulze
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Babette Renneberg
- Department of Clinical Psychology and Psychotherapy, Freie Universität Berlin, Berlin, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| | - Inga Niedtfeld
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim at Heidelberg University, Mannheim, Germany
| |
Collapse
|
33
|
Using optimal combined moderators to define heterogeneity in neural responses to randomized conditions: Application to the effect of sleep loss on fear learning. Neuroimage 2018; 181:718-727. [PMID: 30041060 DOI: 10.1016/j.neuroimage.2018.07.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/24/2022] Open
Abstract
Comparing the neural outcomes of two randomized experimental groups is a primary aim of many functional neuroimaging studies. However, between-group effects can be obscured by heterogeneity in neural responses. Optimal Combined Moderator (OCM) approaches have previously been used to clarify heterogeneity in clinical outcomes following treatment randomization. We show that OCMs can also be used to clarify heterogeneity in the effect of a randomized experimental condition on neural responses. In 78 healthy adults aged 18-30 from the Effects of Dose-Dependent Sleep Disruption on Fear and Reward (SFeRe) study, we used demographic, clinical, genetic, and polysomnographic characteristics to develop OCMs for the effect of a randomized sleep restriction (SR) versus normal sleep (NS) condition on blood-oxygen-level dependent responses in the right amygdala (RAmyg) and subgenual anterior cingulate cortex (sgACC) during fear conditioning (FC) and extinction (FE) paradigms. The OCM for the RAmyg during FE was strongest [r (95% CI) = 0.52 (0.42, 0.68)], withstood cross-validation, and divided the sample into two subgroups with opposing experimental effects. Among N = 48 participants ("SR < NS"), those with SR exhibited less RAmyg activation during FE than those with NS [d (95%CI) = -1.10 (-1.86, -0.77)]. Among the remaining N = 30 participants ("SR > NS"), those with SR exhibited greater RAmyg activation during FE following SR than those with NS [d (95%CI) = 0.87 (0.37,1.78)]. SR > NS participants were more likely to be female, white, l/l genotype carriers, and have a psychiatric history. They had less sleep (overall and in REM), lower REM density, and lower spindle activity (12-16 Hz). Applying OCMs to randomized studies with neural outcomes can clarify neural heterogeneity and jumpstart mechanistic research; with further validation they also offer promise for personalized brain-based treatments and interventions.
Collapse
|
34
|
Grimm O, Kraehenmann R, Preller KH, Seifritz E, Vollenweider FX. Psilocybin modulates functional connectivity of the amygdala during emotional face discrimination. Eur Neuropsychopharmacol 2018; 28:691-700. [PMID: 29703645 DOI: 10.1016/j.euroneuro.2018.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/28/2017] [Accepted: 03/22/2018] [Indexed: 11/26/2022]
Abstract
Recent studies suggest that the antidepressant effects of the psychedelic 5-HT2A receptor agonist psilocybin are mediated through its modulatory properties on prefrontal and limbic brain regions including the amygdala. To further investigate the effects of psilocybin on emotion processing networks, we studied for the first-time psilocybin's acute effects on amygdala seed-to-voxel connectivity in an event-related face discrimination task in 18 healthy volunteers who received psilocybin and placebo in a double-blind balanced cross-over design. The amygdala has been implicated as a salience detector especially involved in the immediate response to emotional face content. We used beta-series amygdala seed-to-voxel connectivity during an emotional face discrimination task to elucidate the connectivity pattern of the amygdala over the entire brain. When we compared psilocybin to placebo, an increase in reaction time for all three categories of affective stimuli was found. Psilocybin decreased the connectivity between amygdala and the striatum during angry face discrimination. During happy face discrimination, the connectivity between the amygdala and the frontal pole was decreased. No effect was seen during discrimination of fearful faces. Thus, we show psilocybin's effect as a modulator of major connectivity hubs of the amygdala. Psilocybin decreases the connectivity between important nodes linked to emotion processing like the frontal pole or the striatum. Future studies are needed to clarify whether connectivity changes predict therapeutic effects in psychiatric patients.
Collapse
Affiliation(s)
- O Grimm
- University Hospital Frankfurt, Departement of Psychiatry, Psychosomatics and Psychotherapy, Frankfurt am Main, Germany; Psychiatric Hospital Zürich, Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich, Switzerland.
| | - R Kraehenmann
- Psychiatric Hospital Zürich, Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich, Switzerland
| | - K H Preller
- Psychiatric Hospital Zürich, Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich, Switzerland
| | - E Seifritz
- Psychiatric Hospital Zürich, Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich, Switzerland
| | - F X Vollenweider
- Psychiatric Hospital Zürich, Department of Psychiatry, Psychotherapy and Psychosomatics, Zürich, Switzerland
| |
Collapse
|
35
|
Cao B, Luo Q, Fu Y, Du L, Qiu T, Yang X, Chen X, Chen Q, Soares JC, Cho RY, Zhang XY, Qiu H. Predicting individual responses to the electroconvulsive therapy with hippocampal subfield volumes in major depression disorder. Sci Rep 2018; 8:5434. [PMID: 29615675 PMCID: PMC5882798 DOI: 10.1038/s41598-018-23685-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for major depression disorder (MDD). ECT can induce neurogenesis and synaptogenesis in hippocampus, which contains distinct subfields, e.g., the cornu ammonis (CA) subfields, a granule cell layer (GCL), a molecular layer (ML), and the subiculum. It is unclear which subfields are affected by ECT and whether we predict the future treatment response to ECT by using volumetric information of hippocampal subfields at baseline? In this study, 24 patients with severe MDD received the ECT and their structural brain images were acquired with magnetic resonance imaging before and after ECT. A state-of-the-art hippocampal segmentation algorithm from Freesurfer 6.0 was used. We found that ECT induced volume increases in CA subfields, GCL, ML and subiculum. We applied a machine learning algorithm to the hippocampal subfield volumes at baseline and were able to predict the change in depressive symptoms (r = 0.81; within remitters, r = 0.93). Receiver operating characteristic analysis also showed robust prediction of remission with an area under the curve of 0.90. Our findings provide evidence for particular hippocampal subfields having specific roles in the response to ECT. We also provide an analytic approach for generating predictions about clinical outcomes for ECT in MDD.
Collapse
Affiliation(s)
- Bo Cao
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Qinghua Luo
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yixiao Fu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Lian Du
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Tian Qiu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiangying Yang
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Xiaolu Chen
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Qibin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Raymond Y Cho
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Xiang Yang Zhang
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, United States
| | - Haitang Qiu
- Mental Health Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China.
| |
Collapse
|
36
|
Redlich R, Opel N, Bürger C, Dohm K, Grotegerd D, Förster K, Zaremba D, Meinert S, Repple J, Enneking V, Leehr E, Böhnlein J, Winters L, Froböse N, Thrun S, Emtmann J, Heindel W, Kugel H, Arolt V, Romer G, Postert C, Dannlowski U. The Limbic System in Youth Depression: Brain Structural and Functional Alterations in Adolescent In-patients with Severe Depression. Neuropsychopharmacology 2018; 43:546-554. [PMID: 29039414 PMCID: PMC5770774 DOI: 10.1038/npp.2017.246] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023]
Abstract
Adolescent-onset major depressive disorder (MDD) is associated with an increased risk of recurrent depressive episodes, suicidal behaviors, and psychiatric morbidity throughout the lifespan. The objective of the present study was to investigate brain structural and functional changes in adolescent patients with MDD. Furthermore, we aimed to clarify the influence of early-life stress on brain function and structure. The study investigated adolescent patients with severe MDD (n=20, mean age=16.0, range=15-18 years) and a control sample of matched healthy adolescents (n=21, mean age=16.6, range=15-18 years). Functional MRI data were obtained using a face-matching paradigm to investigate emotion processing. Structural MRI data were analyzed using voxel-based morphometry (VBM). In line with previous studies on adult MDD, adolescent patients showed elevated amygdala activity to negative and reduced amygdala activity to positive emotional stimuli. Furthermore, MDD patients showed smaller hippocampal volumes compared to healthy adolescents. Higher levels of childhood maltreatment were associated with smaller hippocampal volumes in both depressed patients and healthy controls, whereby no associations between amygdala reactivity and childhood maltreatment were found. Our results suggest that hippocampal alterations in youth MDD patients may at least partly be traced back to higher occurrence of early-life adverse experiences. Regarding the strong morphometric impact of childhood maltreatment and its distinctly elevated prevalence in MDD populations, this study provides an alternative explanation for frequently observed limbic structural abnormalities in depressed patients.
Collapse
Affiliation(s)
- Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany,Department of Psychiatry, University of Muenster, Albert-Schweitzer-Campus 1, A9, Muenster 48149, Germany, Tel: +49-251-8357214, Fax: +49-251-8358641, E-mail:
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christian Bürger
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | | | - Dario Zaremba
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth Leehr
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Joscha Böhnlein
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Lena Winters
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Neele Froböse
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Sophia Thrun
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Julia Emtmann
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Georg Romer
- Department of Child and Adolescent Psychiatry, University of Münster, Münster, Germany
| | - Christian Postert
- Department of Child and Adolescent Psychiatry, University of Münster, Münster, Germany,Department of Applied Health Sciences, University of Applied Sciences, Bochum, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
37
|
Seeberg I, Kjaerstad HL, Miskowiak KW. Neural and Behavioral Predictors of Treatment Efficacy on Mood Symptoms and Cognition in Mood Disorders: A Systematic Review. Front Psychiatry 2018; 9:337. [PMID: 30093870 PMCID: PMC6071514 DOI: 10.3389/fpsyt.2018.00337] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
Background: The clinical and etiological heterogeneity of mood disorders impede identification of effective treatments for the individual patient. This highlights a need for early neuronal and behavioral biomarkers for treatment efficacy, which can provide a basis for more personalized treatments. The present systematic review aimed to identify the most consistent neuronal and behavioral predictors of treatment efficacy on mood symptoms and cognitive impairment in mood disorders. Methods: We identified and included 60 original peer-reviewed studies investigating neuroimaging and behavioral predictors of treatment efficacy within the domains of emotional and non-emotional cognition, structural neuroimaging, and resting state functional connectivity in patients with unipolar or bipolar disorder. Results: Lower baseline responsivity in limbic regions coupled with heightened medial and dorsal prefrontal responses to emotional stimuli were the most consistent predictors of response to pharmacotherapy for depression. In contrast, heightened limbic and ventral prefrontal reactivity to emotional stimuli seemed to predict efficacy of psychological interventions. Early modulation of fronto-limbic activity and reduction in negative bias were also associated with treatment response. Better performance on non-emotional tests at baseline was relatively consistently associated with efficacy on mood symptoms, whereas the association between neural activity during non-emotional tests and treatment response was less clear. Other baseline factors associated with treatment response were greater white matter integrity, resting state functional connectivity, more prefrontal gray matter volume as well as an early increase following short administered treatment. Finally, emerging evidence indicates that baseline cognitive deficits are associated with greater chances of achieving treatment efficacy on cognition. Conclusions: Patients' profile of emotional and non-emotional cognition and neural activity-and the early treatment-associated changes in neural and cognitive function-may be useful for guiding treatments for depression. While cognitive deficits at baseline seem to improve chances of treatment efficacy on cognition, more studies of this association are urgently needed.
Collapse
Affiliation(s)
- Ida Seeberg
- Neurocognition and Emotion in Affective Disorders Group, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Hanne L Kjaerstad
- Neurocognition and Emotion in Affective Disorders Group, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Neurocognition and Emotion in Affective Disorders Group, Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|