1
|
Colizzi M, Bortoletto R, Antolini G, Bhattacharyya S, Balestrieri M, Solmi M. Biobehavioral Interactions between Endocannabinoid and Hypothalamicpituitary- adrenal Systems in Psychosis: A Systematic Review. Curr Neuropharmacol 2024; 22:495-520. [PMID: 37533248 PMCID: PMC10845076 DOI: 10.2174/1570159x21666230801150032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The diathesis-stress paradigm and the cannabinoid-hypothesis have been proposed as possible pathophysiological models of schizophrenia. However, they have historically been studied independently of each other. OBJECTIVE This PRISMA 2020-compliant systematic review aimed at reappraising the interplay between the hypothalamic-pituitary-adrenal (HPA) axis and the endocannabinoid (eCB) system in psychosis- spectrum disorder risk and outcome. METHODS All pathophysiological and outcome clinical studies, concomitantly evaluating the two systems in psychosis-spectrum disorder risk and different stages of illness, were gathered from electronic databases (Pubmed, Web of Science, and Scopus), and discussed. RESULTS 41 eligible outputs were extracted, focusing on at least a biological measure (9 HPA-related studies: 4 eCB-interventional, 1 HPA-interventional, 1 both HPA-interventional and non-interventional, 3 non-interventional; 2 eCB-related studies: non-interventional), environmental measures only (29 studies: 1 eCB- interventional, 28 non-interventional), and genetic measures (1 study: non-interventional). Independent contributions of aberrancies in the two systems to the physiopathology and outcome of psychosis were confirmed. Also, concomitant alterations in the two systems, either genetically defined (e.g., CNR1 genetic variation), biologically determined (e.g., dysfunctional HPA axis or endocannabinoid signaling), or behaviorally imputed (e.g., cannabis use, stress exposure, and response), were consistently reported in psychosis. Further, a complex biobehavioral perturbation was revealed not only within each system (e.g., cannabis use affecting the eCB tone, stress exposure affecting the HPA axis), but also across the two systems (e.g., THC affecting the HPA axis, childhood trauma affecting the endocannabinoid signaling). CONCLUSION There is a need to concomitantly study the two systems' mechanistic contribution to psychosis in order to establish more refined biological relevance.
Collapse
Affiliation(s)
- Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine 33100, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine 33100, Italy
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Giulia Antolini
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital of Verona, Verona 37126, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine 33100, Italy
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
2
|
Ferré S, Köfalvi A, Ciruela F, Justinova Z, Pistis M. Targeting corticostriatal transmission for the treatment of cannabinoid use disorder. Trends Pharmacol Sci 2023; 44:495-506. [PMID: 37331914 PMCID: PMC10524660 DOI: 10.1016/j.tips.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
It is generally assumed that the rewarding effects of cannabinoids are mediated by cannabinoid CB1 receptors (CB1Rs) the activation of which disinhibits dopaminergic neurons in the ventral tegmental area (VTA). However, this mechanism cannot fully explain novel results indicating that dopaminergic neurons also mediate the aversive effects of cannabinoids in rodents, and previous results showing that preferentially presynaptic adenosine A2A receptor (A2AR) antagonists counteract self-administration of Δ-9-tetrahydrocannabinol (THC) in nonhuman primates (NHPs). Based on recent experiments in rodents and imaging studies in humans, we propose that the activation of frontal corticostriatal glutamatergic transmission constitutes an additional and necessary mechanism. Here, we review evidence supporting the involvement of cortical astrocytic CB1Rs in the activation of corticostriatal neurons and that A2AR receptor heteromers localized in striatal glutamatergic terminals mediate the counteracting effects of the presynaptic A2AR antagonists, constituting potential targets for the treatment of cannabinoid use disorder (CUD).
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Attila Köfalvi
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Zuzana Justinova
- Division of Pharmacology, Physiology, and Biological Chemistry (PPBC), National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
| |
Collapse
|
3
|
Colizzi M, Bortoletto R, Costa R, Bhattacharyya S, Balestrieri M. The Autism-Psychosis Continuum Conundrum: Exploring the Role of the Endocannabinoid System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5616. [PMID: 35565034 PMCID: PMC9105053 DOI: 10.3390/ijerph19095616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023]
Abstract
Evidence indicates shared physiopathological mechanisms between autism and psychosis. In this regard, the endocannabinoid system has been suggested to modulate neural circuits during the early stage of neurodevelopment, with implications for both autism and psychosis. Nevertheless, such potential common markers of disease have been investigated in both autism and psychosis spectrum disorders, without considering the conundrum of differentiating the two groups of conditions in terms of diagnosis and treatment. Here, we systematically review all human and animal studies examining the endocannabinoid system and its biobehavioral correlates in the association between autism and psychosis. Studies indicate overlapping biobehavioral aberrancies between autism and schizophrenia, subject to correction by modulation of the endocannabinoid system. In addition, common cannabinoid-based pharmacological strategies have been identified, exerting epigenetic effects across genes controlling neural mechanisms shared between autism and schizophrenia. Interestingly, a developmental and transgenerational trajectory between autism and schizophrenia is supported by evidence that exogenous alteration of the endocannabinoid system promotes progression to inheritable psychosis phenotypes in the context of biobehavioral autism vulnerability. However, evidence for a diametral association between autism and psychosis is scant. Several clinical implications follow from evidence of a developmental continuum between autism and psychosis as a function of the endocannabinoid system dysregulation.
Collapse
Affiliation(s)
- Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
| | - Riccardo Bortoletto
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital of Verona, 37126 Verona, Italy;
| | - Rosalia Costa
- Community Mental Health Team, Friuli Centrale University Health Service (ASUFC), 33057 Palmanova, Italy;
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
4
|
Malhi GS, Bell E, Hamilton A, Morris G. Early intervention for risk syndromes: What are the real risks? Schizophr Res 2021; 227:4-9. [PMID: 32527679 DOI: 10.1016/j.schres.2020.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Gin S Malhi
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, New South Wales, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia.
| | - Erica Bell
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, New South Wales, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
| | - Amber Hamilton
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, New South Wales, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
| | - Grace Morris
- The University of Sydney, Faculty of Medicine and Health, Northern Clinical School, Department of Psychiatry, Sydney, New South Wales, Australia; Academic Department of Psychiatry, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia; CADE Clinic, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
| |
Collapse
|
5
|
De Gregorio D, Ruggeri M, Bhattacharyya S, Colizzi M. Editorial: The Endocannabinoid System: Filling the Translational Gap Between Neuroscience and Psychiatry. Front Psychiatry 2021; 12:771442. [PMID: 34777071 PMCID: PMC8581171 DOI: 10.3389/fpsyt.2021.771442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, QC, Canada.,Division of Neuroscience, Vita-Salute San Raffaele University, Milan, Italy
| | - Mirella Ruggeri
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marco Colizzi
- Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|