1
|
Yesilkaya UH, Chen X, Watford L, McCoy E, Sen M, Genc I, Du F, Ongur D, Yuksel C. Poor self-reported sleep is associated with prolonged white matter T2 relaxation in psychotic disorders. Front Psychiatry 2025; 15:1456435. [PMID: 39839134 PMCID: PMC11747379 DOI: 10.3389/fpsyt.2024.1456435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Background Psychotic disorders are characterized by white matter (WM) abnormalities; however, their relationship with the various aspects of illness presentation remains unclear. Sleep disturbances are common in psychosis, and emerging evidence suggests that sleep plays a critical role in WM physiology. Therefore, it is plausible that sleep disturbances are associated with impaired WM integrity in these disorders. To test this hypothesis, we examined the association of self-reported sleep disturbances with WM transverse (T2) relaxation times in a cross-diagnostic sample of patients with psychosis. Methods A total of 28 patients with psychosis (11 schizophrenia spectrum disorders and 17 bipolar disorder with psychotic features) were included. Metabolite (N-acetyl aspartate, choline, and creatine) and water T2 relaxation times were measured in the anterior corona radiata at 4T. Sleep was evaluated using the Pittsburgh Sleep Quality Index (PSQI). Results PSQI total score showed a moderate to strong positive correlation with water T2 (r = 0.64, p< 0.001). Linear regressions showed that this association was independent of the overall severity of depressive, manic, or psychotic symptoms. In our exploratory analysis, sleep disturbance was correlated with free water percentage, suggesting that increased extracellular water may be a mechanism underlying the association of disturbed sleep and prolonged water T2 relaxation. Conclusion Our results highlight the connection between poor sleep and WM abnormalities in psychotic disorders. Future research using objective sleep measures and neuroimaging techniques suitable to probe free water is needed to further our insight into this relationship.
Collapse
Affiliation(s)
- Umit Haluk Yesilkaya
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Türkiye
| | - Xi Chen
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Lauren Watford
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| | - Emma McCoy
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| | - Meltem Sen
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| | - Ilgin Genc
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
| | - Fei Du
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Dost Ongur
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Cagri Yuksel
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Lesh TA, Bergé D, Smucny J, Guo J, Carter CS. Elevated Extracellular Free Water in the Brain Predicts Clinical Improvement in First-Episode Psychosis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:111-119. [PMID: 39383994 PMCID: PMC11730764 DOI: 10.1016/j.bpsc.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Despite the diverse nature of clinical trajectories after a first episode of psychosis, few baseline characteristics have been predictive of clinical improvement, and the neurobiological underpinnings of this heterogeneity remain largely unknown. Elevated extracellular free water (FW) in the brain is a diffusion imaging measure that has been consistently reported in different phases of psychosis that may indicate a neuroinflammatory state. However, its predictive capacity in terms of clinical outcomes is unknown. METHODS We used diffusion imaging to determine FW and tissue-specific fractional anisotropy (FA-t) in first-episode psychosis. Forty-seven participants were categorized as clinical improvers (n = 26) if they achieved a 20% decrease in total Brief Psychiatric Rating Scale score at 12 months. To determine the predictive capacity of FW and FA-t, these measures were introduced in a stepwise logistic regression model to predict clinical improvement. For measures that survived the model, regional between-group differences were also investigated in cortical surface or white matter tracts, as applicable. RESULTS Both higher gray matter FW (odds ratio 1.698; 95% CI, 1.134-2.542) and FA-t (odds ratio, 1.358; 95% CI, 0.905-2.038) predicted improver status. FW in gray matter was also linearly correlated with the Brief Psychiatric Rating Scale total score at the 12-month follow-up. When we examined regional specificity, we found that improvers showed greater FW predominantly in temporal regions and higher FA-t values in several white matter tracts, including the bilateral longitudinal superior fasciculus. CONCLUSIONS Our results show that elevated FW in gray matter and FA-t predict further clinical improvement during the initial phases of psychosis. The potential roles of brain inflammatory processes in predicting clinical improvement are discussed.
Collapse
Affiliation(s)
- Tyler A Lesh
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Daniel Bergé
- Neuroscience Department, Hospital del Mar Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red, Área de Salud Mental, Pompeu Fabra University, Barcelona, Spain.
| | - Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California
| | - Joyce Guo
- University of California San Diego, San Diego, California
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis, California; Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California
| |
Collapse
|
3
|
Yesilkaya HU, Chen X, Watford L, McCoy E, Genc I, Du F, Ongur D, Yuksel C. Poor Self-Reported Sleep is Associated with Prolonged White Matter T2 Relaxation in Psychotic Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601887. [PMID: 39005452 PMCID: PMC11244968 DOI: 10.1101/2024.07.03.601887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Schizophrenia (SZ) and bipolar disorder (BD) are characterized by white matter (WM) abnormalities, however, their relationship with illness presentation is not clear. Sleep disturbances are common in both disorders, and recent evidence suggests that sleep plays a critical role in WM physiology. Therefore, it is plausible that sleep disturbances are associated with impaired WM integrity in these disorders. To test this hypothesis, we examined the association of self-reported sleep disturbances with WM transverse (T2) relaxation times in patients with SZ spectrum disorders and BD with psychotic features. Methods 28 patients with psychosis (17 BD-I, with psychotic features and 11 SZ spectrum disorders) were included. Metabolite and water T2 relaxation times were measured in the anterior corona radiata at 4T. Sleep was evaluated using the Pittsburgh Sleep Quality Index. Results PSQI total score showed a moderate to strong positive correlation with water T2 (r = 0.64, p<0.001). Linear regressions showed that this association was specific to sleep disturbance but was not a byproduct of exacerbation in depressive, manic, or psychotic symptoms. In our exploratory analysis, sleep disturbance was correlated with free water percentage, suggesting that increased extracellular water may be a mechanism underlying the association of disturbed sleep and prolonged water T2 relaxation. Conclusion Our results highlight the connection between poor sleep and WM abnormalities in psychotic disorders. Future research using objective sleep measures and neuroimaging techniques suitable to probe free water is needed to further our insight into this relationship.
Collapse
Affiliation(s)
- Haluk Umit Yesilkaya
- McLean Hospital, Belmont, MA
- Bakirkoy Training and Research Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | | | | | | | - Fei Du
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Dost Ongur
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Cagri Yuksel
- McLean Hospital, Belmont, MA
- Department of Psychiatry, Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Gangadin SS, Enthoven AD, van Beveren NJM, Laman JD, Sommer IEC. Immune Dysfunction in Schizophrenia Spectrum Disorders. Annu Rev Clin Psychol 2024; 20:229-257. [PMID: 38996077 DOI: 10.1146/annurev-clinpsy-081122-013201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Evidence from epidemiological, clinical, and biological research resulted in the immune hypothesis: the hypothesis that immune system dysfunction is involved in the pathophysiology of schizophrenia spectrum disorders (SSD). The promising implication of this hypothesis is the potential to use existing immunomodulatory treatment for innovative interventions for SSD. Here, we provide a selective historical review of important discoveries that have shaped our understanding of immune dysfunction in SSD. We first explain the basic principles of immune dysfunction, after which we travel more than a century back in time. Starting our journey with neurosyphilis-associated psychosis in the nineteenth century, we continue by evaluating the role of infections and autoimmunity in SSD and findings from assessment of immune function using new techniques, such as cytokine levels, microglia density, neuroimaging, and gene expression. Drawing from these findings, we discuss anti-inflammatory interventions for SSD, and we conclude with a look into the future.
Collapse
Affiliation(s)
- S S Gangadin
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - A D Enthoven
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - N J M van Beveren
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Parnassia Group for Mental Health Care, The Hague and Rotterdam, The Netherlands
| | - J D Laman
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - I E C Sommer
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| |
Collapse
|
5
|
Wang HR, Liu ZQ, Nakua H, Hegarty CE, Thies MB, Patel PK, Schleifer CH, Boeck TP, McKinney RA, Currin D, Leathem L, DeRosse P, Bearden CE, Misic B, Karlsgodt KH. Decoding Early Psychoses: Unraveling Stable Microstructural Features Associated with Psychopathology Across Independent Cohorts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593636. [PMID: 38766080 PMCID: PMC11100779 DOI: 10.1101/2024.05.10.593636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Early Psychosis patients (EP, within 3 years after psychosis onset) show significant variability, making outcome predictions challenging. Currently, little evidence exists for stable relationships between neural microstructural properties and symptom profiles across EP diagnoses, limiting the development of early interventions. Methods A data-driven approach, Partial Least Squares (PLS) correlation, was used across two independent datasets to examine multivariate relationships between white matter (WM) properties and symptomatology, to identify stable and generalizable signatures in EP. The primary cohort included EP patients from the Human Connectome Project-Early Psychosis (n=124). The replication cohort included EP patients from the Feinstein Institute for Medical Research (n=78). Both samples included individuals with schizophrenia, schizoaffective disorder, and psychotic mood disorders. Results In both cohorts, a significant latent component (LC) corresponded to a symptom profile combining negative symptoms, primarily diminished expression, with specific somatic symptoms. Both LCs captured comprehensive features of WM disruption, primarily a combination of subcortical and frontal association fibers. Strikingly, the PLS model trained on the primary cohort accurately predicted microstructural features and symptoms in the replication cohort. Findings were not driven by diagnosis, medication, or substance use. Conclusions This data-driven transdiagnostic approach revealed a stable and replicable neurobiological signature of microstructural WM alterations in EP, across diagnoses and datasets, showing a strong covariance of these alterations with a unique profile of negative and somatic symptoms. This finding suggests the clinical utility of applying data-driven approaches to reveal symptom domains that share neurobiological underpinnings.
Collapse
|
6
|
Wu D, Wu Q, Li F, Wang Y, Zeng J, Tang B, Bishop JR, Xiao L, Lui S. Free water alterations in different inflammatory subgroups in schizophrenia. Brain Behav Immun 2024; 115:557-564. [PMID: 37972880 DOI: 10.1016/j.bbi.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Accumulating evidence suggests that inflammatory dysregulation both in blood and the brain is implicated in the pathogenesis of schizophrenia. Alterations in peripheral cytokines are not evident in all patients and there may be discrete altered inflammatory subgroups in schizophrenia. Recent studies using a novel and in vivo free-water imaging to detect inflammatory processes, have shown increased free water in white matter in schizophrenia. However, no studies to date have investigated the free water alterations in different inflammatory subgroups in schizophrenia. METHODS Forty-four patients with schizophrenia and 49 controls were recruited. The serum levels of interleukin-1 beta (IL-1β), IL-6, IL-10, and IL-12p70 were measured and used for cluster analysis with K-means and hierarchical algorithms. Diffusion tensor imaging (DTI) images were collected for all participants and voxel-wise free water and fractional anisotropy of tissue (FA-t) were compared between groups with Randomise running in FSL. Partial correlation analysis was employed to explore the association of the peripheral cytokine levels with free water. RESULTS We identified two statistically quantifiable discrete subgroups of patients based on the cluster analysis of cytokine measures. The peripheral levels of IL-1β (P < 0.001), IL-10 (P = 0.041), and IL-12p70 (P < 0.001) showed significant differences between the two different inflammatory subgroups. In the inflammatory subgroup with a predominantly higher IL-1β level, increased free water values in white matter were found mainly in the left posterior limb of the internal capsule, posterior corona radiata, and partly in the left sagittal stratum. These affected areas did not overlap with the regions that showed significant free water differences between patients and healthy controls. In the inflammatory subgroup with lower IL-1β levels, peripheral IL-1β was significantly associated with free water values in white matter while no such association was detected in the patient group. CONCLUSIONS Localized free water differences were demonstrated between the two identified inflammatory subgroups in our data, and free water appears to be a feasible in vivo neuroimaging biomarker guiding the target of inflammatory intervention and development of new therapeutic strategies in an individualized manner in schizophrenia.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China.
| | - Qi Wu
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China.
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Yaxuan Wang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiaxin Zeng
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Biqiu Tang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States.
| | - Li Xiao
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Seitz-Holland J, Nägele FL, Kubicki M, Pasternak O, Cho KIK, Hough M, Mulert C, Shenton ME, Crow TJ, James ACD, Lyall AE. Shared and distinct white matter abnormalities in adolescent-onset schizophrenia and adolescent-onset psychotic bipolar disorder. Psychol Med 2023; 53:4707-4719. [PMID: 35796024 PMCID: PMC11119277 DOI: 10.1017/s003329172200160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik K. Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Hough
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J. Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Anthony C. D. James
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
White-matter free-water diffusion MRI in schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 2022; 47:1413-1420. [PMID: 35034098 PMCID: PMC9117206 DOI: 10.1038/s41386-022-01272-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
White-matter abnormalities, including increases in extracellular free-water, are implicated in the pathophysiology of schizophrenia. Recent advances in diffusion magnetic resonance imaging (MRI) enable free-water levels to be indexed. However, the brain levels in patients with schizophrenia have not yet been systematically investigated. We aimed to meta-analyse white-matter free-water levels in patients with schizophrenia compared to healthy volunteers. We performed a literature search in EMBASE, MEDLINE, and PsycINFO databases. Diffusion MRI studies reporting free-water in patients with schizophrenia compared to healthy controls were included. We investigated the effect of demographic variables, illness duration, chlorpromazine equivalents of antipsychotic medication, type of scanner, and clinical symptoms severity on free-water measures. Ten studies, including five of first episode of psychosis have investigated free-water levels in schizophrenia, with significantly higher levels reported in whole-brain and specific brain regions (including corona radiata, internal capsule, superior and inferior longitudinal fasciculus, cingulum bundle, and corpus callosum). Six studies, including a total of 614 participants met the inclusion criteria for quantitative analysis. Whole-brain free-water levels were significantly higher in patients relative to healthy volunteers (Hedge's g = 0.38, 95% confidence interval (CI) 0.07-0.69, p = 0.02). Sex moderated this effect, such that smaller effects were seen in samples with more females (z = -2.54, p < 0.05), but antipsychotic dose, illness duration and symptom severity did not. Patients with schizophrenia have increased free-water compared to healthy volunteers. Future studies are necessary to determine the pathological sources of increased free-water, and its relationship with illness duration and severity.
Collapse
|
9
|
Su W, Li Z, Xu L, Zeng J, Tang Y, Tang X, Wei Y, Guo Q, Zhang T, Wang J. Different patterns of association between white matter microstructure and plasma unsaturated fatty acids in those with high risk for psychosis and healthy participants. Gen Psychiatr 2022; 35:e100703. [PMID: 35531577 PMCID: PMC9014058 DOI: 10.1136/gpsych-2021-100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundDisrupted white matter (WM) microstructure has been commonly identified in youth at clinical high risk (CHR) for psychosis. Several lines of evidence suggest that fatty acids, especially unsaturated fatty acids (UFAs), might play a crucial role in the WM pathology of early onset psychosis. However, evidence linking UFA and WM microstructure in CHR is quite sparse.AimsWe investigated the relationship between the plasma UFA level and WM microstructure in CHR participants and healthy controls (HC).MethodsPlasma fatty acids were assessed and diffusion tensor imaging (DTI) data were performed with tract-based spatial statistics (TBSS) analysis for 66 individuals at CHR for psychosis and 70 HC.ResultsBoth the global and regional diffusion measures showed significant between-group differences, with decreased fractional anisotropy (FA) but increased mean diffusivity (MD) and radial diffusivity (RD) found in the CHR group compared with the HC group. On top of that, we found that in the HC group, plasma arachidic acid showed obvious trend-level associations with higher global FA, lower global MD and lower global RD, which regionally spread over the corpus callosum, right anterior and superior corona radiata, bilateral anterior and posterior limb of the internal capsule, and bilateral superior longitudinal fasciculus. However, there were no associations between global WM measures and any UFA in the CHR group. Conversely, we even found negative associations between arachidic acid levels and regional FA values in the right superior longitudinal fasciculus and right retrolenticular part of the internal capsule in the CHR group.ConclusionsCompared with the HC group, CHR subjects exhibited a different pattern of association between WM microstructure and plasma UFA, with a neuroprotective effect found in the HC group but not in the CHR group. Such discrepancy could be due to the excessively upregulated UFAs accumulated in the plasma of the CHR group, highlighting the role of balanced plasma-membrane fatty acids homeostasis in WM development.
Collapse
Affiliation(s)
- Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixing Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Zeng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Abstract
In the field of neuropsychiatry, neuroinflammation is one of the prevailing hypotheses to explain the pathophysiology of mood and psychotic disorders. Neuroinflammation encompasses an ill-defined set of pathophysiological processes in the central nervous system that cause neuronal or glial atrophy or death and disruptions in neurotransmitter signaling, resulting in cognitive and behavioral changes. Positron emission tomography for the brain-based translocator protein has been shown to be a useful tool to measure glial activation in neuropsychiatric disorders. Recent neuroimaging studies also indicate a potential disruption in the choroid plexus and blood-brain barrier, which modulate the transfer of ions, molecules, toxins, and cells from the periphery into the brain. Simultaneously, peripheral inflammatory markers have consistently been shown to be altered in mood and psychotic disorders. The crosstalk (i.e., the communication between peripheral and central inflammatory pathways) is not well understood in these disorders, however, and neuroimaging studies hold promise to shed light on this complex process. In the current Perspectives article, we discuss the neuroimaging insights into neuroimmune crosstalk offered in selected works. Overall, evidence exists for peripheral immune cell infiltration into the central nervous system in some patients, but the reason for this is unknown. Future neuroimaging studies should aim to extend our knowledge of this system and the role it likely plays in symptom onset and recurrence.
Collapse
|
11
|
Vijayakumari AA, Parker D, Osmanlioglu Y, Alappatt JA, Whyte J, Diaz-Arrastia R, Kim JJ, Verma R. Free Water Volume Fraction: An Imaging Biomarker to Characterize Moderate-to-Severe Traumatic Brain Injury. J Neurotrauma 2021; 38:2698-2705. [PMID: 33913750 PMCID: PMC8590145 DOI: 10.1089/neu.2021.0057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a major clinical and public health problem with few therapeutic interventions successfully translated to the clinic. Identifying imaging-based biomarkers characterizing injury severity and predicting long-term functional and cognitive outcomes in TBI patients is crucial for treatment. TBI results in white matter (WM) injuries, which can be detected using diffusion tensor imaging (DTI). Trauma-induced pathologies lead to accumulation of free water (FW) in brain tissue, and standard DTI is susceptible to the confounding effects of FW. In this study, we applied FW DTI to estimate free water volume fraction (FW-VF) in patients with moderate-to-severe TBI and demonstrated its association with injury severity and long-term outcomes. DTI scans and neuropsychological assessments were obtained longitudinally at 3, 6, and 12 months post-injury for 34 patients and once in 35 matched healthy controls. We observed significantly elevated FW-VF in 85 of 90 WM regions in patients compared to healthy controls (p < 0.05). We then presented a patient-specific summary score of WM regions derived using Mahalanobis distance. We observed that MVF at 3 months significantly predicted functional outcome (p = 0.008), executive function (p = 0.005), and processing speed (p = 0.01) measured at 12 months and was significantly correlated with injury severity (p < 0.001). Our findings are an important step toward implementing MVF as a biomarker for personalized therapy and rehabilitation planning for TBI patients.
Collapse
Affiliation(s)
- Anupa Ambili Vijayakumari
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Drew Parker
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yusuf Osmanlioglu
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacob A. Alappatt
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Whyte
- Moss Rehabilitation Research Institute, TBI Rehabilitation Research Laboratory, Einstein Medical Center Elkins Park, Philadelphia, Pennsylvania, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junghoon J. Kim
- Department of Molecular, Cellular, and Biomedical Sciences, CUNY School of Medicine, The City College of New York, New York, New York, USA
| | - Ragini Verma
- DiCIPHR (Diffusion and Connectomics in Precision Healthcare Research) Lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
A longitudinal analysis of brain extracellular free water in HIV infected individuals. Sci Rep 2021; 11:8273. [PMID: 33859326 PMCID: PMC8050285 DOI: 10.1038/s41598-021-87801-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/05/2021] [Indexed: 11/13/2022] Open
Abstract
Initiation of combination antiretroviral therapy (cART) reduces inflammation in HIV-infected (HIV+) individuals. Recent studies demonstrated that diffusion MRI based extracellular free water (FW) modeling can be sensitive to neuroinflammation. Here, we investigate the FW in HIV-infection, its temporal evolution, and its association with blood markers, and cognitive scores. Using 96 age-matched participants, we found that FW was significantly elevated in grey and white matter in cART-naïve HIV+ compared to HIV-uninfected (HIV−) individuals at baseline. These increased FW values positively correlated with neurofilament light chain (NfL) and negatively correlated with CD4 counts. FW in grey and white matter, as well as NfL decreased in the HIV+ after 12 weeks of cART treatment. No significant FW differences were noted between the HIV+ and HIV− cohorts at 1 and 2-year follow-up. Results suggest that FW elevation in cART-naïve HIV+ participants is likely due to neuroinflammation. The correlation between FW and NfL, and the improvement in both FW and NfL after 12 weeks of cART treatment further reinforces this conclusion. The longer follow-up at 1 and 2 years suggests that cART helped control neuroinflammation as inferred by FW. Therefore, FW could be used as a biomarker to monitor HIV-associated neuroinflammation.
Collapse
|
13
|
Zhang R, Yu W, Wu X, Jiaerken Y, Wang S, Hong H, Li K, Zeng Q, Luo X, Yu X, Xu X, Zhang M, Huang P. Disentangling the pathologies linking white matter hyperintensity and geriatric depressive symptoms in subjects with different degrees of vascular impairment. J Affect Disord 2021; 282:1005-1010. [PMID: 33601672 DOI: 10.1016/j.jad.2020.12.171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/27/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND White matter hyperintensity (WMH) is closely associated with geriatric depressive symptoms, but its underlying neural mechanism is unclear. We aim to disentangle the contribution of vascular degeneration and fiber disruption to depressive symptoms in elderly subjects at different clinical status. METHODS One hundred and thirty-three normal elderly subjects, as well as 43 patients with cerebral small vessel disease (CSVD) were included. The Hamilton Depression Rating Scale (HAMD) was used to measure depressive symptoms. Based on the diffusion tensor imaging data, a free water elimination analytical model was adopted to reflect fiber tract disruption (measure: tissue fractional anisotropy, tFA) and increased white matter water content (measure: free water fraction, FW). RESULTS We found that WMH severity was significantly correlated with decreased tFA and increased FW in all subjects. In normal elderly subjects, the HAMD score was correlated with mean tFA, but not FW. Compared to the traditional fractional anisotropy measure, tFA showed stronger correlation with clinical symptoms. In CSVD subjects, the correlation was only significant for FW, and marginally significant for tFA. LIMITATIONS Most subjects had only mild to moderate depressive symptoms. Further validation in patients with major depressive disorder is needed to confirm these findings. CONCLUSIONS The neural mechanisms of depressive symptoms may be different in elderly people with or without severe vascular damage. The free water elimination model may disentangle the effects of fiber disruption and increased free water, providing sensitive imaging markers that could potentially be used on monitoring disease treatment.
Collapse
Affiliation(s)
- Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Wenke Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xiao Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Hui Hong
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China.
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China.
| |
Collapse
|
14
|
Golub M, Neto Henriques R, Gouveia Nunes R. Free-water DTI estimates from single b-value data might seem plausible but must be interpreted with care. Magn Reson Med 2020; 85:2537-2551. [PMID: 33270935 DOI: 10.1002/mrm.28599] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE Free-water elimination DTI (FWE-DTI) has been used widely to distinguish increases of free-water partial-volume effects from tissue's diffusion in healthy aging and degenerative diseases. Because the FWE-DTI fitting is only well-posed for multishell acquisitions, a regularized gradient descent (RGD) method was proposed to enable application to single-shell data, more common in the clinic. However, the validity of the RGD method has been poorly assessed. This study aims to quantify the specificity of FWE-DTI procedures on single-shell and multishell data. METHODS Different FWE-DTI fitting procedures were tested on an open-source in vivo diffusion data set and single-shell and multishell synthetic signals, including the RGD and standard nonlinear least-squares methods. Single-voxel simulations were carried out to compare initialization approaches. A multivoxel phantom simulation was performed to evaluate the effect of spatial regularization when comparing between methods. To test the algorithms' specificity, phantoms with two different types of lesions were simulated: with altered mean diffusivity or with modified free water. RESULTS Plausible parameter maps were obtained with RGD from single-shell in vivo data. The plausibility of these maps was shown to be determined by the initialization. Tests with simulated lesions inserted into the in vivo data revealed that the RGD approach cannot distinguish free water from tissue mean-diffusivity alterations, contrarily to the nonlinear least-squares algorithm. CONCLUSION The RGD FWE-DTI method has limited specificity; thus, its results from single-shell data should be carefully interpreted. When possible, multishell acquisitions and the nonlinear least-squares approach should be preferred instead.
Collapse
Affiliation(s)
- Marc Golub
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - Rita Gouveia Nunes
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
The relationship between cingulum bundle integrity and different aspects of executive functions in chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109955. [PMID: 32360815 DOI: 10.1016/j.pnpbp.2020.109955] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/19/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Evidence suggests that disruption in the cingulum bundle (CB) may influence executive dysfunctions in schizophrenia, but findings are still inconsistent. Using diffusion tensor imaging tractography, we investigated the differences in fiber integrity between schizophrenia patients and healthy controls together with the association between fiber integrity and executive functions. METHODS Thirty-two patients with chronic schizophrenia and 24 healthy controls took part in the study. Both groups were matched for age, sex, and years of education. Assessment of cognitive functions was performed using the Berg Card Sorting Test (BCST), the Color Trail Test (CTT), and the Stroop Color-Word Test (SCWT). RESULTS Results showed group differences, bilaterally (left and right) in fractional anisotropy (FA) of the CB, where patients showed less anisotropy than controls. Moreover, normal asymmetry (left FA > right FA) in the CB in schizophrenia was found. There were no group differences in mean diffusivity (MD). Patients had a similar but reduced profile of executive functions compared to healthy controls. However, when premorbid IQ was controlled for, the differences were no longer statistically significant. In schizophrenia patients, a negative correlation was found between FA of the left CB and perseverative errors in the BCST. CONCLUSIONS These findings provide evidence that CB disruption appears in schizophrenia patients and might account for impairments of executive processes, including concept formation.
Collapse
|