1
|
Dong D, Pizzagalli DA, Bolton TAW, Ironside M, Zhang X, Li C, Sun X, Xiong G, Cheng C, Wang X, Yao S, Belleau EL. Sex-specific resting state brain network dynamics in patients with major depressive disorder. Neuropsychopharmacology 2024; 49:806-813. [PMID: 38218921 PMCID: PMC10948777 DOI: 10.1038/s41386-024-01799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Sex-specific neurobiological changes have been implicated in Major Depressive Disorder (MDD). Dysfunctions of the default mode network (DMN), salience network (SN) and frontoparietal network (FPN) are critical neural characteristics of MDD, however, the potential moderating role of sex on resting-state network dynamics in MDD has not been sufficiently evaluated. Thus, resting-state functional magnetic resonance imaging (fMRI) data were collected from 138 unmedicated patients with first-episode MDD (55 males) and 243 healthy controls (HCs; 106 males). Recurring functional network co-activation patterns (CAPs) were extracted, and time spent in each CAP (the total amount of volumes associated to a CAP), persistence (the average number of consecutive volumes linked to a CAP), and transitions across CAPs involving the SN, DMN and FPN were quantified. Relative to HCs, MDD patients exhibited greater persistence in a CAP involving activation of the DMN and deactivation of the FPN (DMN + FPN-). In addition, relative to the sex-matched HCs, the male MDD group spent more time in two CAPs involving the SN and DMN (i.e., DMN + SN- and DMN-SN + ) and transitioned more frequently from the DMN + FPN- CAP to the DMN + SN- CAP relative to the male HC group. Conversely, the female MDD group showed less persistence in the DMN + SN- CAP relative to the female HC group. Our findings highlight that the imbalance between SN and DMN could be a neurobiological marker supporting sex differences in MDD. Moreover, the dominance of the DMN accompanied by the deactivation of the FPN could be a sex-independent neurobiological correlate related to depression.
Collapse
Affiliation(s)
- Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Diego A Pizzagalli
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Thomas A W Bolton
- Connectomics Laboratory, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Maria Ironside
- McLean Hospital, Belmont, MA, USA
- Harvard Medical School, Boston, MA, USA
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Xiaocui Zhang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Chuting Li
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
- China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China.
| | - Emily L Belleau
- McLean Hospital, Belmont, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Spets DS, Karanian JM, Slotnick SD. True and false memories for spatial location evoke more similar patterns of brain activity in males than females. Memory 2024:1-9. [PMID: 38527188 DOI: 10.1080/09658211.2024.2333505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
True and false memories recruit a number of shared brain regions; however, they are not completely overlapping. Extensive sex differences have been identified in the brain during true memories and, recently, we identified sex differences in the brain during false memories. In the current fMRI study, we sought to determine whether sex differences existed in the location and extent of overlap between true and false memories. True and false memories activated a number of shared brain regions. Compared to females, males produced a greater number of overlapping brain regions (8 versus 2 activations for males and females, respectively) including the prefrontal cortex, parietal cortex, and early/late visual processing cortices (including V1) in males and prefrontal and parietal cortices in females. Males had significantly higher similarity between true and false memory activation maps, revealed by our novel multi-voxel pattern correlation analysis. Moreover, higher similarity between true and false memory activation maps was associated with higher false memory rates. The current results suggest that true and false memories are more similar in males than females. The significant brain-behavior relationship also suggests that males may be more susceptible to false memory errors due to their highly similar true memory-false memory cortical representations.
Collapse
Affiliation(s)
- Dylan S Spets
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jessica M Karanian
- Department of Psychological and Brain Sciences, Fairfield University, Fairfield, CT, USA
| | - Scott D Slotnick
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
3
|
Testa G, Sotgiu I, Rusconi ML, Cauda F, Costa T. The Functional Neuroimaging of Autobiographical Memory for Happy Events: A Coordinate-Based Meta-Analysis. Healthcare (Basel) 2024; 12:711. [PMID: 38610134 PMCID: PMC11011908 DOI: 10.3390/healthcare12070711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Neuroimaging studies using autobiographical recall methods investigated the neural correlates of happy autobiographical memories (AMs). The scope of the present activation likelihood estimation (ALE) meta-analysis was to quantitatively analyze neuroimaging studies of happy AMs conducted with autobiographical recall paradigms. A total of 17 studies (12 fMRI; 5 PET) on healthy individuals were included in this meta-analysis. During recall of happy life events, consistent activation foci were found in the frontal gyrus, the cingulate cortex, the basal ganglia, the parahippocampus/hippocampus, the hypothalamus, and the thalamus. The result of this quantitative coordinate-based ALE meta-analysis provides an objective view of brain responses associated with AM recollection of happy events, thus identifying brain areas consistently activated across studies. This extended brain network included frontal and limbic regions involved in remembering emotionally relevant positive events. The frontal gyrus and the cingulate cortex may be responsible for cognitive appraisal processes during recollection of happy AMs, while the subthalamic nucleus and globus pallidus may be involved in pleasure reactions associated with recollection of happy life events. These findings shed light on the neural network involved in recalling positive AMs in healthy individuals, opening further avenues for future research in clinical populations with mood disorders.
Collapse
Affiliation(s)
- Giulia Testa
- Instituto de Transferencia e Investigación, Universidad Internacional de La Rioja, 26004 La Rioja, Spain
| | - Igor Sotgiu
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (I.S.); (M.L.R.)
| | - Maria Luisa Rusconi
- Department of Human and Social Sciences, University of Bergamo, 24129 Bergamo, Italy; (I.S.); (M.L.R.)
| | - Franco Cauda
- Department of Psychology, University of Turin, 10124 Turin, Italy; (F.C.); (T.C.)
- GCS-fMRI Research Group, Koelliker Hospital, 10134 Turin, Italy
| | - Tommaso Costa
- Department of Psychology, University of Turin, 10124 Turin, Italy; (F.C.); (T.C.)
- GCS-fMRI Research Group, Koelliker Hospital, 10134 Turin, Italy
| |
Collapse
|
4
|
Zhang J, Wu X, Si Y, Liu Y, Wang X, Geng Y, Chang Q, Jiang X, Zhang H. Abnormal caudate nucleus activity in patients with depressive disorder: Meta-analysis of task-based functional magnetic resonance imaging studies with behavioral domain. Psychiatry Res Neuroimaging 2024; 338:111769. [PMID: 38141592 DOI: 10.1016/j.pscychresns.2023.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 12/25/2023]
Abstract
During task-based functional magnetic resonance imaging (t-fMRI) patients with depressive disorder (DD) have shown abnormal caudate nucleus activation. There have been no meta-analyses that are conducted on the caudate nucleus using Activation Likelihood Estimation (ALE) in patients with DD, and the relationships between abnormal caudate activity and different behavior domains in patients with DD remain unclear. There were 24 previously published t-fMRI studies included in the study with the caudate nucleus as the region of interest. Meta-analyses were performed using the method of ALE. Included five ALE meta-analyses: (1) the hypoactivated caudate nucleus relative to healthy controls (HCs); (2) the hyper-activated caudate nucleus; (3) the abnormal activation in the caudate nucleus in the emotion domain; (4) the abnormal activation in cognition domain; (5) the abnormal activation in the affective cognition domain. Results revealed that the hypo-/hyper-activity in the caudate subregions is mainly located in the caudate body and head, while the relationships between abnormal caudate subregions and different behavior domains are complex. The hypoactivation of the caudate body and head plays a key role in the emotions which indicates there is a positive relationship between the decreased caudate activity and depressed emotional behaviors in patients with DD.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China
| | - Xin Wu
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Yajing Si
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Yahui Liu
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China
| | - Xueke Wang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China
| | - Yibo Geng
- Department of Radiology, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Qiaohua Chang
- Department of Nursing, Xinxiang Medical University, Henan 453003, PR China
| | - Xiaoxiao Jiang
- Department of Nursing, Xinxiang Medical University, Henan 453003, PR China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, PR China; Xinxiang Key Laboratory of Psychopathology and Cognitive Neuroscience, Xinxiang, 453003, PR China; Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, PR China.
| |
Collapse
|
5
|
Shi R, Wang Z, Yang D, Hu Y, Zhang Z, Lan D, Su Y, Wang Y. Short-term and long-term efficacy of accelerated transcranial magnetic stimulation for depression: a systematic review and meta-analysis. BMC Psychiatry 2024; 24:109. [PMID: 38326789 PMCID: PMC10851556 DOI: 10.1186/s12888-024-05545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND In recent years, accelerated transcranial magnetic stimulation (aTMS) has been developed, which has a shortened treatment period. The aim of this study was to evaluate the efficacy and long-term maintenance effects of aTMS in patients with major depressive disorder (MDD). METHODS We systematically searched online databases for aTMS studies in patients with MDD published before February 2023 and performed a meta-analysis on the extracted data. RESULTS Four randomized controlled trials (RCTs) and 10 before-and-after controlled studies were included. The findings showed that depression scores significantly decreased following the intervention (SMD = 1.80, 95% CI (1.31, 2.30), p < 0.00001). There was no significant difference in antidepressant effectiveness between aTMS and standard TMS (SMD = -0.67, 95% CI (-1.62, 0.27), p = 0.16). Depression scores at follow-up were lower than those directly after the intervention based on the depression rating scale (SMD = 0.22, 95% CI (0.06, 0.37), p = 0.006), suggesting a potential long-term maintenance effect of aTMS. Subgroup meta-analysis results indicated that different modes of aTMS may have diverse long-term effects. At the end of treatment with the accelerated repetitive transcranial magnetic stimulation (arTMS) mode, depressive symptoms may continue to improve (SMD = 0.29, 95% CI (0.10, 0.49), I2 = 22%, p = 0.003), while the accelerated intermittent theta burst stimulation (aiTBS) mode only maintains posttreatment effects (SMD = 0.01, 95% CI (-0.45, 0.47), I2 = 66%, p = 0.98). CONCLUSIONS Compared with standard TMS, aTMS can rapidly improve depressive symptoms, but there is no significant difference in efficacy. aTMS may also have long-term maintenance effects, but longer follow-up periods are needed to assess this possibility. TRIAL REGISTRATION This article is original and not under simultaneous consideration for publication. The study was registered on PROSPERO ( https://www.crd.york.ac.uk/prospero/ ) (number: CRD42023406590).
Collapse
Affiliation(s)
- Ruifeng Shi
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China, No. 32, West 2nd Section, 1st Ring Road, 610031, Chengdu, Qingyang District, China
| | - Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China, No. 32, West 2nd Section, 1st Ring Road, 610031, Chengdu, Qingyang District, China
| | - Dong Yang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China, No. 32, West 2nd Section, 1st Ring Road, 610031, Chengdu, Qingyang District, China
| | - Yujie Hu
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China, No. 32, West 2nd Section, 1st Ring Road, 610031, Chengdu, Qingyang District, China
| | - Zhongyang Zhang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China, No. 32, West 2nd Section, 1st Ring Road, 610031, Chengdu, Qingyang District, China
| | - Daotao Lan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China, No. 32, West 2nd Section, 1st Ring Road, 610031, Chengdu, Qingyang District, China
| | - Yihan Su
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China, No. 32, West 2nd Section, 1st Ring Road, 610031, Chengdu, Qingyang District, China.
| | - Yunqiong Wang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China, No. 32, West 2nd Section, 1st Ring Road, 610031, Chengdu, Qingyang District, China.
| |
Collapse
|
6
|
Andrushko JW, Rinat S, Kirby ED, Dahlby J, Ekstrand C, Boyd LA. Females exhibit smaller volumes of brain activation and lower inter-subject variability during motor tasks. Sci Rep 2023; 13:17698. [PMID: 37848679 PMCID: PMC10582116 DOI: 10.1038/s41598-023-44871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Past work has shown that brain structure and function differ between females and males. Males have larger cortical and sub-cortical volume and surface area (both total and subregional), while females have greater cortical thickness in most brain regions. Functional differences are also reported in the literature, yet to date little work has systematically considered whether patterns of brain activity indexed with functional magnetic resonance imaging (fMRI) differ between females and males. The current study sought to remediate this issue by employing task-based whole brain motor mapping analyses using an openly available dataset. We tested differences in patterns of functional brain activity associated with 12 voluntary movement patterns in females versus males. Results suggest that females exhibited smaller volumes of brain activation across all 12 movement tasks, and lower patterns of variability in 10 of the 12 movements. We also observed that females had greater cortical thickness, which is in alignment with previous analyses of structural differences. Overall, these findings provide a basis for considering biological sex in future fMRI research and provide a foundation of understanding differences in how neurological pathologies present in females vs males.
Collapse
Affiliation(s)
- Justin W Andrushko
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Eric D Kirby
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Julia Dahlby
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Chelsea Ekstrand
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Lara A Boyd
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
7
|
Mohammadi S, Seyedmirzaei H, Salehi MA, Jahanshahi A, Zakavi SS, Dehghani Firouzabadi F, Yousem DM. Brain-based Sex Differences in Depression: A Systematic Review of Neuroimaging Studies. Brain Imaging Behav 2023; 17:541-569. [PMID: 37058182 PMCID: PMC10102695 DOI: 10.1007/s11682-023-00772-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Major depressive disorder (MDD) is a common psychiatric illness with a wide range of symptoms such as mood decline, loss of interest, and feelings of guilt and worthlessness. Women develop depression more often than men, and the diagnostic criteria for depression mainly rely on female patients' symptoms. By contrast, male depression usually manifests as anger attacks, aggression, substance use, and risk-taking behaviors. Various studies have focused on the neuroimaging findings in psychiatric disorders for a better understanding of their underlying mechanisms. With this review, we aimed to summarize the existing literature on the neuroimaging findings in depression, separated by male and female subjects. A search was conducted on PubMed and Scopus for magnetic resonance imaging (MRI), functional MRI (fMRI), and diffusion tensor imaging (DTI) studies of depression. After screening the search results, 15 MRI, 12 fMRI, and 4 DTI studies were included. Sex differences were mainly reflected in the following regions: 1) total brain, hippocampus, amygdala, habenula, anterior cingulate cortex, and corpus callosum volumes, 2) frontal and temporal gyri functions, along with functions of the caudate nucleus and prefrontal cortex, and 3) frontal fasciculi and frontal projections of corpus callosum microstructural alterations. Our review faces limitations such as small sample sizes and heterogeneity in populations and modalities. But in conclusion, it reflects the possible roles of sex-based hormonal and social factors in the depression pathophysiology.
Collapse
Affiliation(s)
- Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Interdisciplinary Neuroscience Research Program (INRP), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Jahanshahi
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Sina Zakavi
- School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, USA.
| |
Collapse
|
8
|
Wen X, Han B, Li H, Dou F, Wei G, Hou G, Wu X. Unbalanced amygdala communication in major depressive disorder. J Affect Disord 2023; 329:192-206. [PMID: 36841299 DOI: 10.1016/j.jad.2023.02.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Previous studies suggested an association between functional alteration of the amygdala and typical major depressive disorder (MDD) symptoms. Examining whether and how the interaction between the amygdala and regions/functional networks is altered in patients with MDD is important for understanding its neural basis. METHODS Resting-state functional magnetic resonance imaging data were recorded from 67 patients with MDD and 74 age- and sex-matched healthy controls (HCs). A framework for large-scale network analysis based on seed mappings of amygdala sub-regions, using a multi-connectivity-indicator strategy (cross-correlation, total interdependencies (TI), Granger causality (GC), and machine learning), was employed. Multiple indicators were compared between the two groups. The altered indicators were ranked in a supporting-vector machine-based procedure and associated with the Hamilton Rating Scale for Depression scores. RESULTS The amygdala connectivity with the default mode network and ventral attention network regions was enhanced and that with the somatomotor network, dorsal frontoparietal network, and putamen regions in patients with MDD was reduced. The machine learning analysis highlighted altered indicators that were most conducive to the classification between the two groups. LIMITATIONS Most patients with MDD received different pharmacological treatments. It is difficult to illustrate the medication state's effect on the alteration model because of its complex situation. CONCLUSION The results indicate an unbalanced interaction model between the amygdala and functional networks and regions essential for various emotional and cognitive functions. The model can help explain potential aberrancy in the neural mechanisms that underlie the functional impairments observed across various domains in patients with MDD.
Collapse
Affiliation(s)
- Xiaotong Wen
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, 100872, China.
| | - Bukui Han
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Huanhuan Li
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, 100872, China.
| | - Fengyu Dou
- Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Guodong Wei
- Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Gangqiang Hou
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China
| | - Xia Wu
- School of Artificial Intelligence, Beijing Normal University, Beijing 100093, China
| |
Collapse
|
9
|
Yang C, Xiao K, Ao Y, Cui Q, Jing X, Wang Y. The thalamus is the causal hub of intervention in patients with major depressive disorder: Evidence from the Granger causality analysis. Neuroimage Clin 2023; 37:103295. [PMID: 36549233 PMCID: PMC9795532 DOI: 10.1016/j.nicl.2022.103295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Major depressive disorder (MDD) is the leading mental disorder and afflicts more than 350 million people worldwide. The underlying neural mechanisms of MDD remain unclear, hindering the accurate treatment. Recent brain imaging studies have observed functional abnormalities in multiple brain regions in patients with MDD, identifying core brain regions is the key to locating potential therapeutic targets for MDD. The Granger causality analysis (GCA) measures directional effects between brain regions and, therefore, can track causal hubs as potential intervention targets for MDD. We reviewed literature employing GCA to investigate abnormal brain connections in patients with MDD. The total degree of effective connections in the thalamus (THA) is more than twice that in traditional targets such as the superior frontal gyrus and anterior cingulate cortex. Altered causal connections in patients with MDD mainly included enhanced bottom-up connections from the thalamus to various cortical and subcortical regions and reduced top-down connections from these regions to the THA, indicating excessive uplink sensory information and insufficient downlink suppression information for negative emotions. We suggest that the thalamus is the most crucial causal hub for MDD, which may serve as the downstream target for non-invasive brain stimulation and medication approaches in MDD treatment.
Collapse
Affiliation(s)
- Chengxiao Yang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Kunchen Xiao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Yujia Ao
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiujuan Jing
- Tianfu College of Southwestern University of Finance and Economics, Chengdu 610052, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
10
|
van Schie CC, Chiu CD, Rombouts SARB, Heiser WJ, Elzinga BM. Finding a positive me: Affective and neural insights into the challenges of positive autobiographical memory reliving in borderline personality disorder. Behav Res Ther 2022; 158:104182. [PMID: 36137418 DOI: 10.1016/j.brat.2022.104182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND This study aimed to investigate whether people with borderline personality disorder (BPD) can benefit from reliving positive autobiographical memories in terms of mood and state self-esteem and elucidate the neural processes supporting optimal memory reliving. Particularly the role of vividness and brain areas involved in autonoetic consciousness were studied, as key factors involved in improving mood and state self-esteem by positive memory reliving. METHODS Women with BPD (N = 25), Healthy Controls (HC, N = 33) and controls with Low Self-Esteem (LSE, N = 22) relived four neutral and four positive autobiographical memories in an MRI scanner. After reliving each memory mood and vividness was rated. State self-esteem was assessed before and after the Reliving Autobiographical Memories (RAM) task. RESULTS Overall, mood and state self-esteem were lower in participants with BPD compared to HC and LSE, but both the BPD and LSE group improved significantly after positive memory reliving. Moreover, participants with BPD indicated that they relived their memories with less vividness than HC but not LSE, regardless of valence. When reliving (vs reading) memories, participants with BPD showed increased precuneus and lingual gyrus activation compared to HC but not LSE, which was inversely related to vividness. DISCUSSION Women with BPD seem to experience more challenges in reliving neutral and positive autobiographical memories with lower vividness and less deactivated precuneus potentially indicating altered autonoetic consciousness. Nevertheless, participants with BPD do benefit in mood and self-esteem from reliving positive memories. These findings underline the potential of positive autobiographical memory reliving and suggest that interventions may be further shaped to improve mood and strengthen self-views in people with BPD.
Collapse
Affiliation(s)
- Charlotte C van Schie
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; School of Psychology and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia.
| | - Chui-De Chiu
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| | - Serge A R B Rombouts
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Willem J Heiser
- Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Bernet M Elzinga
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
11
|
Li X, Qin F, Liu J, Luo Q, Zhang Y, Hu J, Chen Y, Wei D, Qiu J. An insula-based network mediates the relation between rumination and interoceptive sensibility in the healthy population. J Affect Disord 2022; 299:6-11. [PMID: 34818518 DOI: 10.1016/j.jad.2021.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Individuals sometimes continuously centered their attention on the same thoughts. When such process tends to be negative and self-referential, we delineated this mental state as rumination, which may undermine body's perception of endogenous signal, but little is known about the certainly relationship and the potential neural mechanisms. METHODS Rumination and interoceptive sensibility were measured by questionnaires, then insula-related network of rumination dimensions were examined by the whole brain resting-state functional connectivity (FC) in 479 college students, and whether the insula-based network mediate the relationship between rumination and interoceptive sensibility were tested. RESULTS Rumination (including brooding reflective pondering) and interoceptive sensibility showed positive correlations. The neural mechanisms of brooding and reflective pondering were all related to the insula-networks, to be specific, brooding was positively correlated with the FC between the left posterior insula (PI) and left parahippocampal gyrus/ hippocampus (PHG), reflective pondering were positively correlated with the FC between the insula subregion and the dorsolateral prefrontal cortex. Moreover, the relationship between brooding and interoceptive sensibility was mediated by the FC between left PI and left PHG. LIMITATIONS We just tested the relationship between rumination and interoceptive sensibility at a cross-sectional level, but it is unclear that whether the longitudinal relationship would be predicted by the related network. CONCLUSIONS Our findings provided new insights into neural mechanisms of brooding and reflective pondering, also the integration of brooding and interoceptive sensibility. The insula-related networks may contribute crucially to rumination and interoception.
Collapse
Affiliation(s)
- Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Facai Qin
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiahui Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Qian Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yi Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jun Hu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Yulin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Faculty of Psychology, Southwest University (SWU), Chongqing 400715, China; Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University.
| |
Collapse
|
12
|
Piani MC, Maggioni E, Delvecchio G, Ferro A, Gritti D, Pozzoli SM, Fontana E, Enrico P, Cinnante CM, Triulzi FM, Stanley JA, Battaglioli E, Brambilla P. Sexual Dimorphism in the Brain Correlates of Adult-Onset Depression: A Pilot Structural and Functional 3T MRI Study. Front Psychiatry 2022; 12:683912. [PMID: 35069272 PMCID: PMC8766797 DOI: 10.3389/fpsyt.2021.683912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Major Depressive Disorder (MDD) is a disabling illness affecting more than 5% of the elderly population. Higher female prevalence and sex-specific symptomatology have been observed, suggesting that biologically-determined dimensions might affect the disease onset and outcome. Rumination and executive dysfunction characterize adult-onset MDD, but sex differences in these domains and in the related brain mechanisms are still largely unexplored. The present pilot study aimed to explore any interactions between adult-onset MDD and sex on brain morphology and brain function during a Go/No-Go paradigm. We hypothesized to detect diagnosis by sex effects on brain regions involved in self-referential processes and cognitive control. Twenty-four subjects, 12 healthy (HC) (mean age 68.7 y, 7 females and 5 males) and 12 affected by adult-onset MDD (mean age 66.5 y, 5 females and 7 males), underwent clinical evaluations and a 3T magnetic resonance imaging (MRI) session. Diagnosis and diagnosis by sex effects were assessed on regional gray matter (GM) volumes and task-related functional MRI (fMRI) activations. The GM volume analyses showed diagnosis effects in left mid frontal cortex (p < 0.01), and diagnosis by sex effects in orbitofrontal, olfactory, and calcarine regions (p < 0.05). The Go/No-Go fMRI analyses showed MDD effects on fMRI activations in left precuneus and right lingual gyrus, and diagnosis by sex effects on fMRI activations in right parahippocampal gyrus and right calcarine cortex (p < 0.001, ≥ 40 voxels). Our exploratory results suggest the presence of sex-specific brain correlates of adult-onset MDD-especially in regions involved in attention processing and in the brain default mode-potentially supporting cognitive and symptom differences between sexes.
Collapse
Affiliation(s)
- Maria Chiara Piani
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Adele Ferro
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Davide Gritti
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara M. Pozzoli
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Fontana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Enrico
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Claudia M. Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio M. Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jeffrey A. Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elena Battaglioli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
13
|
Brébion G, Núñez C, Lombardini F, Senior C, Sánchez Laforga AM, Siddi S, Usall J, Stephan-Otto C. Subclinical depression and anxiety impact verbal memory functioning differently in men and women -an fMRI study. J Psychiatr Res 2021; 140:308-315. [PMID: 34126425 DOI: 10.1016/j.jpsychires.2021.05.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/05/2021] [Accepted: 05/21/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Depressive symptoms are known to affect memory efficiency in various populations. More specifically, several studies conducted in patients suffering from schizophrenia have indicated that memory efficiency is affected by depressed mood in female patients and by anxiety in male patients. We investigated, using neuroimaging techniques, whether similar gender-specific associations with subclinical depression and anxiety could be observed in a non-clinical sample. METHOD Forty-five healthy Spanish-speaking individuals (23 females) were administered a verbal memory task. Lists of high- and low-frequency words were presented. Immediate free recall was requested after the learning of each list, and a yes/no recognition task was completed during the acquisition of the fMRI data. RESULTS Regression analyses revealed that higher depression scores in women, and higher anxiety scores in men, were associated with poorer recall. In women, higher depression scores were further associated with decreased cerebral activity in the right temporoparietal junction, left inferior occipitotemporal gyrus, bilateral thalamus, and left anterior cingulate during correct recognition of target words. In men, anxiety scores were not associated with any cerebral activity. CONCLUSIONS Subclinical depression in women appears to affect memory efficiency by impacting cerebral regions specifically recruited for the cognitive demands of the task, as well as cerebral regions more generally involved in arousal, decision-making, and emotional regulation. Anxiety in men might impact the encoding memory processes. The results, although preliminary, suggest that gender differences may need to be taken into account when developing strategies for the cognitive and pharmacological remediation of memory impairment.
Collapse
Affiliation(s)
- Gildas Brébion
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain.
| | - Christian Núñez
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain
| | | | - Carl Senior
- School of Life & Health Sciences, Aston University, Birmingham, UK; University of Gibraltar, Gibraltar
| | | | - Sara Siddi
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Judith Usall
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Christian Stephan-Otto
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain; Parc Sanitari Sant Joan de Déu, Sant Boi de Llobregat, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| |
Collapse
|
14
|
Hallford DJ, Rusanov D, Yeow JJE, Barry TJ. Overgeneral and specific autobiographical memory predict the course of depression: an updated meta-analysis. Psychol Med 2021; 51:909-926. [PMID: 33875023 DOI: 10.1017/s0033291721001343] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Impairments in retrieving event-level, specific autobiographical memories, termed overgeneral memory (OGM), are recognised as a feature of clinical depression. A previous meta-analytic review assessing how OGM predicts the course of subsequent depressive symptoms showed small effects for correlations and regression analyses when baseline depressive symptoms were controlled for. We aimed to update this study and examine whether their findings replicate given the decade of research that has been published since. A systematic literature review using the same eligibility criteria as the previous meta-analysis led to a doubling of eligible studies (32 v. 15). The results provided more precise estimates of effect sizes, and largely support the finding that OGM predicts the course of depressive symptoms. The effects were generally small, but significantly larger among clinical samples, compared to studies with non-clinical samples. There was some evidence that higher age was associated with stronger effects, and longer follow-up was associated with weaker effects. The findings on other moderating variables that were analysed were mixed. Continued research into this modifiable cognitive process may help to provide an avenue to better understand and treat highly prevalent and impactful depressive disorders.
Collapse
Affiliation(s)
- D J Hallford
- School of Psychology, Deakin University, 1 Gheringhap Street, Geelong, Victoria 3220, Melbourne, Australia
| | - D Rusanov
- School of Psychology, Deakin University, 1 Gheringhap Street, Geelong, Victoria 3220, Melbourne, Australia
| | - J J E Yeow
- School of Psychology, Deakin University, 1 Gheringhap Street, Geelong, Victoria 3220, Melbourne, Australia
| | - T J Barry
- Department of Psychology, University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
15
|
Kakanakova A, Popov S, Maes M. Immunological Disturbances and Neuroimaging Findings in Major Depressive Disorder (MDD) and Alcohol Use Disorder (AUD) Comorbid Patients. Curr Top Med Chem 2021; 20:759-769. [PMID: 32108009 DOI: 10.2174/1568026620666200228093935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023]
Abstract
Mood disorders and Major Depressive Disorder, in particular, appear to be some of the most common psychiatric disorders with a high rate of comorbidity most frequently of anxiety or substance abuse disorders (alcohol use disorder). In both cases - MDD and AUD, a number of immunological disturbances are observed, such as chronic mild inflammation response, increased level of cytokines, hypercortisolaemia, which lead to specific changes in brain neurotransmitter functions. Some of the contemporary brain imaging techniques are functional magnetic resonance imaging (fMRI) and magnetic spectroscopy which are most commonly used to assess the brain metabolism and functional connectivity changes such as altered responses to emotional stimuli in MDD or overactivation of ventromedial prefrontal areas during delayed and underactivation of dorsolateral prefrontal regions during impulsive reward decisions in AUD and dysfunction of gamma-aminobutyric acid (GABA) and/or glutamate neurotransmitter systems, low NAA and myo-Inositol in both MDD and AUD.
Collapse
Affiliation(s)
- Andriana Kakanakova
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Faculty of Medicine, Plovdiv, Bulgaria
| | - Stefan Popov
- Department of Psychiatry and Medical Psychology, Medical University Plovdiv, Faculty of Medicine, Plovdiv, Bulgaria
| | | |
Collapse
|
16
|
Yan M, He Y, Cui X, Liu F, Li H, Huang R, Tang Y, Chen J, Zhao J, Xie G, Guo W. Disrupted Regional Homogeneity in Melancholic and Non-melancholic Major Depressive Disorder at Rest. Front Psychiatry 2021; 12:618805. [PMID: 33679477 PMCID: PMC7928375 DOI: 10.3389/fpsyt.2021.618805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Melancholic depression has been viewed as one severe subtype of major depressive disorder (MDD). However, it is unclear whether melancholic depression has distinct changes in brain imaging. We aimed to explore specific or distinctive alterations in melancholic MDD and whether the alterations could be used to separate melancholic MDD from non-melancholic MDD or healthy controls. Materials and Methods: Thirty-one outpatients with melancholic MDD and thirty-three outpatients with non-melancholic MDD and thirty-two age- and gender-matched healthy controls were recruited. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with the regional homogeneity (ReHo) and support vector machine (SVM) methods. Results: Melancholic MDD patients exhibited lower ReHo in the right superior occipital gyrus/middle occipital gyrus than non-melancholic MDD patients and healthy controls. Merely for non-melancholic MDD patients, decreased ReHo in the right middle frontal gyrus was negatively correlated with the total HRSD-17 scores. SVM analysis results showed that a combination of abnormal ReHo in the right fusiform gyrus/cerebellum Crus I and the right superior occipital gyrus/middle occipital gyrus exhibited the highest accuracy of 83.05% (49/59), with a sensitivity of 90.32% (28/31), and a specificity of 75.00% (21/28) for discriminating patients with melancholic MDD from patients with non-melancholic MDD. And a combination of abnormal ReHo in the right fusiform gyrus/cerebellum VI and left postcentral gyrus/precentral gyrus exhibited the highest accuracy of 98.41% (62/63), with a sensitivity of 96.77% (30/31), and a specificity of 100.00%(32/32) for separating patients with melancholic MDD from healthy controls. Conclusion: Our findings showed the distinctive ReHo pattern in patients with melancholic MDD and found brain area that may be associated with the pathophysiology of non-melancholic MDD. Potential imaging markers for discriminating melancholic MDD from non-melancholic MDD or healthy controls were reported.
Collapse
Affiliation(s)
- Meiqi Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuqiong He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renzhi Huang
- Hunan Key Laboratory of Children's Psychological Development and Brain Cognitive Science, Changsha, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| |
Collapse
|
17
|
Badura-Brack AS, Mills MS, Embury CM, Khanna MM, Klanecky Earl A, Stephen JM, Wang YP, Calhoun VD, Wilson TW. Hippocampal and parahippocampal volumes vary by sex and traumatic life events in children. J Psychiatry Neurosci 2020; 45:288-297. [PMID: 32078279 PMCID: PMC7828931 DOI: 10.1503/jpn.190013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Childhood trauma is reliably associated with smaller hippocampal volume in adults; however, this finding has not been shown in children, and even less is known about how sex and trauma interact to affect limbic structural development in children. METHODS Typically developing children aged 9 to 15 years who completed a trauma history questionnaire and structural T1-weighted MRI were included in this study (n = 172; 85 female, 87 male). All children who reported 4 or more traumas (n = 36) composed the high trauma group, and all children who reported 3 or fewer traumas (n = 136) composed the low trauma group. Using multivariate analysis of covariance, we compared FreeSurfer-derived structural MRI volumes (normalized by total intracranial volume) of the amygdalar, hippocampal and parahippocampal regions by sex and trauma level, controlling for age and study site. RESULTS We found a significant sex × trauma interaction, such that girls with high trauma had greater volumes than boys with high trauma. Follow-up analyses indicated significantly increased volumes for girls and generally decreased volumes for boys, specifically in the hippocampal and parahippocampalregions for the high trauma group; we observed no sex differences in the low trauma group. We noted no interaction effect for the amygdalae. LIMITATIONS We assessed a community sample and did not include a clinical sample. We did not collect data about the ages at which children experienced trauma. CONCLUSION Results revealed that psychological trauma affects brain development differently in girls and boys. These findings need to be followed longitudinally to elucidate how structural differences progress and contribute to well-known sex disparities in psychopathology.
Collapse
Affiliation(s)
- Amy S. Badura-Brack
- From the Department of Psychological Science, Creighton University, Omaha, NE (Badura-Brack, Mills, Khanna, Klanecky Earl); the Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE (Embury, Wilson); the Department of Psychology, University of Nebraska at Omaha, Omaha, NE (Embury); the Mind Research Network, Albuquerque, NM (Stephen, Calhoun); and the Department of Biomedical Engineering, Tulane University, New Orleans, LA (Wang)
| | - Mackenzie S. Mills
- From the Department of Psychological Science, Creighton University, Omaha, NE (Badura-Brack, Mills, Khanna, Klanecky Earl); the Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE (Embury, Wilson); the Department of Psychology, University of Nebraska at Omaha, Omaha, NE (Embury); the Mind Research Network, Albuquerque, NM (Stephen, Calhoun); and the Department of Biomedical Engineering, Tulane University, New Orleans, LA (Wang)
| | - Christine M. Embury
- From the Department of Psychological Science, Creighton University, Omaha, NE (Badura-Brack, Mills, Khanna, Klanecky Earl); the Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE (Embury, Wilson); the Department of Psychology, University of Nebraska at Omaha, Omaha, NE (Embury); the Mind Research Network, Albuquerque, NM (Stephen, Calhoun); and the Department of Biomedical Engineering, Tulane University, New Orleans, LA (Wang)
| | - Maya M. Khanna
- From the Department of Psychological Science, Creighton University, Omaha, NE (Badura-Brack, Mills, Khanna, Klanecky Earl); the Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE (Embury, Wilson); the Department of Psychology, University of Nebraska at Omaha, Omaha, NE (Embury); the Mind Research Network, Albuquerque, NM (Stephen, Calhoun); and the Department of Biomedical Engineering, Tulane University, New Orleans, LA (Wang)
| | - Alicia Klanecky Earl
- From the Department of Psychological Science, Creighton University, Omaha, NE (Badura-Brack, Mills, Khanna, Klanecky Earl); the Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE (Embury, Wilson); the Department of Psychology, University of Nebraska at Omaha, Omaha, NE (Embury); the Mind Research Network, Albuquerque, NM (Stephen, Calhoun); and the Department of Biomedical Engineering, Tulane University, New Orleans, LA (Wang)
| | - Julia M. Stephen
- From the Department of Psychological Science, Creighton University, Omaha, NE (Badura-Brack, Mills, Khanna, Klanecky Earl); the Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE (Embury, Wilson); the Department of Psychology, University of Nebraska at Omaha, Omaha, NE (Embury); the Mind Research Network, Albuquerque, NM (Stephen, Calhoun); and the Department of Biomedical Engineering, Tulane University, New Orleans, LA (Wang)
| | - Yu-Ping Wang
- From the Department of Psychological Science, Creighton University, Omaha, NE (Badura-Brack, Mills, Khanna, Klanecky Earl); the Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE (Embury, Wilson); the Department of Psychology, University of Nebraska at Omaha, Omaha, NE (Embury); the Mind Research Network, Albuquerque, NM (Stephen, Calhoun); and the Department of Biomedical Engineering, Tulane University, New Orleans, LA (Wang)
| | - Vince D. Calhoun
- From the Department of Psychological Science, Creighton University, Omaha, NE (Badura-Brack, Mills, Khanna, Klanecky Earl); the Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE (Embury, Wilson); the Department of Psychology, University of Nebraska at Omaha, Omaha, NE (Embury); the Mind Research Network, Albuquerque, NM (Stephen, Calhoun); and the Department of Biomedical Engineering, Tulane University, New Orleans, LA (Wang)
| | - Tony W. Wilson
- From the Department of Psychological Science, Creighton University, Omaha, NE (Badura-Brack, Mills, Khanna, Klanecky Earl); the Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE (Embury, Wilson); the Department of Psychology, University of Nebraska at Omaha, Omaha, NE (Embury); the Mind Research Network, Albuquerque, NM (Stephen, Calhoun); and the Department of Biomedical Engineering, Tulane University, New Orleans, LA (Wang)
| |
Collapse
|
18
|
Barry TJ, Chiu CP, Raes F, Ricarte J, Lau H. The Neurobiology of Reduced Autobiographical Memory Specificity. Trends Cogn Sci 2018; 22:1038-1049. [DOI: 10.1016/j.tics.2018.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
|
19
|
Ogoh S, Yoo JK, Badrov MB, Parker RS, Anderson EH, Wiblin JL, North CS, Suris A, Fu Q. Cerebral blood flow regulation and cognitive function in women with posttraumatic stress disorder. J Appl Physiol (1985) 2018; 125:1627-1635. [DOI: 10.1152/japplphysiol.00502.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with structural and functional alterations in a number of interacting brain regions, but the physiological mechanism for the high risk of cerebrovascular disease or impairment in brain function remains unknown. Women are more likely to develop PTSD after a trauma than men. We hypothesized that cerebral blood flow (CBF) regulation is impaired in women with PTSD, and it is associated with impairment in cognitive function. To test our hypothesis, we examined dynamic cerebral autoregulation (CA) and cognitive function by using a transfer function analysis between arterial pressure and middle cerebral artery blood velocity and the Stroop Color and Word test (SCWT), respectively. We did not observe any different responses in these hemodynamic variables between women with PTSD ( n = 15) and healthy counterparts (all women; n = 8). Cognitive function was impaired in women with PTSD; specifically, reaction time for the neutral task of SCWT was longer in women with PTSD compared with healthy counterparts ( P = 0.011), but this cognitive dysfunction was not affected by orthostatic stress. On the other hand, transfer function phase, gain, and coherence were not different between groups in either the supine or head-up tilt (60°) position, or even during the cognitive challenge, indicating that dynamic CA was well maintained in women with PTSD. In addition, there was no relationship between cognitive function and dynamic CA. These findings suggest that PTSD-related cognitive dysfunction may not be due to compromised CBF regulation. NEW & NOTEWORTHY Cognitive function was impaired; however, dynamic cerebral autoregulation (CA) as an index of cerebral blood flow regulation was not impaired during supine and 60° head-up tilt in women with PTSD compared with healthy females. In addition, there was no relationship between cognitive function and dynamic CA. These findings suggest that the mechanism of PTSD-related cognitive dysfunction may not be due to CBF regulation.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Jeung-Ki Yoo
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark B. Badrov
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rosemary S. Parker
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas
| | - Elizabeth H. Anderson
- University of Texas Southwestern Medical Center, Dallas, Texas
- Veterans Affairs North Texas Health Care System, Dallas, Texas
| | - Jessica L. Wiblin
- University of Texas Southwestern Medical Center, Dallas, Texas
- Veterans Affairs North Texas Health Care System, Dallas, Texas
| | - Carol S. North
- Metrocare Services and the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alina Suris
- University of Texas Southwestern Medical Center, Dallas, Texas
- Veterans Affairs North Texas Health Care System, Dallas, Texas
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas
- University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|