1
|
Kumar M, Yadav AN, Saxena R, Rai PK, Paul D, Tomar RS. Novel methanotrophic and methanogenic bacterial communities from diverse ecosystems and their impact on environment. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Xu Z, Liu P, Hu Y, Hu J, Qi C, Wu Q, He L. Characterization of an Intradiol Ring-Cleavage Dioxygenase Gene Associated With Abamectin Resistance in Tetranychus cinnabarinus (Acari: Tetranychidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1858-1865. [PMID: 31329893 DOI: 10.1093/jee/toz087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 06/10/2023]
Abstract
Tetranychus cinnabarinus (Boisduval), i.e., carmine spider mite, is a worldwide pest that can cause serious damage to plants. Problems of resistance have arisen since abamectin usage in the control of T. cinnabarinus. Unfortunately, there are only limited data on the extent of this problem. To understand the development of abamectin resistance in the carmine spider mite, we prokaryotically expressed an intradiol ring-cleavage dioxygenase (ID-RCD) gene sequence, TcID-RCD1, which had a significant upregulated expression of over 7.7 times in an abamectin-resistant strain (AbR) when compared with that of a susceptible strain (SS). The crude enzyme activity also indicated that the AbR had a higher activity than that exhibited in SS. When susceptible individuals were treated with abamectin, TcID-RCD1 was also overexpressed. Furthermore, using the RNA interference (RNAi) technique, TcID-RCD1 was successfully knocked down, with the expression level decreasing significantly to approximately 39% in the SS strain compared with the control. And the mortality of mites feeding on dsTcID-RCD1 increased significantly when treated with abamectin. These results strongly suggest that TcID-RCD1 is involved in abamectin resistance in T. cinnabarinus.
Collapse
Affiliation(s)
| | - Peilin Liu
- Academy of Agricultural Sciences, College of Plant Protection, Southwest University, Chongqing, China
| | - Yuan Hu
- Academy of Agricultural Sciences, College of Plant Protection, Southwest University, Chongqing, China
| | - Jia Hu
- Academy of Agricultural Sciences, College of Plant Protection, Southwest University, Chongqing, China
| | - Cuicui Qi
- Academy of Agricultural Sciences, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiong Wu
- Academy of Agricultural Sciences, College of Plant Protection, Southwest University, Chongqing, China
| | - Lin He
- Academy of Agricultural Sciences, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Nishitani Y, Simons JR, Kanai T, Atomi H, Miki K. Crystal structure of the TK2203 protein from Thermococcus kodakarensis, a putative extradiol dioxygenase. Acta Crystallogr F Struct Biol Commun 2016; 72:427-33. [PMID: 27303894 PMCID: PMC4909241 DOI: 10.1107/s2053230x16006920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/24/2016] [Indexed: 11/10/2022] Open
Abstract
The TK2203 protein from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (262 residues, 29 kDa) is a putative extradiol dioxygenase catalyzing the cleavage of C-C bonds in catechol derivatives. It contains three metal-binding residues, but has no significant sequence similarity to proteins for which structures have been determined. Here, the first crystal structure of the TK2203 protein was determined at 1.41 Å resolution to investigate its functional role. Structure analysis reveals that this protein shares the same fold and catalytic residues as other extradiol dioxygenases, strongly suggesting the same enzymatic activity. Furthermore, the important region contributing to substrate selectivity is discussed.
Collapse
Affiliation(s)
- Yuichi Nishitani
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jan-Robert Simons
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST, CREST, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST, CREST, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST, CREST, Sanbancho, Chiyoda-ku, Tokyo, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- JST, CREST, Sanbancho, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
4
|
Sikkema J, de Bont JAM. Biocatalytic production of hydroxylated aromatic and alicyclic compounds: Products derived from tetralin. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19911100510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Sikkema J, Weber FJ, Heipieper HJ, Bont JAMD. Cellular Toxicity of Lipophilic Compounds: Mechanisms, Implications, and Adaptations. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10242429409065221] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jan Sikkema
- Division of Industrial Microbiology, Department of Food Science, Wageningen Agricultural University, P. O. Box 8129, 6700, EV, Wageningen, The Netherlands
| | - Frans J. Weber
- Division of Industrial Microbiology, Department of Food Science, Wageningen Agricultural University, P. O. Box 8129, 6700, EV, Wageningen, The Netherlands
| | - Hermann J. Heipieper
- Division of Industrial Microbiology, Department of Food Science, Wageningen Agricultural University, P. O. Box 8129, 6700, EV, Wageningen, The Netherlands
| | - Jan A. M. De Bont
- Division of Industrial Microbiology, Department of Food Science, Wageningen Agricultural University, P. O. Box 8129, 6700, EV, Wageningen, The Netherlands
| |
Collapse
|
6
|
Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 2009; 73:71-133. [PMID: 19258534 PMCID: PMC2650882 DOI: 10.1128/mmbr.00021-08] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aromatic compounds belong to one of the most widely distributed classes of organic compounds in nature, and a significant number of xenobiotics belong to this family of compounds. Since many habitats containing large amounts of aromatic compounds are often anoxic, the anaerobic catabolism of aromatic compounds by microorganisms becomes crucial in biogeochemical cycles and in the sustainable development of the biosphere. The mineralization of aromatic compounds by facultative or obligate anaerobic bacteria can be coupled to anaerobic respiration with a variety of electron acceptors as well as to fermentation and anoxygenic photosynthesis. Since the redox potential of the electron-accepting system dictates the degradative strategy, there is wide biochemical diversity among anaerobic aromatic degraders. However, the genetic determinants of all these processes and the mechanisms involved in their regulation are much less studied. This review focuses on the recent findings that standard molecular biology approaches together with new high-throughput technologies (e.g., genome sequencing, transcriptomics, proteomics, and metagenomics) have provided regarding the genetics, regulation, ecophysiology, and evolution of anaerobic aromatic degradation pathways. These studies revealed that the anaerobic catabolism of aromatic compounds is more diverse and widespread than previously thought, and the complex metabolic and stress programs associated with the use of aromatic compounds under anaerobic conditions are starting to be unraveled. Anaerobic biotransformation processes based on unprecedented enzymes and pathways with novel metabolic capabilities, as well as the design of novel regulatory circuits and catabolic networks of great biotechnological potential in synthetic biology, are now feasible to approach.
Collapse
Affiliation(s)
- Manuel Carmona
- Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Ring-cleaving dioxygenases catalyze the oxygenolytic fission of catecholic compounds, a critical step in the aerobic degradation of aromatic compounds by bacteria. Two classes of these enzymes have been identified, based on the mode of ring cleavage: intradiol dioxygenases utilize non-heme Fe(III) to cleave the aromatic nucleus ortho to the hydroxyl substituents; and extradiol dioxygenases utilize non-heme Fe(II) or other divalent metal ions to cleave the aromatic nucleus meta to the hydroxyl substituents. Recent genomic, structural, spectroscopic, and kinetic studies have increased our understanding of the distribution, evolution, and mechanisms of these enzymes. Overall, extradiol dioxygenases appear to be more versatile than their intradiol counterparts. Thus, the former cleave a wider variety of substrates, have evolved on a larger number of structural scaffolds, and occur in a wider variety of pathways, including biosynthetic pathways and pathways that degrade non-aromatic compounds. The catalytic mechanisms of the two enzymes proceed via similar iron-alkylperoxo intermediates. The ability of extradiol enzymes to act on a variety of non-catecholic compounds is consistent with proposed differences in the breakdown of this iron-alkylperoxo intermediate in the two enzymes, involving alkenyl migration in extradiol enzymes and acyl migration in intradiol enzymes. Nevertheless, despite recent advances in our understanding of these fascinating enzymes, the major determinant of the mode of ring cleavage remains unknown.
Collapse
Affiliation(s)
- Frédéric H Vaillancourt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
8
|
Ge Y, Eltis LD. Characterization of hybrid toluate and benzoate dioxygenases. J Bacteriol 2003; 185:5333-41. [PMID: 12949084 PMCID: PMC193743 DOI: 10.1128/jb.185.18.5333-5341.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Accepted: 06/24/2003] [Indexed: 11/20/2022] Open
Abstract
Toluate dioxygenase of Pseudomonas putida mt-2 (TADO(mt2)) and benzoate dioxygenase of Acinetobacter calcoaceticus ADP1 (BADO(ADP1)) catalyze the 1,2-dihydroxylation of different ranges of benzoates. The catalytic component of these enzymes is an oxygenase consisting of two subunits. To investigate the structural determinants of substrate specificity in these ring-hydroxylating dioxygenases, hybrid oxygenases consisting of the alpha subunit of one enzyme and the beta subunit of the other were prepared, and their respective specificities were compared to those of the parent enzymes. Reconstituted BADO(ADP1) utilized four of the seven tested benzoates in the following order of apparent specificity: benzoate > 3-methylbenzoate > 3-chlorobenzoate > 2-methylbenzoate. This is a significantly narrower apparent specificity than for TADO(mt2) (3-methylbenzoate > benzoate approximately 3-chlorobenzoate > 4-methylbenzoate approximately 4-chlorobenzoate >> 2-methylbenzoate approximately 2-chlorobenzoate [Y. Ge, F. H. Vaillancourt, N. Y. Agar, and L. D. Eltis, J. Bacteriol. 184:4096-4103, 2002]). The apparent substrate specificity of the alphaBbetaT hybrid oxygenase for these benzoates corresponded to that of BADO(ADP1), the parent from which the alpha subunit originated. In contrast, the apparent substrate specificity of the alphaTbetaB hybrid oxygenase differed slightly from that of TADO(mt2) (3-chlorobenzoate > 3-methylbenzoate > benzoate approximately 4-methylbenzoate > 4-chlorobenzoate > 2-methylbenzoate > 2-chlorobenzoate). Moreover, the alphaTbetaB hybrid catalyzed the 1,6-dihydroxylation of 2-methylbenzoate, not the 1,2-dihydroxylation catalyzed by the TADO(mt2) parent. Finally, the turnover of this ortho-substituted benzoate was much better coupled to O2 utilization in the hybrid than in the parent. Overall, these results support the notion that the alpha subunit harbors the principal determinants of specificity in ring-hydroxylating dioxygenases. However, they also demonstrate that the beta subunit contributes significantly to the enzyme's function.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
9
|
Ge Y, Vaillancourt FH, Agar NYR, Eltis LD. Reactivity of toluate dioxygenase with substituted benzoates and dioxygen. J Bacteriol 2002; 184:4096-103. [PMID: 12107126 PMCID: PMC135208 DOI: 10.1128/jb.184.15.4096-4103.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toluate dioxygenase (TADO) of Pseudomonas putida mt-2 catalyzes the dihydroxylation of a broad range of substituted benzoates. The two components of this enzyme were hyperexpressed and anaerobically purified. Reconstituted TADO had a specific activity of 3.8 U/mg with m-toluate, and each component had a full complement of their respective Fe(2)S(2) centers. Steady-state kinetics data obtained by using an oxygraph assay and by varying the toluate and dioxygen concentrations were analyzed by a compulsory order ternary complex mechanism. TADO had greatest specificity for m-toluate, displaying apparent parameters of KmA = 9 +/- 1 microM, k(cat) = 3.9 +/- 0.2 s(-1), and K(m)O(2) = 16 +/- 2 microM (100 mM sodium phosphate, pH 7.0; 25 degrees C), where K(m)O(2) represents the K(m) for O(2) and KmA represents the K(m) for the aromatic substrate. The enzyme utilized benzoates in the following order of specificity: m-toluate > benzoate approximately 3-chlorobenzoate > p-toluate approximately 4-chlorobenzoate >> o-toluate approximately 2-chlorobenzoate. The transformation of each of the first five compounds was well coupled to O(2) utilization and yielded the corresponding 1,2-cis-dihydrodiol. In contrast, the transformation of ortho-substituted benzoates was poorly coupled to O(2) utilization, with >10 times more O(2) being consumed than benzoate. However, the apparent K(m) of TADO for these benzoates was >100 microM, indicating that they do not effectively inhibit the turnover of good substrates.
Collapse
Affiliation(s)
- Yong Ge
- Department of Microbiology and Immunology, University of British Columbia, Vancouver BC V6T 1Z3, Canada
| | | | | | | |
Collapse
|
10
|
Abstract
Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene.
Collapse
Affiliation(s)
- R S Hanson
- Department of Microbiology, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
11
|
|
12
|
Izaguirre G, Wolfe RL, Means EG. Degradation of 2-Methylisoborneol by Aquatic Bacteria. Appl Environ Microbiol 1988; 54:2424-31. [PMID: 16347753 PMCID: PMC204277 DOI: 10.1128/aem.54.10.2424-2431.1988] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2-Methylisoborneol (MIB) is a musty- or muddy-smelling compound which occurs in some natural waters and which is difficult to remove by conventional water treatment methods. Bacterial degradation of MIB was examined in batch culture experiments. Cultures able to metabolize MIB were enriched in a mineral salts medium supplemented with milligram-per-liter levels of the compound and were inoculated with water and sediment samples from reservoirs where MIB is seasonally produced. Bacteria from degrading cultures were isolated on R2A agar and identified as predominantly
Pseudomonas
spp. Degradation occurred only in cultures consisting of three or more different bacteria. MIB supported growth as the sole added carbon source at 1 to 6.7 mg/liter. MIB was also degraded at microgram-per-liter levels in sterile filtered lake water inoculated with washed bacteria and in synthetic medium supplemented with various sugars or acetate. Complete degradation of MIB took from 5 days to more than 2 weeks. Enrichment with isoborneol, a structural analog of MIB, failed as a preenrichment for MIB degraders. Isoborneol at 20 to 40 mg/liter readily supported bacterial growth, whereas MIB at 12 to 20 mg/liter took months to degrade. The relative recalcitrance of MIB compared with isoborneol may be a result of the additional methyl group in MIB.
Collapse
Affiliation(s)
- G Izaguirre
- Water Quality Division, Metropolitan Water District of Southern California, La Verne, California 91750
| | | | | |
Collapse
|
13
|
Guerin WF, Jones GE. Two-Stage Mineralization of Phenanthrene by Estuarine Enrichment Cultures. Appl Environ Microbiol 1988; 54:929-36. [PMID: 16347614 PMCID: PMC202575 DOI: 10.1128/aem.54.4.929-936.1988] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polycyclic aromatic hydrocarbon phenanthrene was mineralized in two stages by soil, estuarine water, and sediment microbial populations. At high concentrations, phenanthrene was degraded, with the concomitant production of biomass and accumulation of Folin-Ciocalteau-reactive aromatic intermediates. Subsequent consumption of these intermediates resulted in a secondary increase in biomass. Analysis of intermediates by high-performance liquid chromatography, thin-layer chromatography, and UV absorption spectrometry showed 1-hydroxy-2-naphthoic acid (1H2NA) to be the predominant product. A less pronounced two-stage mineralization pattern was also observed by monitoring
14
CO
2
production from low concentrations (0.5 mg liter
−1
) of radiolabeled phenanthrene. Here, mineralization of
14
C-labeled 1H2NA could explain the incremental
14
CO
2
produced during the later part of the incubations. Accumulation of 1H2NA by isolates obtained from enrichments was dependent on the initial phenanthrene concentration. The production of metabolites during polycyclic aromatic hydrocarbon biodegradation is discussed with regard to its possible adaptive significance and its methodological implications.
Collapse
Affiliation(s)
- W F Guerin
- Department of Microbiology, University of New Hampshire, Durham, New Hampshire 03824
| | | |
Collapse
|
14
|
|
15
|
Groseclose EE, Ribbons DW. Metabolism of resorcinylic compounds by bacteria: new pathway for resorcinol catabolism in Azotobacter vinelandii. J Bacteriol 1981; 146:460-6. [PMID: 7217008 PMCID: PMC216987 DOI: 10.1128/jb.146.2.460-466.1981] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We present evidence to document a third pathway for the microbial catabolism of resorcinol. Resorcinol is converted to pyrogallol by resorcinol-grown cells of Azotobacter vinelandii. Pyrogallol is the substrate for one of two ring cleavage enzymes induced by growth with resorcinol. Oxalocrotonate, CO2, pyruvate, and acetaldehyde have been identified as products of pyrogallol oxidation catalyzed by extracts of resorcinol-grown cells. The enzymes pyrogallol 1,2-dioxygenase, oxalocrotonate tautomerase (isomerase), oxalocrotonate decarboxylase, and vinylpyruvate hydratase are present in extracts from resorcinol-grown cells but not in succinate-grown cells.
Collapse
|
16
|
|
17
|
|
18
|
Abstract
Trichosporon cutaneum readily metabolized protocatechuate, homoprotocatechuate, and gentisate, but lacked ring fission dioxygenases for these compounds. Benzoic, salicylic, 2,3-dihydroxybenzoic, and gentisic acids were converted into beta-ketoadipic acid before entry into the Krebs cycle. Benzoic acid gave rise successively to 4-hydroxybenzoic acid, protocatechuic acid, and hydroxyquinol (1,3,4-trihydroxybenzene), which underwent ring fission to maleylacetic acid. Salicylate and 2,3-dihydroxybenzoate were both initially metabolized to give catechol. 2,3-Dihydroxybenzoate was the substrate for a specific nonoxidative decarboxylase induced by salicylate, although 2,3-dihydroxybenzoate was not a catabolite of salicylate. Gentisate was metabolized to maleylacetic acid and was also readily attacked by salicylate hydroxylase at each stage of a partial purification procedure. Phenylacetic acid was degraded through 3-hydroxyphenylacetic, homogentisic, and maleylacetoacetic acids to acetoacetic and fumaric acids. All the reactions of these catabolic sequences were catalyzed by cell extracts, supplemented with reduced pyridine nucleotide coenzymes where necessary, except for the hydroxylations of benzoic and phenylacetic acids which were demonstrated with cell suspensions and isotopically labeled substrates.
Collapse
|