1
|
Zhang PF, You WY, Gao YJ, Wu XB. Activation of pyramidal neurons in the infralimbic cortex alleviates LPS-induced depressive-like behavior in mice. Brain Res Bull 2024; 214:111008. [PMID: 38866373 DOI: 10.1016/j.brainresbull.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The infralimbic (IL) cortex dysfunction has been implicated in major depressive disorder (MDD), yet the precise cellular and molecular mechanisms remain poorly understood. In this study, we investigated the role of layer V pyramidal neurons in a mouse model of MDD induced by repeated lipopolysaccharide (LPS) administration. Our results demonstrate that three days of systemic LPS administration induced depressive-like behavior and upregulated mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in the IL cortex. Electrophysiological recordings revealed a significant decrease in the intrinsic excitability of layer V pyramidal neurons in the IL following systemic LPS exposure. Importantly, chemogenetic activation of IL pyramidal neurons ameliorated LPS-induced depressive-like behavior. Additionally, LPS administration significantly increased microglial activity in the IL, as evidenced by a greater number of Ionized calcium binding adaptor molecule-1 (IBA-1)-positive cells. Morphometric analysis further unveiled enlarged soma, decreased branch numbers, and shorter branch lengths of microglial cells in the IL cortex following LPS exposure. Moreover, the activation of pyramidal neurons by clozapine-N-oxide increased the microglia branch length but did not change branch number or cytosolic area. These results collectively suggest that targeted activation of pyramidal neurons in the IL cortex mitigates microglial response and ameliorates depressive-like behaviors induced by systemic LPS administration. Therefore, our findings offer potential therapeutic targets for the development of interventions aimed at alleviating depressive symptoms by modulating IL cortical circuitry and microglial activity.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Wen-Yong You
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| |
Collapse
|
2
|
Han S, Zheng Q, Zheng Z, Su J, Liu X, Shi C, Li B, Zhang X, Zhang M, Yu Q, Hou Z, Li T, Zhang B, Lin Y, Wen G, Deng Y, Liu K, Xu K. Exosomal miR-1202 mediates Brodmann Area 44 functional connectivity changes in medication-free patients with major depressive disorder: An fMRI study. J Affect Disord 2024; 356:470-476. [PMID: 38608766 DOI: 10.1016/j.jad.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Previous large-sample postmortem study revealed that the expression of miR-1202 in brain tissues from Brodmann area 44 (BA44) was dysregulated in patients with major depressive disorder (MDDs). However, the specific in vivo neuropathological mechanism of miR-1202 as well as its interplay with BA44 circuits in the depressed brain are still unclear. Here, we performed a case-control study with imaging-genetic approach based on resting-state functional magnetic resonance imaging (MRI) data and miR-1202 quantification from 110 medication-free MDDs and 102 healthy controls. Serum-derived circulating exosomes that readily cross the blood-brain barrier were isolated to quantify miR-1202. For validation, repeated MR scans were performed after a six-week follow-up of antidepressant treatment on a cohort of MDDs. Voxelwise factorial analysis revealed two brain areas (including the striatal-thalamic region) in which the effect of depression on the functional connectivity with BA44 was significantly dependent on the expression level of exosomal miR-1202. Moreover, longitudinal change of the BA44 connectivity with the striatal-thalamic region in MDDs after antidepressant treatment was found to be significantly related to the level of miR-1202 expression. These findings revealed that the in vivo neuropathological effect of miR-1202 dysregulation in depression is possibly exerted by mediating neural functional abnormalities in BA44-striatal-thalamic circuits.
Collapse
Affiliation(s)
- Shuguang Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Research Center for Psychological Crisis Prevention and Intervention of College Students in Jiangsu Province, Jiangsu, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Qingtong Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Zixuan Zheng
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Su
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xiaohua Liu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Changzhou Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Bo Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xuanxuan Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Minghao Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Qian Yu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ziwei Hou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ting Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Lin
- The Fifth Affiliated Hospital of Sun-Yat Sen University, Sun-Yat Sen University, Zhuhai, China; The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ge Wen
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjia Deng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Research Center for Psychological Crisis Prevention and Intervention of College Students in Jiangsu Province, Jiangsu, China.
| | - Kai Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Kuring JK, Mathias JL, Ward L, Tachas G. Inflammatory markers in persons with clinically-significant depression, anxiety or PTSD: A systematic review and meta-analysis. J Psychiatr Res 2023; 168:279-292. [PMID: 37931509 DOI: 10.1016/j.jpsychires.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Depression, anxiety and PTSD appear to be risk factors for dementia, but it is unclear whether they are causal or prodromal. The inflammatory-mediated neurodegeneration hypothesis suggests a causal link, proposing that mental illness is associated with an inflammatory response which, in turn, triggers neurodegenerative changes that lead to dementia. Existing meta-analyses have yet to examine inflammatory markers in depression, anxiety or PTSD with the view to exploring the inflammatory-mediated neurodegeneration hypothesis. The current meta-analysis therefore examined whether: a) depression, anxiety and PTSD are individually associated with inflammation, independently of comorbid mental illnesses and physical health problems with known inflammatory responses, and b) there are any similarities in the inflammatory profiles of these disorders in order to provide a basis for exploring inflammation in people with dementia who have a history of clinically-significant anxiety, depression or PTSD. METHODS PubMed, EMBASE, PsycINFO and CINAHL searches identified 64 eligible studies. RESULTS Depression is associated with an inflammatory response, with tentative evidence to suggest anxiety and PTSD are also associated with inflammation. However, the specific response may differ across these disorders. LIMITATIONS The data for anxiety, PTSD and multiple inflammatory markers were limited. CONCLUSIONS Depression, anxiety, and PTSD each appear to be associated with an inflammatory response in persons who do not have comorbid mental or physical health problems that are known to be associated with inflammation. Whether this inflammatory response underlies the increased risk of dementia in persons with a history of depression and anxiety, and possibly PTSD, remains to be determined.
Collapse
Affiliation(s)
- J K Kuring
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, Australia
| | - J L Mathias
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, Australia.
| | - L Ward
- Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, Australia
| | - G Tachas
- Antisense Therapeutics Ltd, Melbourne, Australia
| |
Collapse
|
4
|
Chen G, Chen P, Gong J, Jia Y, Zhong S, Chen F, Wang J, Luo Z, Qi Z, Huang L, Wang Y. Shared and specific patterns of dynamic functional connectivity variability of striato-cortical circuitry in unmedicated bipolar and major depressive disorders. Psychol Med 2022; 52:747-756. [PMID: 32648539 DOI: 10.1017/s0033291720002378] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Accumulating studies have found structural and functional abnormalities of the striatum in bipolar disorder (BD) and major depressive disorder (MDD). However, changes in intrinsic brain functional connectivity dynamics of striato-cortical circuitry have not been investigated in BD and MDD. This study aimed to investigate the shared and specific patterns of dynamic functional connectivity (dFC) variability of striato-cortical circuitry in BD and MDD. METHODS Brain resting-state functional magnetic resonance imaging data were acquired from 128 patients with unmedicated BD II (current episode depressed), 140 patients with unmedicated MDD, and 132 healthy controls (HCs). Six pairs of striatum seed regions were selected: the ventral striatum inferior (VSi) and the ventral striatum superior (VSs), the dorsal-caudal putamen (DCP), the dorsal-rostral putamen (DRP), and the dorsal caudate and the ventral-rostral putamen (VRP). The sliding-window analysis was used to evaluate dFC for each seed. RESULTS Both BD II and MDD exhibited increased dFC variability between the left DRP and the left supplementary motor area, and between the right VRP and the right inferior parietal lobule. The BD II had specific increased dFC variability between the right DCP and the left precentral gyrus compared with MDD and HCs. The MDD had increased dFC variability between the left VSi and the left medial prefrontal cortex compared with BD II and HCs. CONCLUSIONS The patients with BD and MDD shared common dFC alteration in the dorsal striatal-sensorimotor and ventral striatal-cognitive circuitries. The patients with MDD had specific dFC alteration in the ventral striatal-affective circuitry.
Collapse
Affiliation(s)
- Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - JiaYing Gong
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
5
|
Association between resting-state functional connectivity of amygdala subregions and peripheral pro-inflammation cytokines levels in bipolar disorder. Brain Imaging Behav 2022; 16:1614-1626. [PMID: 35175549 DOI: 10.1007/s11682-022-00636-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 01/23/2023]
Abstract
The pathophysiological mechanisms of bipolar disorder (BD) are not completely known, and systemic inflammation and immune dysregulation are considered as risk factors. Previous neuroimaging studies have proved metabolic, structural and functional abnormalities of the amygdala in BD, suggesting the vital role of amygdala in BD patients. This study aimed to test the underlying neural mechanism of inflammation-induced functional connectivity (FC) in the amygdala subregions of BD patients. Resting-state functional MRI (rs-fMRI) was used to delineate the amygdala FC from two pairs of amygdala seed regions (the bilateral lateral and medial amygdala) in 51 unmedicated BD patients and 69 healthy controls (HCs). The levels of pro-inflammatory cytokines including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α were measured in the serum. The correlation between abnormal levels of pro-inflammatory cytokines and FC values were calculated in BD patients. The BD group exhibited decreased FC between the right medial amygdala and bilateral medial frontal cortex (MFC), and decreased FC between the left medial amygdala and the left temporal pole (TP), right orbital inferior frontal gyrus compared with HCs. The BD patients had higher levels of TNF-α than HCs. Correlation analysis showed negative correlation between the TNF-α level and abnormal FC of the right medial amygdala-bilateral MFC; and negative correlation between TNF-α levels and abnormal FC of the left medial amygdala-left TP in BD group. These findings suggest that dysfunctional and immune dysregulation between the amygdala and the frontotemporal circuitry might play a critical role in the pathogenesis of BD.
Collapse
|
6
|
Zhu ZH, Song XY, Man LJ, Chen P, Tang Z, Li RH, Ji CF, Dai NB, Liu F, Wang J, Zhang J, Jia QF, Hui L. Comparisons of Serum Interleukin-8 Levels in Major Depressive Patients With Drug-Free Versus SSRIs Versus Healthy Controls. Front Psychiatry 2022; 13:858675. [PMID: 35492731 PMCID: PMC9046727 DOI: 10.3389/fpsyt.2022.858675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE The interleukin-8 (IL-8) has been reported to play an important role in depression, which might be modulated by the selective serotonin reuptake inhibitors (SSRIs). Thus, the aim of this study was to investigate serum IL-8 levels, depressive symptom, and their associations in drug-free MDD patients, MDD patients with SSRIs, and healthy controls (HCs). METHODS Fifty-seven drug-free MDD patients (male/female = 35/22, mean age: 39.24 years), 30 MDD patients with SSRIs (male/female = 11/19, mean age: 39.73 years), and 101 HCs (male/female = 52/49, mean age: 37.38 years) were recruited in this cross-sectional study. Serum IL-8 levels and depressive symptom were assessed using the Flow Cytometer and Hamilton Depression Scale (HAMD). The analysis of variance was used for the comparison between groups. The relationship between serum log10 IL-8 levels and HAMD score was analyzed by Pearson correlation. RESULTS Serum log10IL-8 levels were lower in all patients than HCs after controlling for covariates (F = 4.86, p = 0.03). There was significant difference in serum Log10IL-8 levels among three groups after controlling for covariates (F = 14.63, p < 0.001). Serum Log10IL-8 levels in drug-free patients were lower compared to HCs (F = 19.38, p < 0.001) or patients with SSRIs (F = 21.89, p < 0.001) after controlling for covariates. However, there was not difference in serum log10IL-8 levels between patients with SSRIs and HCs after controlling for covariates. Moreover, serum Log10IL-8 levels were negatively correlated with HAMD score in all patients (r = -0.37, p = 0.02). Also, serum Log10IL-8 levels were negatively correlated with HAMD score in drug-free patients (r = -0.74, p = 0.01), but not in patients with SSRIs. CONCLUSION Our data supported that the decline in serum IL-8 levels was association with depression. Moreover, the SSRIs might modulate increased serum IL-8 levels of depression.
Collapse
Affiliation(s)
- Zhen Hua Zhu
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Xiao Ying Song
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Li Juan Man
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Peng Chen
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Zhen Tang
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Rong Hua Li
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Cai Fang Ji
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Ning Bin Dai
- Suzhou Center for Disease Prevention and Control, Suzhou, China
| | - Fang Liu
- Suzhou Center for Disease Prevention and Control, Suzhou, China
| | - Jing Wang
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Jianping Zhang
- Department of Psychiatry, Weill Cornell Medical College, Cornell University, New York, NY, United States
| | - Qiu Fang Jia
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Li Hui
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Understanding complex functional wiring patterns in major depressive disorder through brain functional connectome. Transl Psychiatry 2021; 11:526. [PMID: 34645783 PMCID: PMC8513388 DOI: 10.1038/s41398-021-01646-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 02/06/2023] Open
Abstract
Brain function relies on efficient communications between distinct brain systems. The pathology of major depressive disorder (MDD) damages functional brain networks, resulting in cognitive impairment. Here, we reviewed the associations between brain functional connectome changes and MDD pathogenesis. We also highlighted the utility of brain functional connectome for differentiating MDD from other similar psychiatric disorders, predicting recurrence and suicide attempts in MDD, and evaluating treatment responses. Converging evidence has now linked aberrant brain functional network organization in MDD to the dysregulation of neurotransmitter signaling and neuroplasticity, providing insights into the neurobiological mechanisms of the disease and antidepressant efficacy. Widespread connectome dysfunctions in MDD patients include multiple, large-scale brain networks as well as local disturbances in brain circuits associated with negative and positive valence systems and cognitive functions. Although the clinical utility of the brain functional connectome remains to be realized, recent findings provide further promise that research in this area may lead to improved diagnosis, treatments, and clinical outcomes of MDD.
Collapse
|
8
|
Yan W, Xie L, Bi Y, Zeng T, Zhao D, Lai Y, Gao T, Sun X, Shi Y, Dong Z, Wen G, Gao L, Lv Z. Combined rs-fMRI study on brain functional imaging and mechanism of RAGE-DAMPs of depression: Evidence from MDD patients to chronic stress-induced depression models in cynomolgus monkeys and mice. Clin Transl Med 2021; 11:e541. [PMID: 34709765 PMCID: PMC8506644 DOI: 10.1002/ctm2.541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/27/2021] [Accepted: 08/08/2021] [Indexed: 12/17/2022] Open
Abstract
More and more evidence show that major depressive disorder (MDD) is closely related to inflammation caused by chronic stress, which seriously affects human physical and mental health. However, the inflammatory mechanism of depression and its effect on brain function have not been clarified. Based on resting-state functional magnetic resonance imaging (rs-fMRI), we investigated change of brain functional imaging and the inflammatory mechanism of damage-related molecular patterns (DAMPs)-receptor of advanced glycation protein end product (RAGE) in MDD patients and depressive-like cynomolgus monkeys and mice models induced by chronic stress. The regional homogeneity (ReHo) and functional connectivity (FC) were analyzed using MATLAB and SPM12 software. We detected the expression of DAMPs-RAGE pathway-related proteins and mRNA in MDD peripheral blood and in serum and brain tissue of cynomolgus monkeys and mice. Meanwhile, RAGE gene knockout mice, RAGE inhibitor, and overexpression of AVV9RAGE adeno-associated virus were used to verify that RAGE is a reliable potential biomarker of depression. The results showed that the ReHo value of prefrontal cortex (PFC) in MDD patients and depressive-like cynomolgus monkeys was decreased. Then, the PFC was used as a seed point, the FC of ipsilateral and contralateral PFC were weakened in depressive-like mice. At the same time, qPCR showed that RAGE and HMGB1 mRNA were upregulated and S100β mRNA was downregulated. The expression of RAGE-related inflammatory protein in PFC of depressive-like monkeys and mice were consistent with that in peripheral blood of MDD patients. Moreover, the results were confirmed in RAGE-/- mice, injection of FPS-ZM1, and overexpression of AAV9RAGE in mice. To sum up, our findings enhance the evidence that chronic stress-PFC-RAGE are associated with depression. These results attempt to establish the links between brain functional imaging, and molecular targets among different species will help to reveal the pathophysiological mechanism of depression from multiple perspectives.
Collapse
Affiliation(s)
- Weixin Yan
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
- The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Lingpeng Xie
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yanmeng Bi
- College of Integrated Traditional Chinese and Western MedicineJining Medical UniversityJiningShandongChina
| | - Ting Zeng
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Di Zhao
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuqi Lai
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tingting Gao
- Department of General practiceThe First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical UniversityGuangzhouGuangdongChina
| | - Xuegang Sun
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yafei Shi
- School of Fundamental Medical ScienceGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhaoyang Dong
- School of Nursing, Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Ge Wen
- Department of Medical ImagingNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Lei Gao
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
- Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiping Lv
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
9
|
张 竞, 刘 恺, 曾 善, 陈 纯, 邓 燕, 靖 林, 文 戈. [Energy metabolism disorder and functional magnetic resonance imaging of the medial prefrontal cortex in mice with chronic unpredictable mild stress]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:521-528. [PMID: 33963710 PMCID: PMC8110447 DOI: 10.12122/j.issn.1673-4254.2021.04.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To analyze spontaneous activities and energy metabolism in the medial prefrontal cortex (mPFC) of mice with chronic unpredictable mild stress (CUMS) and explore the correlation of these changes with the mTORC1 signaling pathway. OBJECTIVE Normal C57Bl/6 mice were randomly divided into control group (n=16) and depression model group (n= 16), and the mice in the latter group were subjected to 8 weeks of modeling with CUMS. Behavioral tests including open field test, sucrose consumption test, tail suspension test and forced swimming test were performed, and the changes in prefrontal gray matter volume and the amplitude of low frequency fluctuation (ALFF) in the mice were detected with functional magnetic resonance imaging. The CUMS mice were then randomized into two groups for treatment with ketamine (n=8) or saline (n=8). The mPFC tissues of the mice were collected for detecting the phosphorylation levels of mTORC1-related proteins with Western blotting and ATP level and NADP +/NADPH ratio with ELISA in the 3 groups. OBJECTIVE Compared with the control mice, CUMS mice exhibited a distinct depressive phenotype with significantly decreased sucrose preference (P < 0.05) and shortened total distances (P < 0.01) and central exercise distances (P < 0.05) in the open field test without obvious changes of immobile time in tail suspension test and forced swimming test (P>0.05). Prefrontal gray matter volume and mALFF increased (P < 0.01), and the phosphorylation level of mTORC1- related proteins, ATP level and NADP +/NADPH ratio all decreased significantly (P < 0.05) in CUMS mice. After ketamine treatment, the phosphorylation level of mTORC1-related proteins and ATP level increased significantly in CUMS mice (P < 0.05), but the increase of NADP +/NADPH ratio was not statistically significant. OBJECTIVE The mPFC of CUMS mice shows increased spontaneous activities but lowered productivity efficiency, indicating the presence of energy metabolism disorder in the mPFC, which is related with reduced mTORC1 phosphorylation and can be alleviated by activating the mTORC1 pathway with ketamine.
Collapse
Affiliation(s)
- 竞予 张
- 南方医科大学南方医院影像中心,广东 广州 510515Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 恺 刘
- 徐州医科大学附属医院影像科,江苏 徐州 221006Department of Medical Imaging, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - 善美 曾
- 南方医科大学南方医院影像中心,广东 广州 510515Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 纯辉 陈
- 广州中医药大学第二附属医院大院脾胃病科,广东 广州 510120Department of Spleen and Stomach Diseases, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - 燕佳 邓
- 徐州医科大学医学影像学院,江苏 徐州 221006School of Medical Imaging, Xuzhou Medical University, Xuzhou 221006, China
| | - 林林 靖
- 南方医科大学中西医结合医院手术室,广东 广州 510315Operating Theater, TCM Integrated Hospital of Southern Medical University, Guangzhou 510315, China
| | - 戈 文
- 南方医科大学南方医院影像中心,广东 广州 510515Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Millett C, Harder J, Locascio J, Shanahan M, Santone G, Fichorova R, Corrigan A, Baecher-Allan C, Burdick K. TNF-α and its soluble receptors mediate the relationship between prior severe mood episodes and cognitive dysfunction in euthymic bipolar disorder. Brain Behav Immun 2020; 88:403-410. [PMID: 32272224 PMCID: PMC8577222 DOI: 10.1016/j.bbi.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Bipolar disorder (BD) is one of the most disabling mental health conditions in the world. Symptoms of cognitive impairment in BD contribute directly to occupational and social deficiencies and are very difficult to treat. Converging evidence suggests that BD patients have increased peripheral markers of inflammation. The hypothesis of neuroprogression in BD postulates that cognitive deficits develop over the course of the illness and are influenced by prior severe mood episodes, leading to wear-and-tear on the brain- however, there exists a paucity of data statistically testing a mediating role of immune molecules in cognitive dysfunction in BD. METHODS This is a cross-sectional study. We measured serum levels of tumor necrosis factor alpha (TNF-α), and soluble (s) TNF receptors one and two (sTNF-R1 and sTNF-R2) in 219 euthymic BD patients and 52 Healthy Controls (HCs). Structural equation modeling (SEM) was used for the primary purpose of assessing whether TNF markers (measured by the multiple indicators TNF-α, sTNF-R1 and sTNF-R2) mediate the effect or number of prior severe mood episodes (number of prior psychiatric hospitalizations) on cognitive performance. RESULTS BD and HC groups did not differ on circulating levels of TNF molecules in the present study. However, we found higher sTNF-R1 concentration in 'late-stage' BD illness (>1 prior psychiatric hospitalization) compared to those in early stage illness. In the subsequent SEM, we found that the model fits the data acceptably (Chi-square = 49.2, p = 0.3), and had a 'close fit' (RMSEA = 0.02, PCLOSE = 0.9). Holding covariates constant (age, sex, premorbid IQ, education, and race), we found that the standardized indirect effect was significant, p = 0.015, 90%CI [-0.07, -0.01], indicating that the estimated model was consistent with peripheral TNF markers partially mediating a causal effect of severe mood episodes on executive function. CONCLUSIONS Our results indicate that circulating levels of TNF molecules partially mediate the relationship between prior severe mood episodes and executive function in BD. These results may implicate TNF variables in the neuroprogressive course of BD and could point to novel interventions for cognition.
Collapse
Affiliation(s)
- C.E. Millett
- Mood and Psychosis Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - J. Harder
- Mood and Psychosis Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA,Department of Psychiatry, Harvard Medical School, Boston, MA
| | - J.J. Locascio
- Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital and Harvard Medical School
| | - M. Shanahan
- Mood and Psychosis Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA,Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital and Harvard Medical School
| | - G. Santone
- Laboratory of Genital Tract Biology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - R. Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - A. Corrigan
- Mood and Psychosis Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA
| | - C. Baecher-Allan
- Ann Romney Center for Neurologic Disease, Harvard Medical School, Boston, MA 02115 USA,Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - K.E. Burdick
- Mood and Psychosis Research Program, Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA,Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Bruno A, Dolcetti E, Rizzo FR, Fresegna D, Musella A, Gentile A, De Vito F, Caioli S, Guadalupi L, Bullitta S, Vanni V, Balletta S, Sanna K, Buttari F, Stampanoni Bassi M, Centonze D, Mandolesi G. Inflammation-Associated Synaptic Alterations as Shared Threads in Depression and Multiple Sclerosis. Front Cell Neurosci 2020; 14:169. [PMID: 32655374 PMCID: PMC7324636 DOI: 10.3389/fncel.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
In the past years, several theories have been advanced to explain the pathogenesis of Major Depressive Disorder (MDD), a neuropsychiatric disease that causes disability in general population. Several theories have been proposed to define the MDD pathophysiology such as the classic "monoamine-theory" or the "glutamate hypothesis." All these theories have been recently integrated by evidence highlighting inflammation as a pivotal player in developing depressive symptoms. Proinflammatory cytokines have been indeed claimed to contribute to stress-induced mood disturbances and to major depression, indicating a widespread role of classical mediators of inflammation in emotional control. Moreover, during systemic inflammatory diseases, peripherally released cytokines circulate in the blood, reach the brain and cause anxiety, anhedonia, social withdrawal, fatigue, and sleep disturbances. Accordingly, chronic inflammatory disorders, such as the inflammatory autoimmune disease multiple sclerosis (MS), have been associated to higher risk of MDD, in comparison with overall population. Importantly, in both MS patients and in its experimental mouse model, Experimental Autoimmune Encephalomyelitis (EAE), the notion that depressive symptoms are reactive epiphenomenon to the MS pathology has been recently challenged by the evidence of their early manifestation, even before the onset of the disease. Furthermore, in association to such mood disturbance, inflammatory-dependent synaptic dysfunctions in several areas of MS/EAE brain have been observed independently of brain lesions and demyelination. This evidence suggests that a fine interplay between the immune and nervous systems can have a huge impact on several neurological functions, including depressive symptoms, in different pathological conditions. The aim of the present review is to shed light on common traits between MDD and MS, by looking at inflammatory-dependent synaptic alterations associated with depression in both diseases.
Collapse
Affiliation(s)
- Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| | | | - Francesca De Vito
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | - Silvia Caioli
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
| | - Sara Balletta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Krizia Sanna
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | | | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
- Unit of Neurology, Mediterranean Neurological Institute IRCCS Neuromed, Pozzilli, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
12
|
Qi R, Luo Y, Zhang L, Weng Y, Surento W, Jahanshad N, Xu Q, Yin Y, Li L, Cao Z, Thompson PM, Lu GM. Social support modulates the association between PTSD diagnosis and medial frontal volume in Chinese adults who lost their only child. Neurobiol Stress 2020; 13:100227. [PMID: 32490056 PMCID: PMC7256056 DOI: 10.1016/j.ynstr.2020.100227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/03/2020] [Accepted: 05/02/2020] [Indexed: 11/30/2022] Open
Abstract
Losing an only child is a devastating life event that a parent can experience and may lead to post-traumatic stress disorder (PTSD). Social support could buffer against the negative influence of this trauma, but the neural mechanism underlying this alleviation effect remains poorly understood. In this study, voxel-based morphometry was conducted on brain MRI of 220 Han Chinese adults who had lost their only child. We performed multiple regression analysis to investigate the associations between social support scores – along with PTSD diagnosis, age, sex, body mass index (BMI) – and brain grey matter (GM) volumes in these bereaved parents. For all trauma-exposed adults, social support-by-diagnosis interaction was significantly associated with medial prefrontal volume (multiple comparisons corrected P ˂ 0.05), where positive correlation was found in adults with PTSD but not in those without PTSD. Besides, PTSD diagnosis was associated with decreased GM volume in medial and middle frontal gyri (P ˂ 0.001, uncorrected); older age was associated with widespread GM volume deficits; male sex was associated with lower GM volume in rolandic operculum, insular, postcentral gyrus (corrected P ˂ 0.05), and lower GM in thalamus but greater GM in parahippocampus (P ˂ 0.001, uncorrected); higher BMI was associated with GM deficits in occipital gyrus (corrected P ˂ 0.05) and precuneus (P ˂ 0.001, uncorrected). In conclusions, social support modulates the association between PTSD diagnosis and medial frontal volume, which may play an important role in the emotional disturbance in PTSD development in adults who lost their only child.
Collapse
Affiliation(s)
- Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Li Zhang
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Wesley Surento
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yan Yin
- Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, 305 Tianmushan Road, Hangzhou, Zhejiang, 310013, China
| | - Lingjiang Li
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, 410011, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, 75 Tongzhenguan Road, 214200, Wuxi, China
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, 90292, USA
- Corresponding author.
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- Corresponding author. Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China.
| |
Collapse
|
13
|
Zhou XT, Bao WD, Liu D, Zhu LQ. Targeting the Neuronal Activity of Prefrontal Cortex: New Directions for the Therapy of Depression. Curr Neuropharmacol 2020; 18:332-346. [PMID: 31686631 PMCID: PMC7327942 DOI: 10.2174/1570159x17666191101124017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/24/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Depression is one of the prevalent psychiatric illnesses with a comprehensive performance such as low self-esteem, lack of motivation, anhedonia, poor appetite, low energy, and uncomfortableness without a specific cause. So far, the cause of depression is not very clear, but it is certain that many aspects of biological psychological and social environment are involved in the pathogenesis of depression. Recently, the prefrontal cortex (PFC) has been indicated to be a pivotal brain region in the pathogenesis of depression. And increasing evidence showed that the abnormal activity of the PFC neurons is linked with depressive symptoms. Unveiling the molecular and cellular, as well as the circuit properties of the PFC neurons will help to find out how abnormalities in PFC neuronal activity are associated with depressive disorders. In addition, concerning many antidepressant drugs, in this review, we concluded the effect of several antidepressants on PFC neuronal activity to better understand its association with depression.
Collapse
Affiliation(s)
| | | | | | - Ling-Qiang Zhu
- Address correspondence to this author at the Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China; Tel: 862783692625; Fax: 862783692608; E-mail:
| |
Collapse
|