1
|
Agarwala P, Pal A, Hazra MK, Sasmal DK. Differential Mg 2+ deposition on DNA Holliday Junctions dictates the rate and stability of conformational exchange. NANOSCALE 2024; 17:520-532. [PMID: 39569634 DOI: 10.1039/d4nr02411g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
DNA Holliday junctions (HJs) are crucial intermediates in genetic recombination and genome repair processes, characterized by a dynamic nature and transitioning among multiple conformations on the timescale ranging from sub-milliseconds to seconds. Although the influence of ions on HJ dynamics has been extensively studied, precise quantification of the thermodynamic feasibility of transitions and detailed kinetic cooperativity remain unexplored. Understanding the heterogeneity of stochastic gene recombination using ensemble-averaged experimental techniques is extremely difficult because of its lack of ability to differentiate dynamics and function in a high spatiotemporal resolution. Herein, we developed a new technique that combines single-molecule fluorescence resonance energy transfer (smFRET) experiments and molecular simulation to investigate the kinetic choreography and preferential stability of HJ conformations under ionic conditions that closely mimic the physiological environment relevant to cellular biology. Our findings predict the prevalence of three distinct conformational macrostates in HJ dynamics. At low ion concentrations, HJs transition rapidly among three thermodynamically stable conformational macrostates. However, in a physiological ionic environment, the open conformation becomes predominant. Using a kinetic network model based on the multi-order time correlation function (TCF), we delineated thermodynamic parameters that govern heterogeneous dynamics as a function of divalent ion concentration. Stabilization of conformations due to an ionic environment and activation barriers concertedly affect transition rates between open and closed conformations. Furthermore, we observed a significant enhancement of Mg2+ condensation in the central region of HJs rather than branch ends, leading to a plausible conclusion that the differential stability of conformational states may be governed by the junction region of HJs rather than duplex branches. This study gives a new insight into the complex interplay between the ionic environment and HJ dynamics, offering a comprehensive understanding of their behavior under conditions relevant to cellular biology and roles in key biological processes for creating a heterogeneous nature of life.
Collapse
Affiliation(s)
- Pratibha Agarwala
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| | - Arumay Pal
- School of Biosciences, Engineering and Technology, Vellore Institute of Technology Bhopal, India
| | - Milan Kumar Hazra
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| | - Dibyendu K Sasmal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan 342037, India.
| |
Collapse
|
2
|
Ceballos-Ávila D, Vázquez-Sandoval I, Ferrusca-Martínez F, Jiménez-Sánchez A. Conceptually innovative fluorophores for functional bioimaging. Biosens Bioelectron 2024; 264:116638. [PMID: 39153261 DOI: 10.1016/j.bios.2024.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fluorophore chemistry is at the forefront of bioimaging, revolutionizing the visualization of biological processes with unparalleled precision. From the serendipitous discovery of mauveine in 1856 to cutting-edge fluorophore engineering, this field has undergone transformative evolution. Today, the synergy of chemistry, biology, and imaging technologies has produced diverse, specialized fluorophores that enhance brightness, photostability, and targeting capabilities. This review delves into the history and innovation of fluorescent probes, showcasing their pivotal role in advancing our understanding of cellular dynamics and disease mechanisms. We highlight groundbreaking molecules and their applications, envisioning future breakthroughs that promise to redefine biomedical research and diagnostics.
Collapse
Affiliation(s)
- Daniela Ceballos-Ávila
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Ixsoyen Vázquez-Sandoval
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Fernanda Ferrusca-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n. Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Chiu HP, Shen CH, Wu JK, Mao EC, Yen HY, Chang YP, Wu CC, Fan HF. Nuclease-induced stepwise photodropping (NISP) to precisely investigate single-stranded DNA degradation behaviors of exonucleases and endonucleases. Nucleic Acids Res 2024; 52:e97. [PMID: 39351870 PMCID: PMC11551736 DOI: 10.1093/nar/gkae822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/12/2024] Open
Abstract
Here, we employed a fluorescence-based single molecule method called nuclease-induced stepwise photodropping (NISP) to measure in real time the DNA degradation mediated by mitochondrial genome maintenance exonuclease 1 (MGME1), a bidirectional single-stranded DNA (ssDNA)-specific exonuclease. The method detects a stepwise decrease in fluorescence signals from Cy3 fluorophores labeled on an immobilized DNA substrate. Using NISP, we successfully determined the DNA degradation rates of 6.3 ± 0.4 and 2.0 ± 0.1 nucleotides (nt) s-1 for MGME1 in the 5'-to-3' and 3'-to-5' directions, respectively. These results provide direct evidence of the stronger 5' directionality of MGME1, consistent with its established role in mitochondrial DNA maintenance. Importantly, when we employed NISP to investigate mung bean nuclease, an ss-specific endonuclease, we observed a markedly different NISP pattern, suggesting a distributive cleavage activity of the enzyme. Furthermore, we applied NISP to determine the ssDNA degradation behavior of the double-stranded-specific exonuclease, λ exonuclease. These findings underscore the capability of NISP to accurately and reliably measure the degradation of ssDNA by both exo- and endonucleases. Here, we demonstrate NISP as a powerful tool for investigating the ssDNA degradation behavior of nucleases at the single-molecule level.
Collapse
Affiliation(s)
- Hui-Pin Chiu
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Chung-Han Shen
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Jan-Kai Wu
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Eric Y C Mao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Han-Yi Yen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Yuan-Pin Chang
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Chyuan-Chuan Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Hsiu-Fang Fan
- Institute of Medical Science and Technology, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Kaohsiung, 804201, Taiwan
| |
Collapse
|
4
|
Johnson RE, Pounder A, van der Zalm J, Chen A, Bell IJ, Van Raay TJ, Wetmore SD, Manderville RA. Thieno[3,2- b]thiophene for the Construction of Far-Red Molecular Rotor Hemicyanines as High-Affinity DNA Aptamer Fluorogenic Reporters. Anal Chem 2024; 96:16252-16259. [PMID: 39360861 DOI: 10.1021/acs.analchem.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The construction of far-red fluorescent molecular rotors (FMRs) is an imperative task for developing nucleic acid stains that have superior compatibility with cellular systems and complex matrices. A typical strategy relies on the methine extension of asymmetric cyanines, which unfortunately fails to produce sensitive rotor character. To break free from this paradigm, we have synthesized far-red hemicyanines using a dimethylamino thieno[3,2-b]thiophene donor. The resultant probes, designated as ATh2Ind and ATh2Btz, possess excitation maxima (λmax) of >600 nm and have been rigorously characterized by NMR, electrochemistry, and computational methods. The dyes possess alternating charge patterns like indodicarbocyanine (Cy5), but with twisted intramolecular charge transfer (TICT) rotational barriers at 60°, akin to the classical FMR thiazole orange (TO1). ATh2Btz also displays cyanine characteristics, enhancing its response upon binding to nucleic acids and allowing for efficient staining of cellular nuclei. When binding to the DNA aptamer for quinine (MN4), ATh2Btz exhibits a Kd of 17 nM, a 660-fold light-up response, brightness (Φfl x εmax) of ∼37,000 M-1cm-1, and λex/λem of 655/677 nm. The resulting far-red DNA-based MN4-ATh2Btz platform has been termed "pomegranate."
Collapse
Affiliation(s)
- Ryan E Johnson
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Austin Pounder
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Joshua van der Zalm
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Aicheng Chen
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ian J Bell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Terence J Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Richard A Manderville
- Departments of Chemistry and Toxicology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
5
|
He Q, Lu H, Chen Y, Zeng H, Hu P. Visualization of the degradation of long-acting microneedles and correlation of drug release in vivo based on FRET mechanism. Acta Biomater 2024:S1742-7061(24)00599-3. [PMID: 39401596 DOI: 10.1016/j.actbio.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024]
Abstract
This study introduces a live imaging technique for real-time, non-invasive monitoring of drug release from long-acting microneedles using FRET (Fluorescence Resonance Energy Transfer). Employing Cy5.5 and Cy7 as FRET pairs and levonorgestrel as the model drug, we fabricated microneedles with varying PLGA molecular weights, demonstrating distinct release profiles. The FRET-PLGA-10-MN demonstrated a rapid drug release profile, reaching nearly complete release within a two-day period, while FRET-PLGA-30-MN showed a sustained release over four days. Sensitized Emission FRET (SE-FRET) optimized the imaging process, providing a robust correlation between FRET signals and drug absorption. This method surpasses traditional pharmacokinetic studies by offering a more efficient and comprehensive analysis of microneedle release dynamics in vivo, paving the way for enhanced long-acting microneedle design and therapeutic outcomes. STATEMENT OF SIGNIFICANCE: 1. FRET technology was applied to microneedle drug delivery system for the first time, which realized real-time, quantitative and non-invasive monitoring of drug release process. 2. The long-term microneedle technique was combined with sensitized emission method, and the FRET remaining ratio was innovatively used to investigate the FRET characteristics of microneedles, and the fluorescence ratio of FRET and donor double-channel was quantitatively calculated. 3. The correlation between visual fluorescence images of FRET effect and semi-quantitative calculation results based on fluorescence intensity and drug release in vivo with drug-loaded microneedles was analyzed.
Collapse
Affiliation(s)
- Qingwei He
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Hong Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Yuying Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Huiying Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Obloy LM, Jockusch S, Tarnovsky AN. Shortwave infrared polymethine dyes for bioimaging: ultrafast relaxation dynamics and excited-state decay pathways. Phys Chem Chem Phys 2024; 26:24261-24278. [PMID: 38895857 DOI: 10.1039/d4cp01411a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Excited-state relaxation in two prototypical shortwave infrared (SWIR) polymethine dyes developed for bioimaging, heptamethine chromenylium Chrom7 and flavylium Flav7, is studied by means of femtosecond transient absorption with broadband ultraviolet-to-SWIR probing complemented by steady-state and time-resolved fluorescence and phosphorescence measurements. The relaxation processes of the dyes in dichloromethane are resolved with sub-100 fs temporal resolution using SWIR, near-IR, and visible photoexcitation. Different population members of the ground-state inhomogeneous ensemble are found to equilibrate via skeletal deformation changes with time constants of 90 fs and either 230 fs (Chrom7) and 350 fs (Flav7) followed by slower evolution matching the 1-ps timescale of diffusive solvation dynamics. Molecules excited into high-lying singlet electronic states (Sn) by visible excitation repopulate with time constants of 400 fs (Chrom7) and 450 fs (Flav7) the corresponding first excited singlet S1 states, which decay within several hundreds of picoseconds in dichloromethane and chloroform solvents. Vibrational relaxation in S1 for both Chrom7 and Flav7 in dichloromethane occurs with time constants of 350 and 800 fs for excess of vibrational energy of ∼1000 and 10 000 cm-1 deposited by near-IR and visible excitation, respectively. Two competing non-radiative processes are present in S1: temperature-independent internal conversion, and thermally-activated twisting about a carbon-carbon bond of the conjugated chain, which is substantial at room temperature but essentially nonreactive, producing traces of isomer product. Intersystem crossing in S1, and thus the triplet quantum yield, is minor. The importance of absorption bands from the excited S1 state in applications requiring high-intensity excitation conditions is discussed.
Collapse
Affiliation(s)
- Laura M Obloy
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Steffen Jockusch
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| | - Alexander N Tarnovsky
- Department of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403, USA.
| |
Collapse
|
7
|
Zhao X, Du J, Sun W, Fan J, Peng X. Regulating Charge Transfer in Cyanine Dyes: A Universal Methodology for Enhancing Cancer Phototherapeutic Efficacy. Acc Chem Res 2024; 57:2582-2593. [PMID: 39152945 DOI: 10.1021/acs.accounts.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
ConspectusDue to the advantages of spatiotemporal selectivity and inherent noninvasiveness, cancer phototherapy, which includes both photodynamic therapy (PDT) and photothermal therapy (PTT), has garnered significant attention in recent years as a promising cancer treatment. Despite the commendable progress in this field, persistent challenges remain. In PDT, limitations in dyes manifest as low intersystem crossing (ISC) efficiency and oxygen-dependent photoactivity, resulting in unsatisfactory performance, particularly under hypoxic conditions. Similarly, PTT encounters consistent insufficiencies in the photothermal conversion efficiency (PCE) of dyes. Additionally, the suboptimal phototherapeutic efficacy often exhibits a limited immune response. These factors collectively impose significant constraints on phototherapy in oncological applications, leading to limited tumor inhibition, tumor recurrence, and even metastasis.Unlike strategies that rely on external assistance with complicated systems, manipulating excited-state deactivation pathways in biocompatible dyes offers a universal way to systematically address these challenges. Our group has devoted considerable effort to achieving this goal. In this Account, we present and discuss our journey in optimizing excited-state energy-release pathways through regulating molecular charge transfer based on cyanine dyes, which are renowned for their exceptional photophysical properties and harmonious biocompatibility. The investigation begins with the introduction of amino groups in the meso position of a heptamethine cyanine dye, where the intramolecular charge transfer (ICT) effect causes a significant enlargement of the Stokes shift. Subsequently, ICT induced by introducing functional electron-deficient groups in cyanines is found to decrease the overlap of electron distribution or narrow the energy gaps of molecular frontier orbitals. Such modifications result in a reduction of the energy gaps between singlet and triplet states or an improvement in internal conversion, ultimately promoting phototherapy efficacy in both primary and distant tumors. Furthermore, with the intensification of the charge transfer effect aided by light, photoinduced intramolecular electron transfer occurs in some cyanines, leading to complete charge separation in the excited state. This process enhances the transition to the ground or triplet states, improving tumor phototherapy and inhibiting metastasis by increasing the PCE or the yield of reactive oxygen species, respectively. Shifting focus from intramolecular to intermolecular interactions, we successfully constructed and explored cyanines based on intermolecular charge transfer. These dyes, with excited-state dynamics mimicking natural photosynthesis, generate radicals and facilitate oxygen-independent hypoxic tumor PDT. Finally, we outlined the existing challenges and future directions for optimizing phototherapeutic efficacy by regulating molecular charge transfer. This Account provides molecular-level insights into improving phototherapeutic performance, offering valuable perspectives, and inspiring the development of functional dyes in other application fields.
Collapse
Affiliation(s)
- Xueze Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, 315016 Ningbo, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China
| |
Collapse
|
8
|
Yoneda Y, Kuramochi H. Room-Temperature Solution Fluorescence Excitation Correlation Spectroscopy. J Phys Chem Lett 2024; 15:8533-8539. [PMID: 39135215 DOI: 10.1021/acs.jpclett.4c01798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Single-molecule fluorescence spectroscopy is a powerful tool for investigating the physical properties of individual molecules, yet elucidating the fast fluctuation dynamics of freely diffusing single molecules in solution at room temperature, where a variety of chemical and biological processes occur, remains challenging. In this study, we report on fluorescence excitation correlation spectroscopy of room-temperature solutions, which enables the study of spontaneous fluctuation of the excitation spectrum with microsecond time resolution. By employing Fourier transform spectroscopy with broadband femtosecond pulses and time-correlated single-photon counting, we achieved fluorescence excitation spectroscopy of a room-temperature solution at the single-molecule level. Building upon this single-molecule measurement, we obtained an excitation wavelength-resolved fluorescence autocorrelation function in the microsecond to millisecond range, demonstrating the potential of this method to elucidate fast, spontaneous, time-dependent changes of excitation spectra in statistically equilibrated systems. With further development, this method will allow the study of spectral exchange associated with transitions between sub-ensembles of solution-phase molecules with unprecedented time resolution.
Collapse
Affiliation(s)
- Yusuke Yoneda
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Hikaru Kuramochi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
9
|
Jurczak P, Fayad N, Benard M, Czaplewska P, Hildebrandt N. Monomer-Dimer Equilibrium of Human Cystatin C During Internalization Into Cancer Cells. Chembiochem 2024; 25:e202400226. [PMID: 38761032 DOI: 10.1002/cbic.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/20/2024]
Abstract
Human cystatin C (hCC) is a physiologically important protein that serves as intra- and extracellular cysteine proteinase inhibitor in homeostasis. However, in pathological states it dimerizes and further oligomerizes accumulating into a toxic amyloid. HCC forms an active monomer in the extracellular space and becomes an inactive dimer when internalized in cellular organelles. However, hCC cell penetration and its oligomeric state during this process are not well understood. To determine if and how the oligomeric state influences hCC transmembrane migration, we investigated the internalization of the hCC wild type protein as well as three different mutants, which exclusively exist in the monomeric or multimeric state into HeLa cells via confocal fluorescence microscopy. Our results showed that the preferred pathway was endocytosis and that the oligomeric state did not significantly influence the internalization because both monomeric and dimeric hCC migrated into HeLa cells. Considering the differences of the active monomeric and the passive dimeric states of hCC, our findings contribute to a better understanding of the intra and extra cellular functions of hCC and their interaction with cysteine proteases.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, Gdańsk, 80-307, Poland
- Laboratoire COBRA (UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, Rouen, 76000, France
| | - Nour Fayad
- Laboratoire COBRA (UMR6014 & FR3038), Université de Rouen Normandie, CNRS, INSA, Normandie Université, Rouen, 76000, France
| | - Magalie Benard
- PRIMACEN, Univ Rouen Normandie, INSERM, CNRS, HeRacLeS US51 UAR2026, Rouen, 76000, France
| | - Paulina Czaplewska
- Laboratory of Mass Spectrometry, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, Gdańsk, 80-307, Poland
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, L8S4 L7, Canada
| |
Collapse
|
10
|
Kumari P, Arora S, Pan Y, Ahmed I, Kumar S, Parshad B. Tailoring Indocyanine Green J-Aggregates for Imaging, Cancer Phototherapy, and Drug Delivery: A Review. ACS APPLIED BIO MATERIALS 2024; 7:5121-5135. [PMID: 39039943 DOI: 10.1021/acsabm.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Indocyanine green J-aggregates (ICG-Jagg) have emerged as a significant subject of interest in biomedical applications due to their unique optical properties, tunable size, and excellent biocompatibility. This comprehensive review aims to provide an in-depth exploration of ICG-Jagg, with a focus on elucidating the diverse facets of their preparation and the factors that influence the preparation process. Additionally, the review discusses their applications in biomedical diagnostics, such as imaging and contrast agents, as well as their utilization in drug delivery and various phototherapeutic interventions.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Chemistry, Deenbandhu Chhoturam University of Science and Technology, Sonipat 131039, Murthal, India
| | - Smriti Arora
- Institut für Chemie und Biochemie Organische Chemie, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Sumit Kumar
- Department of Chemistry, Deenbandhu Chhoturam University of Science and Technology, Sonipat 131039, Murthal, India
| | - Badri Parshad
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| |
Collapse
|
11
|
Doronin IV, Zyablovsky AA, Andrianov ES, Kalmykov AS, Gritchenko AS, Khlebtsov BN, Wang SP, Kang B, Balykin VI, Melentiev PN. Quantum engineering of the radiative properties of a nanoscale mesoscopic system. NANOSCALE 2024; 16:14899-14910. [PMID: 39040019 DOI: 10.1039/d4nr01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: a large spectral width, low intensity, blinking, photodegradation, biocompatibility, etc. In this work, we present the theoretical and experimental investigation of quantum light sources - mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules. However, numerous attempts to incorporate fluorescent molecules into polydopamines have failed, as polydopamine has been shown to be a very efficient fluorescence quencher through Förster resonance energy transfer and/or photoinduced electron transfer. Using the system as an example, we demonstrate new insights into the interactions between molecules and electromagnetic fields by carefully shaping its energy levels through strong matter-wave coupling of molecules to metallic nanoparticles. We show that the strong coupling effectively suppresses the quenching of fluorescent molecules in polydopamine, opening new possibilities for imaging.
Collapse
Affiliation(s)
- I V Doronin
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - A A Zyablovsky
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Moscow, Russia
| | - E S Andrianov
- Moscow Institute of Physics and Technology, Moscow, Russia
- Institute for Theoretical and Applied Electromagnetics, Moscow, Russia
| | - A S Kalmykov
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - A S Gritchenko
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, Saratov, Russia
| | - S-P Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, P. R. China
| | | | - Pavel N Melentiev
- Institute of Spectroscopy RAS, Moscow, Troitsk 108840, Russia
- National Research University, Moscow, Russia.
| |
Collapse
|
12
|
Drakopoulos A, Koszegi Z, Seier K, Hübner H, Maurel D, Sounier R, Granier S, Gmeiner P, Calebiro D, Decker M. Design, Synthesis, and Characterization of New δ Opioid Receptor-Selective Fluorescent Probes and Applications in Single-Molecule Microscopy of Wild-Type Receptors. J Med Chem 2024; 67:12618-12631. [PMID: 39044606 PMCID: PMC11386433 DOI: 10.1021/acs.jmedchem.4c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The delta opioid receptor (δOR or DOR) is a G protein-coupled receptor (GPCR) showing a promising profile as a drug target for nociception and analgesia. Herein, we design and synthesize new fluorescent antagonist probes with high δOR selectivity that are ideally suited for single-molecule microscopy (SMM) applications in unmodified, untagged receptors. Using our new probes, we investigated wild-type δOR localization and mobility at low physiological receptor densities for the first time. Furthermore, we investigate the potential formation of δOR homodimers, as such a receptor organization might exhibit distinct pharmacological activity, potentially paving the way for innovative pharmacological therapies. Our findings indicate that the majority of δORs labeled with these probes exist as freely diffusing monomers on the cell surface in a simple cell model. This discovery advances our understanding of OR behavior and offers potential implications for future therapeutic research.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Kerstin Seier
- Institute of Pharmacology and Toxicology, Julius-Maximilians University of Würzburg, Versbacher Strasse 9, 97078 Würzburg, Germany
| | - Harald Hübner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Damien Maurel
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Rémy Sounier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, CNRS, INSERM, Université de Montpellier, 34094 Cedex 5 Montpellier, France
| | - Peter Gmeiner
- Chair of Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, B15 2TT Birmingham, U.K
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, B15 2TT Birmingham, U.K
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
13
|
Chu J, Ejaz A, Lin KM, Joseph MR, Coraor AE, Drummond DA, Squires AH. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels. NATURE NANOTECHNOLOGY 2024; 19:1150-1157. [PMID: 38750166 PMCID: PMC11329371 DOI: 10.1038/s41565-024-01672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 04/05/2024] [Indexed: 05/28/2024]
Abstract
Multiplexed, real-time fluorescence detection at the single-molecule level can reveal the stoichiometry, dynamics and interactions of multiple molecular species in mixtures and other complex samples. However, fluorescence-based sensing is typically limited to the detection of just 3-4 colours at a time due to low signal-to-noise ratio, high spectral overlap and the need to maintain the chemical compatibility of dyes. Here we engineered a palette of several dozen composite fluorescent labels, called FRETfluors, for multiplexed spectroscopic measurements at the single-molecule level. FRETfluors are compact nanostructures constructed from three chemical components (DNA, Cy3 and Cy5) with tunable spectroscopic properties due to variations in geometry, fluorophore attachment chemistry and DNA sequence. We demonstrate FRETfluor labelling and detection for low-concentration (<100 fM) mixtures of mRNA, dsDNA and proteins using an anti-Brownian electrokinetic trap. In addition to identifying the unique spectroscopic signature of each FRETfluor, this trap differentiates FRETfluors attached to a target from unbound FRETfluors, enabling wash-free sensing. Although usually considered an undesirable complication of fluorescence, here the inherent sensitivity of fluorophores to the local physicochemical environment provides a new design axis complementary to changing the FRET efficiency. As a result, the number of distinguishable FRETfluor labels can be combinatorically increased while chemical compatibility is maintained, expanding prospects for spectroscopic multiplexing at the single-molecule level using a minimal set of chemical building blocks.
Collapse
Affiliation(s)
- Jiachong Chu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ayesha Ejaz
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Kyle M Lin
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Interdisicplinary Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Madeline R Joseph
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aria E Coraor
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| | - Allison H Squires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
14
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
15
|
Pati AK, Kilic Z, Martin MI, Terry DS, Borgia A, Bar S, Jockusch S, Kiselev R, Altman RB, Blanchard SC. Recovering true FRET efficiencies from smFRET investigations requires triplet state mitigation. Nat Methods 2024; 21:1222-1230. [PMID: 38877317 PMCID: PMC11239528 DOI: 10.1038/s41592-024-02293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/25/2024] [Indexed: 06/16/2024]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) methods employed to quantify time-dependent compositional and conformational changes within biomolecules require elevated illumination intensities to recover robust photon emission streams from individual fluorophores. Here we show that outside the weak-excitation limit, and in regimes where fluorophores must undergo many rapid cycles of excitation and relaxation, non-fluorescing, excitation-induced triplet states with lifetimes orders of magnitude longer lived than photon-emitting singlet states degrade photon emission streams from both donor and acceptor fluorophores resulting in illumination-intensity-dependent changes in FRET efficiency. These changes are not commonly taken into consideration; therefore, robust strategies to suppress excited state accumulations are required to recover accurate and precise FRET efficiency, and thus distance, estimates. We propose both robust triplet state suppression and data correction strategies that enable the recovery of FRET efficiencies more closely approximating true values, thereby extending the spatial and temporal resolution of smFRET.
Collapse
Affiliation(s)
- Avik K Pati
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Zeliha Kilic
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maxwell I Martin
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel S Terry
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alessandro Borgia
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sukanta Bar
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steffen Jockusch
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA
| | - Roman Kiselev
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Roger B Altman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
16
|
Zhou W, Tao Y, Qiao Q, Xu N, Li J, Wang G, Fang X, Chen J, Liu W, Xu Z. Cell-Impermeable Buffering Fluorogenic Probes for Live-Cell Super-Resolution Imaging of Plasma Membrane Morphology Dynamics. ACS Sens 2024; 9:3170-3177. [PMID: 38859630 DOI: 10.1021/acssensors.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Super-resolution fluorescence imaging has emerged as a potent tool for investigating the nanoscale structure and function of the plasma membrane (PM). Nevertheless, the challenge persists in achieving super-resolution imaging of PM dynamics due to limitations in probe photostability and issues with cell internalization staining. Herein, we report assembly-mediated buffering fluorogenic probes BMP-14 and BMP-16 exhibiting fast PM labeling and extended retention time (over 2 h) on PM. The incorporation of alkyl chains proves effective in promoting the aggregation of BMP-14 and BMP-16 into nonfluorescent nanoparticles to realize fluorogenicity and regulate the buffering capacity to rapidly replace photobleached probes ensuring stable long-term super-resolution imaging of PM. Utilizing these PM-buffering probes, we observed dynamic movements of PM filopodia and continuous shrinkage, leading to the formation of extracellular vesicles (EVs) using structured illumination microscopy (SIM). Furthermore, we discovered two distinct modes of EV fusion: one involving fusion through adjacent lipids and the other through filamentous lipid traction. The entire process of EV fusion outside the PM was dynamically tracked. Additionally, BMP-16 exhibited a unique capability of inducing single-molecule fluorescence blinking when used for cell membrane staining. This property makes BMP-16 suitable for the PAINT imaging of cell membranes.
Collapse
Affiliation(s)
- Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ning Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Guangying Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangning Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Gamage RS, Smith BD. Fluorescence Imaging Using Deep-Red Indocyanine Blue, a Complementary Partner for Near-Infrared Indocyanine Green. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:384-397. [PMID: 38817322 PMCID: PMC11134606 DOI: 10.1021/cbmi.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Indocyanine Blue (ICB) is the deep-red pentamethine analogue of the widely used clinical near-infrared heptamethine cyanine dye Indocyanine Green (ICG). The two fluorophores have the same number of functional groups and molecular charge and vary only by a single vinylene unit in the polymethine chain, which produces a predictable difference in spectral and physicochemical properties. We find that the two dyes can be employed as a complementary pair in diverse types of fundamental and applied fluorescence imaging experiments. A fundamental fluorescence spectroscopy study used ICB and ICG to test a recently proposed Förster Resonance Energy Transfer (FRET) mechanism for enhanced fluorescence brightness in heavy water (D2O). The results support two important corollaries of the proposal: (a) the strategy of using heavy water to increase the brightness of fluorescent dyes for microscopy or imaging is most effective when the dye emission band is above 650 nm, and (b) the magnitude of the heavy water florescence enhancement effect for near-infrared ICG is substantially diminished when the ICG surface is dehydrated due to binding by albumin protein. Two applied fluorescence imaging studies demonstrated how deep-red ICB can be combined with a near-infrared fluorophore for paired agent imaging in the same living subject. One study used dual-channel mouse imaging to visualize increased blood flow in a model of inflamed tissue, and a second mouse tumor imaging study simultaneously visualized the vasculature and cancerous tissue in separate fluorescence channels. The results suggest that ICB and ICG can be incorporated within multicolor fluorescence imaging methods for perfusion imaging and hemodynamic characterization of a wide range of diseases.
Collapse
Affiliation(s)
- Rananjaya S Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
18
|
Chen M, Zhang Z, Lin R, Liu J, Xie M, He X, Zheng C, Kang M, Li X, Feng HT, Lam JWY, Wang D, Tang BZ. A planar electronic acceptor motif contributing to NIR-II AIEgen with combined imaging and therapeutic applications. Chem Sci 2024; 15:6777-6788. [PMID: 38725487 PMCID: PMC11077540 DOI: 10.1039/d3sc06886b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Designing molecules with donor-acceptor-donor (D-A-D) architecture plays an important role in obtaining second near-infrared region (NIR-II, 1000-1700 nm) fluorescent dyes for biomedical applications; however, this always comes with a challenge due to very limited electronic acceptors. On the other hand, to endow NIR-II fluorescent dyes with combined therapeutic applications, trivial molecular design is indispensable. Herein, we propose a pyrazine-based planar electronic acceptor with a strong electron affinity, which can be used to develop NIR-II fluorescent dyes. By structurally attaching two classical triphenylamine electronic donors to it, a basic D-A-D module, namely Py-NIR, can be generated. The planarity of the electronic acceptor is crucial to induce a distinct NIR-II emission peaking at ∼1100 nm. The unique construction of the electronic acceptor can cause a twisted and flexible molecular conformation by the repulsive effect between the donors, which is essential to the aggregation-induced emission (AIE) property. The tuned intramolecular motions and twisted D-A pair brought by the electronic acceptor can lead to a remarkable photothermal conversion with an efficiency of 56.1% and induce a type I photosensitization with a favorable hydroxyl radical (OH˙) formation. Note that no additional measures are adopted in the molecular design, providing an ideal platform to realize NIR-II fluorescent probes with synergetic functions based on such an acceptor. Besides, the nanoparticles of Py-NIR can exhibit excellent NIR-II fluorescence imaging towards orthotopic 4T1 breast tumors in living mice with a high sensitivity and contrast. Combined with photothermal imaging and photoacoustic imaging caused by the thermal effect, the imaging-guided photoablation of tumors can be well performed. Our work has created a new opportunity to develop NIR-II fluorescent probes for accelerating biomedical applications.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Zhijun Zhang
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Runfeng Lin
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Meizhu Xie
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Xiang He
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Canze Zheng
- College of Chemistry and Materials Science, Jinan University Guangzhou 510632 China
| | - Miaomiao Kang
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Xue Li
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Photochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
| | - Dong Wang
- Center for AIR Research, College of Materials and Engineering, Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Materials, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon Hong Kong 999077 China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen (CUHK-SZ) Guangdong China
| |
Collapse
|
19
|
Erdemir S, Malkondu S, Oguz M, Kocak A. Monitoring Hg 2+ ions in food and environmental matrices using a novel ratiometric NIR fluorescent sensor via carbonothioate-deprotection reaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123859. [PMID: 38537802 DOI: 10.1016/j.envpol.2024.123859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024]
Abstract
Mercury toxicity and its environmental impact are significant concerns for public health and environmental protection. Therefore, the development of effective, rapid, and reliable detection methods for trace levels of Hg2+ is crucial. Herein, a cyanine dye bearing a carbonothioate group is reported as a potential NIR fluorescent probe for Hg2+ detection. The spectral properties of the free probe have been characterized by the presence and absence of a series of analytes. The addition of Hg2+ leads to significant changes in the fluorescence signal with distinct red coloration compared to other competing analytes, indicating that the probe is highly selective for Hg2+. The fluorescence quantum yield increases from 0.073 to 0.315. The detection limit is 0.10 μM, indicating the high sensitivity of the probe to low Hg2+ levels. The most prominent sensing features of the probe include NIR fluorescence, low cytotoxicity, ratiometric fluorescence response, and fast response compared to most of the currently available fluorescent probes. In addition, the probe can detect Hg2+ in actual samples such as foodstuff, soil, water, and live cells. Bioimaging studies have demonstrated that the present probe is highly efficient in targeting mitochondria and possesses good imaging abilities for detecting Hg2+ in cells. Therefore, these results suggest that it can be proposed as a powerful NIR fluorescent probe for the highly sensitive detection of Hg2+.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, Konya, 42250, Turkey.
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, Konya, 42250, Turkey
| | - Ahmet Kocak
- Selcuk University, Science Faculty, Department of Chemistry, Konya, 42250, Turkey
| |
Collapse
|
20
|
An K, Qiao Q, Zhou W, Jiang W, Li J, Xu Z. Stable Super-Resolution Imaging of Cell Membrane Nanoscale Subcompartment Dynamics with a Buffering Cyanine Dye. Anal Chem 2024; 96:5985-5991. [PMID: 38557031 DOI: 10.1021/acs.analchem.4c00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Super-resolution fluorescence imaging is a crucial method for visualizing the dynamics of the cell membrane involved in various physiological and pathological processes. This requires bright fluorescent dyes with excellent photostability and labeling stability to enable long-term imaging. In this context, we introduce a buffering-strategy-based cyanine dye, SA-Cy5, designed to identify and label carbonic anhydrase IX (CA IX) located in the cell membrane. The unique feature of SA-Cy5 lies in its ability to overcome photobleaching. When the dye on the cell membrane undergoes photobleaching, it is rapidly replaced by an intact probe from the buffer pool outside the cell membrane. This dynamic replacement ensures that the fluorescence intensity on the cell membrane remains stable over time. Under the super-resolution structured illumination microscopy (SIM), the cell membrane can be continuously imaged for 60 min with a time resolution of 20 s. This extended imaging period allows for the observation of substructural dynamics of the cell membrane, including the growth and fusion of filamentous pseudopodia and the fusion of vesicles. Additionally, this buffering strategy introduces a novel approach to address the issue of poor photostability associated with the cyanine dyes.
Collapse
Affiliation(s)
- Kai An
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wei Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Maller C, Schedel F, Köhn M. A Modular Approach for the Synthesis of Diverse Heterobifunctional Cyanine Dyes. J Org Chem 2024; 89:3844-3856. [PMID: 38413005 PMCID: PMC10949230 DOI: 10.1021/acs.joc.3c02673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Herein, we present a straightforward synthetic route for the design and synthesis of diverse heterobifunctional cyanine 5 dyes. We optimized the workup by harnessing the pH- and functional group-dependent solubility of the asymmetric cyanine 5 dyes. Therefore, purification through chromatography is deferred until the last synthesis step. Demonstrating successful large-scale synthesis, our modular approach prevents functional group degradation by introducing them in the last synthesis step. These modifiable heterobifunctional dyes offer significant utility in advancing biological studies.
Collapse
Affiliation(s)
- Corina Maller
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg 79104, Germany
- Faculty
of Chemistry and Pharmacy, University of
Freiburg, Freiburg 79104, Germany
- Faculty
of Biology, University of Freiburg, Freiburg 79104, Germany
| | - Franziska Schedel
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg 79104, Germany
- Faculty
of Chemistry and Pharmacy, University of
Freiburg, Freiburg 79104, Germany
- Faculty
of Biology, University of Freiburg, Freiburg 79104, Germany
- Spermann
Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg 79104, Germany
| | - Maja Köhn
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg 79104, Germany
- Faculty
of Biology, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
22
|
Heussman D, Enkhbaatar L, Sorour MI, Kistler KA, von Hippel PH, Matsika S, Marcus AH. Using transition density models to interpret experimental optical spectra of exciton-coupled cyanine (iCy3)2 dimer probes of local DNA conformations at or near functional protein binding sites. Nucleic Acids Res 2024; 52:1272-1289. [PMID: 38050987 PMCID: PMC10853810 DOI: 10.1093/nar/gkad1163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Exciton-coupled chromophore dimers are an emerging class of optical probes for studies of site-specific biomolecular interactions. Applying accurate theoretical models for the electrostatic coupling of a molecular dimer probe is a key step for simulating its optical properties and analyzing spectroscopic data. In this work, we compare experimental absorbance and circular dichroism (CD) spectra of 'internally-labeled' (iCy3)2 dimer probes inserted site-specifically into DNA fork constructs to theoretical calculations of the structure and geometry of these exciton-coupled dimers. We compare transition density models of varying levels of approximation to determine conformational parameters of the (iCy3)2 dimer-labeled DNA fork constructs. By applying an atomistically detailed transition charge (TQ) model, we can distinguish between dimer conformations in which the stacking and tilt angles between planar iCy3 monomers are varied. A major strength of this approach is that the local conformations of the (iCy3)2 dimer probes that we determined can be used to infer information about the structures of the DNA framework immediately surrounding the probes at various positions within the constructs, both deep in the duplex DNA sequences and at sites at or near the DNA fork junctions where protein complexes bind to discharge their biological functions.
Collapse
Affiliation(s)
- Dylan Heussman
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| | - Lulu Enkhbaatar
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| | - Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Kurt A Kistler
- Department of Chemistry, Brandywine Campus, The Pennsylvania State University, Media, PA 19063, USA
| | - Peter H von Hippel
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| | | | - Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
23
|
Chacko N, Motiei M, Suryakant JS, Firer M, Ankri R. Au nanodyes as enhanced contrast agents in wide field near infrared fluorescence lifetime imaging. DISCOVER NANO 2024; 19:18. [PMID: 38270794 PMCID: PMC10810770 DOI: 10.1186/s11671-024-03958-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
The near-infrared (NIR) range of the electromagnetic (EM) spectrum offers a nearly transparent window for imaging tissue. Despite the significant potential of NIR fluorescence-based imaging, its establishment in basic research and clinical applications remains limited due to the scarcity of fluorescent molecules with absorption and emission properties in the NIR region, especially those suitable for biological applications. In this study, we present a novel approach by combining the widely used IRdye 800NHS fluorophore with gold nanospheres (GNSs) and gold nanorods (GNRs) to create Au nanodyes, with improved quantum yield (QY) and distinct lifetimes. These nanodyes exhibit varying photophysical properties due to the differences in the separation distance between the dye and the gold nanoparticles (GNP). Leveraging a rapid and highly sensitive wide-field fluorescence lifetime imaging (FLI) macroscopic set up, along with phasor based analysis, we introduce multiplexing capabilities for the Au nanodyes. Our approach showcases the ability to differentiate between NIR dyes with very similar, short lifetimes within a single image, using the combination of Au nanodyes and wide-field FLI. Furthermore, we demonstrate the uptake of Au nanodyes by mineral-oil induced plasmacytomas (MOPC315.bm) cells, indicating their potential for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Neelima Chacko
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel
| | - Menachem Motiei
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Jadhav Suchita Suryakant
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, 40700, Ariel, Israel
| | - Michael Firer
- Department of Chemical Engineering, Faculty of Engineering, Ariel University, 40700, Ariel, Israel
| | - Rinat Ankri
- Department of Physics, Faculty of Natural Science, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
24
|
Le HN, Kuchlyan J, Baladi T, Albinsson B, Dahlén A, Wilhelmsson LM. Synthesis and photophysical characterization of a pH-sensitive quadracyclic uridine (qU) analogue. Chemistry 2024:e202303539. [PMID: 38230625 DOI: 10.1002/chem.202303539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Fluorescent base analogues (FBAs) have become useful tools for applications in biophysical chemistry, chemical biology, live-cell imaging, and RNA therapeutics. Herein, two synthetic routes towards a novel FBA of uracil named qU (quadracyclic uracil/uridine) are described. The qU nucleobase bears a tetracyclic fused ring system and is designed to allow for specific Watson-Crick base pairing with adenine. We find that qU absorbs light in the visible region of the spectrum and emits brightly with a quantum yield of 27 % and a dual-band character in a wide pH range. With evidence, among other things, from fluorescence lifetime measurements we suggest that this dual emission feature results from an excited-state proton transfer (ESPT) process. Furthermore, we find that both absorption and emission of qU are highly sensitive to pH. The high brightness in combination with excitation in the visible and pH responsiveness makes qU an interesting native-like nucleic acid label in spectroscopy and microscopy applications in, for example, the field of mRNA and antisense oligonucleotide (ASO) therapeutics.
Collapse
Affiliation(s)
- Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Jagannath Kuchlyan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Tom Baladi
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anders Dahlén
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| |
Collapse
|
25
|
Maurer J, Albrecht CS, Herbert P, Heussman D, Chang A, von Hippel PH, Marcus AH. Studies of DNA breathing in exciton-coupled (iCy3) 2 dimer-labeled DNA constructs by polarization-sweep single-molecule fluorescence (PS-SMF) microscopy. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12863:128630C. [PMID: 39149417 PMCID: PMC11326516 DOI: 10.1117/12.3001962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Local fluctuations of the sugar-phosphate backbones and bases of DNA (a form of DNA 'breathing') play a central role in the assembly of protein-DNA complexes. We present a single-molecule fluorescence method to sensitively measure the local conformational fluctuations of exciton-coupled cyanine [(iCy3)2] dimer-labeled DNA fork constructs in which the dimer probes are placed at varying positions relative to the DNA fork junction. These systems exhibit spectroscopic signals that are sensitive to the local conformations adopted by the sugar-phosphate backbones and bases immediately surrounding the dimer probe label positions. The (iCy3)2 dimer has one symmetric (+) and one anti-symmetric (-) exciton with respective transition dipole moments oriented perpendicular to one another. We excite single molecule samples using a continuous-wave, linearly polarized laser with its polarization direction rotated at a frequency of 1 MHz. The ensuing fluorescence signal is modulated as the laser polarization alternately excites the symmetric and anti-symmetric excitons of the (iCy3)2 dimer probe. Phase-sensitive detection of the signal at the photon-counting level provides information about the distribution of local conformations and conformational dynamics. We analyze our data using a kinetic network model, which we use to parametrize the free energy surface of the system. In addition to observing DNA breathing at and near ss-dsDNA junctions, the approach can be used to study the effects of proteins that bind and function at these sites.
Collapse
Affiliation(s)
- Jack Maurer
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Claire S Albrecht
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Patrick Herbert
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Dylan Heussman
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Anabel Chang
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Peter H von Hippel
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| | - Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, and University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
26
|
Albrecht CS, Scatena LF, von Hippel PH, Marcus AH. Two-photon excitation two-dimensional fluorescence spectroscopy (2PE-2DFS) of the fluorescent nucleobase 6-MI. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2024; 12863:1286305. [PMID: 39149416 PMCID: PMC11326479 DOI: 10.1117/12.3001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Base stacking is fundamentally important to the stability of double-stranded DNA. However, few experiments can directly probe the local conformations and conformational fluctuations of the DNA bases. Here we report a new spectroscopic approach to study the local conformations of DNA bases using the UV-absorbing fluorescent guanine analogue, 6-methyl isoxanthopterin (6-MI), which can be used as a site-specific probe to label DNA. In these experiments, we apply a two-photon excitation (2PE) approach to two-dimensional fluorescence spectroscopy (2DFS), which is a fluorescence-detected nonlinear Fourier transform spectroscopy. In 2DFS, a repeating sequence of four collinear laser pulses (with center wavelength ~ 675 nm and relative phases swept at radio frequencies) is used to excite the lowest energy electronic-vibrational (vibronic) transitions of 6-MI (with center wavelength ~ 340 nm). The ensuing low flux fluorescence is phase-synchronously detected at the level of individual photons and as a function of inter-pulse delay. The 2PE transition pathways that give rise to electronically excited state populations include optical coherences between electronic ground and excited states and non-resonant (one-photon-excited) virtual states. Our results indicate that 2PE-2DFS experiments can provide information about the electronic-vibrational spectrum of the 6-MI monomer, in addition to the conformation-dependent exciton coupling between adjacent 6-MI monomers within a (6-MI)2 dimer. In principle, this approach can be used to determine the local base-stacking conformations of (6-MI)2 dimer-substituted DNA constructs.
Collapse
Affiliation(s)
- Claire S Albrecht
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Physics, University of Oregon, Eugene, Oregon 97403
| | - Lawrence F Scatena
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Peter H von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| | - Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
27
|
Lu H, Wang Y, Hill SK, Jiang H, Ke Y, Huang S, Zheng D, Perrier S, Song Q. Supra-Cyanines: Ultrabright Cyanine-Based Fluorescent Supramolecular Materials in Solution and in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202311224. [PMID: 37840434 DOI: 10.1002/anie.202311224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Fluorescent materials with high brightness play a crucial role in the advancement of various technologies such as bioimaging, photonics, and OLEDs. While significant efforts are dedicated to designing new organic dyes with improved performance, enhancing the brightness of existing dyes holds equal importance. In this study, we present a simple supramolecular strategy to develop ultrabright cyanine-based fluorescent materials by addressing long-standing challenges associated with cyanine dyes, including undesired cis-trans photoisomerization and aggregation-caused quenching. Supra-cyanines are obtained by incorporating cyanine moieties in a cyclic peptide-based supramolecular scaffold, and exhibit high fluorescence quantum yields (up to 50 %) in both solution and in the solid state. These findings offer a versatile approach for constructing highly emissive cyanine-based supramolecular materials.
Collapse
Affiliation(s)
- Haicheng Lu
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqian Wang
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sophie K Hill
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Hanqiu Jiang
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Yubin Ke
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, China
- Spallation Neutron Source Science Center, Dongguan, 523803, China
| | - Shaohui Huang
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, 101499, China
| | - Dunjin Zheng
- LightEdge Technologies Limited, Zhongshan, 528451, China
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Qiao Song
- Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
28
|
Sorour MI, Marcus AH, Matsika S. Unravelling the Origin of the Vibronic Spectral Signatures in an Excitonically Coupled Indocarbocyanine Cy3 Dimer. J Phys Chem A 2023; 127:9530-9540. [PMID: 37934679 PMCID: PMC10774018 DOI: 10.1021/acs.jpca.3c06090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The indocarbocyanine Cy3 dye is widely used to probe the dynamics of proteins and DNA. Excitonically coupled Cy3 dimers exhibit very unique spectral signatures that depend on the interchromophoric geometrical orientation induced by the environment, making them powerful tools to infer the dynamics of their surroundings. Understanding the origin of the dimeric spectral signatures is a necessity for an accurate interpretation of the experimental results. In this work, we simulate the vibronic spectrum of an experimentally well-studied Cy3 dimer, and we explain the origin of the experimental signatures present in its linear absorption spectrum. The Franck-Condon harmonic approximations, among other tests, are used to probe the factors contributing to the spectrum. It is found that the first peak in the absorption spectrum originates from the lower energy excitonic state, while the next two peaks are vibrational progressions of the higher energy excitonic state. The polar solvent plays a crucial role in the appearance of the spectrum, being responsible for the localized S1 minimum, which results in an increased intensity of the first peak.
Collapse
Affiliation(s)
- Mohammed I Sorour
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Andrew H Marcus
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
29
|
Archipowa N, Wittmann L, Köckenberger J, Ertl FJ, Gleixner J, Keller M, Heinrich MR, Kutta RJ. Characterization of Fluorescent Dyes Frequently Used for Bioimaging: Photophysics and Photocatalytical Reactions with Proteins. J Phys Chem B 2023; 127:9532-9542. [PMID: 37903729 DOI: 10.1021/acs.jpcb.3c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Derivatives of the rhodamine-based dye 5-TAMRA (5-carboxy-tetramethylrhodamine) and the indocarbocyanine-type Cy3B (cyclized derivative of the cyanine dye Cy3), both representing important fluorophores frequently used for the labeling of biomolecules (proteins, nucleic acids) and bioactive compounds, such as receptor ligands, were photophysically investigated in aqueous solution, i.e., in neat phosphate-buffered saline (PBS) and in PBS supplemented with 1 wt % bovine serum albumin (BSA). The dyes exhibit comparable absorption (λabs,max: 550-569 nm) and emission wavelengths (λem,max: 580-582 nm), and similar S1 lifetimes (2.27-2.75 ns), and their excited state deactivation proceeds mainly via the lowest excited singlet state (triplet quantum yield ca. 1%). However, the probes show marked differences with respect to their fluorescence quantum yield and photostability. While 5-TAMRA shows a lower quantum yield (37-39%) than the Cy3B derivative (ca. 57%), its photostability is considerably higher compared to Cy3B. Generally, the impact of the protein on the photophysics is low. However, on prolonged illumination, both fluorescent dyes undergo a photocatalytic reaction with tryptophan residues of BSA mediated by sensitized singlet oxygen resulting in a tryptophan photoproduct with an absorption maximum around 330 nm. The overall results of this work will assist in choosing the right dye for the labeling of bioactive compounds, and the study demonstrates that experiments performed with 5-TAMRA or Cy3B-labeled compounds in a biological environment may be influenced by photochemical modification of experimentally relevant proteins at aromatic amino acid residues.
Collapse
Affiliation(s)
- Nataliya Archipowa
- Institute of Biophysics and Physical Biochemistry, Faculty of Biology and Preclinical Medicine, University of Regensburg, D-93053 Regensburg, Germany
| | - Lukas Wittmann
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Johannes Köckenberger
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Fabian J Ertl
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jakob Gleixner
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Molecular and Clinical Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
30
|
Senavirathne G, London J, Gardner A, Fishel R, Yoder KE. DNA strand breaks and gaps target retroviral intasome binding and integration. Nat Commun 2023; 14:7072. [PMID: 37923737 PMCID: PMC10624929 DOI: 10.1038/s41467-023-42641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
Retrovirus integration into a host genome is essential for productive infections. The integration strand transfer reaction is catalyzed by a nucleoprotein complex (Intasome) containing the viral integrase (IN) and the reverse transcribed (RT) copy DNA (cDNA). Previous studies suggested that DNA target-site recognition limits intasome integration. Using single molecule Förster resonance energy transfer (smFRET), we show prototype foamy virus (PFV) intasomes specifically bind to DNA strand breaks and gaps. These break and gap DNA discontinuities mimic oxidative base excision repair (BER) lesion-processing intermediates that have been shown to affect retrovirus integration in vivo. The increased DNA binding events targeted strand transfer to the break/gap site without inducing substantial intasome conformational changes. The major oxidative BER substrate 8-oxo-guanine as well as a G/T mismatch or +T nucleotide insertion that typically introduce a bend or localized flexibility into the DNA, did not increase intasome binding or targeted integration. These results identify DNA breaks or gaps as modulators of dynamic intasome-target DNA interactions that encourage site-directed integration.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - James London
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Anne Gardner
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
| | - Kristine E Yoder
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH, 43210, USA.
- Molecular Carcinogenesis and Chemoprevention Program, The James Comprehensive Cancer Center and Ohio State University, Columbus, OH, 43210, USA.
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
31
|
Ploetz E, Ambrose B, Barth A, Börner R, Erichson F, Kapanidis AN, Kim HD, Levitus M, Lohman TM, Mazumder A, Rueda DS, Steffen FD, Cordes T, Magennis SW, Lerner E. A new twist on PIFE: photoisomerisation-related fluorescence enhancement. Methods Appl Fluoresc 2023; 12:012001. [PMID: 37726007 PMCID: PMC10570931 DOI: 10.1088/2050-6120/acfb58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
PIFE was first used as an acronym for protein-induced fluorescence enhancement, which refers to the increase in fluorescence observed upon the interaction of a fluorophore, such as a cyanine, with a protein. This fluorescence enhancement is due to changes in the rate ofcis/transphotoisomerisation. It is clear now that this mechanism is generally applicable to interactions with any biomolecule. In this review, we propose that PIFE is thereby renamed according to its fundamental working principle as photoisomerisation-related fluorescence enhancement, keeping the PIFE acronym intact. We discuss the photochemistry of cyanine fluorophores, the mechanism of PIFE, its advantages and limitations, and recent approaches to turning PIFE into a quantitative assay. We provide an overview of its current applications to different biomolecules and discuss potential future uses, including the study of protein-protein interactions, protein-ligand interactions and conformational changes in biomolecules.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Benjamin Ambrose
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, The Netherlands
| | - Richard Börner
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Felix Erichson
- Laserinstitut Hochschule Mittweida, Mittweida University of Applied Sciences, Mittweida, Germany
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford, United Kingdom
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332, United States of America
| | - Marcia Levitus
- School of Molecular Sciences, Arizona State University, 551 E. University Drive, Tempe, AZ,85287, United States of America
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhishek Mazumder
- CSIR-Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, W12 0HS, United Kingdom
- Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London, W12 0HS, United Kingdom
| | - Fabio D Steffen
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Großhadernerstr. 2-4, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, United Kingdom
| | - Eitan Lerner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, Edmond J. Safra Campus, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; Jerusalem 9190401, Israel
| |
Collapse
|
32
|
Solomun T, Cordsmeier L, Hallier DC, Seitz H, Hahn MB. Interaction of a Dimeric Single-Stranded DNA-Binding Protein (G5P) with DNA Hairpins. A Molecular Beacon Study. J Phys Chem B 2023; 127:8131-8138. [PMID: 37704207 PMCID: PMC10544328 DOI: 10.1021/acs.jpcb.3c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/23/2023] [Indexed: 09/15/2023]
Abstract
Gene-V protein (G5P/GVP) is a single-stranded (ss)DNA-binding protein (SBP) of bacteriophage f1 that is required for DNA synthesis and repair. In solution, it exists as a dimer that binds two antiparallel ssDNA strands with high affinity in a cooperative manner, forming a left-handed helical protein-DNA filament. Here, we report on fluorescence studies of the interaction of G5P with different DNA oligonucleotides having a hairpin structure (molecular beacon, MB) with a seven base-pair stem (dT24-stem7, dT18-stem7), as well as with DNA oligonucleotides (dT38, dT24) without a defined secondary structure. All oligonucleotides were end-labeled with a Cy3-fluorophore and a BHQ2-quencher. In the case of DNA oligonucleotides without a secondary structure, an almost complete quenching of their strong fluorescence (with about 5% residual intensity) was observed upon the binding of G5P. This implies an exact alignment of the ends of the DNA strand(s) in the saturated complex. The interaction of the DNA hairpins with G5P led to the unzipping of the base-paired stem, as revealed by fluorescence measurements, fluorescence microfluidic mixing experiments, and electrophoretic mobility shift assay data. Importantly, the disruption of ssDNA's secondary structure agrees with the behavior of other single-stranded DNA-binding proteins (SBPs). In addition, substantial protein-induced fluorescence enhancement (PIFE) of the Cy3-fluorescence was observed.
Collapse
Affiliation(s)
- Tihomir Solomun
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | - Leo Cordsmeier
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
- Institut
für Chemie, Freie Universität
Berlin, Berlin 14195, Germany
| | - Dorothea C. Hallier
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
- Institut
für Biochemie und Biologie, Universität
Potsdam, Potsdam 14476, Germany
- Fraunhofer
Institut für Zelltherapie und Immunologie Institutsteil Bioanalytik
und Bioprozesse IZI-BB, Potsdam 14476, Germany
| | - Harald Seitz
- Institut
für Biochemie und Biologie, Universität
Potsdam, Potsdam 14476, Germany
- Fraunhofer
Institut für Zelltherapie und Immunologie Institutsteil Bioanalytik
und Bioprozesse IZI-BB, Potsdam 14476, Germany
| | - Marc Benjamin Hahn
- Bundesanstalt
für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| |
Collapse
|
33
|
Hill B, Abraham S, Akhtar A, Selvaggio G, Tschulik K, Kruss S. Surfactant assisted exfoliation of near infrared fluorescent silicate nanosheets. RSC Adv 2023; 13:20916-20925. [PMID: 37441047 PMCID: PMC10334366 DOI: 10.1039/d3ra04083f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Fluorophores that emit light in the near infrared (NIR) are advantageous in photonics and imaging due to minimal light scattering, absorption, phototoxicity and autofluorescence in this spectral region. The layered silicate Egyptian blue (CaCuSi4O10) emits as a bulk material bright and stable fluorescence in the NIR and is a promising NIR fluorescent material for (bio)photonics. Here, we demonstrate a surfactant-based (mild) exfoliation procedure to produce nanosheets (EB-NS) of high monodispersity, heights down to 1 nm and diameters <20 nm in large quantities. The approach combines planetary ball milling, surfactant assisted bath sonication and centrifugation steps. It avoids the impurities that are typical for the harsh conditions of tip-sonication. Several solvents and surfactants were tested and we found the highest yield for sodium dodecyl benzyl sulfate (SDBS) and water. The NIR fluorescence emission (λem ≈ 930-940 nm) is not affected by this procedure, is extremely stable and is not affected by quenchers. This enables the use of EB-NS for macroscopic patterning/barcoding of materials in the NIR. In summary, we present a simple and mild route to NIR fluorescent nanosheets that promise high potential as NIR fluorophores for optical applications.
Collapse
Affiliation(s)
- Bjoern Hill
- Department of Chemistry, Ruhr Universität Bochum 44801 Bochum Germany
| | - Smitha Abraham
- Department of Chemistry, Ruhr Universität Bochum 44801 Bochum Germany
| | - Anas Akhtar
- Analytical Chemistry II, Ruhr Universität Bochum 44801 Bochum
| | | | | | - Sebastian Kruss
- Department of Chemistry, Ruhr Universität Bochum 44801 Bochum Germany
- Fraunhofer Institute for Microelectronic Circuits and Systems 47057 Duisburg Germany
- Center for Nanointegration Duisburg-Essen (CENIDE) 47057 Duisburg Germany
| |
Collapse
|
34
|
Kaur J, Deng F, Morris MJ, Goldys E. QDs-based fluorescent lateral flow assays for Point-of-care testing of insulin. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082853 DOI: 10.1109/embc40787.2023.10340110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Point-of-care testing (POCT) can be performed near the site of the patient to achieve results in a few minutes. Different POCT devices are available in the market, such as microfluidic chips and paper-based lateral flow assays (LFAs). The paper-based LFAs have certain advantages, such as being cheap and disposable, able to detect a wide range of biomolecules, and the fluid flows through them via capillary action eliminating the need for external forces. The LFAs can be optimized for the sensitive and rapid detection of biomolecules. In this study, paper-based fluorescent LFAs platforms using aptamers as the biorecognition molecules were developed for the POCT of insulin. Various parameters were optimized such as concentrations of aptamers, the type of reporter molecules, the volume of sample, and the assay time to quantify insulin levels using a standard LFA reader. The fluorescent LFAs exhibited a linear detection range of 0.1-4 ng.mL-1 with a limit of detection (LOD) 0.1 ng.mL-1. The developed LFAs will help to achieve insulin measurement in a few minutes and will be easy to perform by end-users without the requirement of sophisticated instruments, laboratory set-up, and trained personnel. The developed device will be useful for the measurement of insulin levels in biological samples without the need for pretreatment, reducing the overall cost and time of testing. Moreover, the POCT device were fabricated using paper which is a low-cost (approximately AUD 2 per strip) option and is disposable.Clinical Relevance- POCT monitoring of insulin can facilitate both disease diagnosis and management. The developed LFAs have the capability of rapidly testing insulin concentration within several minutes. It will benefit both patients for at-home daily insulin monitoring and clinicians for hospital rapid insulin testing.
Collapse
|
35
|
Usama SM, Marker SC, Li DH, Caldwell DR, Stroet M, Patel NL, Tebo AG, Hernot S, Kalen JD, Schnermann M. Method To Diversify Cyanine Chromophore Functionality Enables Improved Biomolecule Tracking and Intracellular Imaging. J Am Chem Soc 2023. [PMID: 37367935 DOI: 10.1021/jacs.3c01765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heptamethine indocyanines are invaluable probes for near-infrared (NIR) imaging. Despite broad use, there are only a few synthetic methods to assemble these molecules, and each has significant limitations. Here, we report the use of pyridinium benzoxazole (PyBox) salts as heptamethine indocyanine precursors. This method is high yielding, simple to implement, and provides access to previously unknown chromophore functionality. We applied this method to create molecules to address two outstanding objectives in NIR fluorescence imaging. First, we used an iterative approach to develop molecules for protein-targeted tumor imaging. When compared to common NIR fluorophores, the optimized probe increases the tumor specificity of monoclonal antibody (mAb) and nanobody conjugates. Second, we developed cyclizing heptamethine indocyanines with the goal of improving cellular uptake and fluorogenic properties. By modifying both the electrophilic and nucleophilic components, we demonstrate that the solvent sensitivity of the ring-open/ring-closed equilibrium can be modified over a wide range. We then show that a chloroalkane derivative of a compound with tuned cyclization properties undergoes particularly efficient no-wash live cell imaging using organelle-targeted HaloTag self-labeling proteins. Overall, the chemistry reported here broadens the scope of accessible chromophore functionality, and, in turn, enables the discovery of NIR probes with promising properties for advanced imaging applications.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Sierra C Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Dong-Hao Li
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Donald R Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Marcus Stroet
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, United States
| | - Sophie Hernot
- Laboratory for in Vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Martin Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
36
|
Pronkin PG, Tatikolov AS. Spectral-fluorescent and photochemical study of 6,6'-di(benzoylamino)trimethine cyanine dyes in solutions as possible probes for DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122416. [PMID: 36746042 DOI: 10.1016/j.saa.2023.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Spectral-fluorescent and photochemical properties of trimethine cyanine dyes T-304, T-306, and T-307, having substituents in 6,6'-positions, in various organic solvents, in aqueous buffer solutions, in the presence of surfactants and ethanol additives, and the effect on these properties of addition of DNA have been studied. Strong aggregation of the dyes in aqueous and aqueous buffer solutions has been shown. This is due to increased hydrophobicity of the dyes, which makes it difficult to use them as spectral-fluorescent probes for DNA. In the presence of DNA, trimethine cyanines partially form highly fluorescent complexes of dye monomers with the biomolecule, with slight decomposition of the initial aggregates and the formation of aggregates on DNA molecules. The formation of different types of dye-DNA complexes, i.e., intercalation and binding in the DNA grooves, was modeled by molecular docking. Dye-DNA complexes were also studied by circular dichroism spectroscopy and by thermal dissociation of DNA. To reveal selectivity of the dyes, their interaction with human serum albumin was briefly studied. The presence of moderate concentrations of nonionic surfactants does not lead to a significant decomposition of aggregates, but leads to a biphasic dependence of the fluorescence intensity on the DNA concentration. At the same time, ethanol additives (15%) lead to a more or less linear concentration dependence of the fluorescence intensity, which makes it possible to use these dyes as fluorescent probes for DNA. The effective binding constants of the dyes to DNA and the limits of DNA detection using the dyes in the presence of 15% ethanol were estimated. Photoisomerization and generation of the triplet states of T-304, T-306, and T-307 have been also studied. Along with the fluorescence growth, complexation with DNA leads to an increase in the yield of the triplet states of the dyes. This creates a prerequisite for using the dyes in targeted PDT. In the presence of DNA, the decay kinetics of the triplet states are biexponential, which indicates different types of dye complexes with DNA. The rate constants of oxygen quenching of the triplet states of the dyes bound to DNA are significantly lower than the diffusion-controlled values (taking into account the spin-statistical factor), which is explained by the shielding effect on the triplet molecules in complexes with DNA. The data obtained show that dyes T-304, T-306 and T-307, with addition of 15% ethanol, can be used as possible fluorescent probes for DNA.
Collapse
Affiliation(s)
- P G Pronkin
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia.
| | - A S Tatikolov
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Str., 119334 Moscow, Russia
| |
Collapse
|
37
|
Marcus AH, Heussman D, Maurer J, Albrecht CS, Herbert P, von Hippel PH. Studies of Local DNA Backbone Conformation and Conformational Disorder Using Site-Specific Exciton-Coupled Dimer Probe Spectroscopy. Annu Rev Phys Chem 2023; 74:245-265. [PMID: 36696590 PMCID: PMC10590263 DOI: 10.1146/annurev-physchem-090419-041204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The processes of genome expression, regulation, and repair require direct interactions between proteins and DNA at specific sites located at and near single-stranded-double-stranded DNA (ssDNA-dsDNA) junctions. Here, we review the application of recently developed spectroscopic methods and analyses that combine linear absorbance and circular dichroism spectroscopy with nonlinear 2D fluorescence spectroscopy to study the local conformations and conformational disorder of the sugar-phosphate backbones of ssDNA-dsDNA fork constructs that have been internally labeled with exciton-coupled cyanine (iCy3)2 dimer probes. With the application of these methods, the (iCy3)2 dimer can serve as a reliable probe of the mean local conformations and conformational distributions of the sugar-phosphate backbones of dsDNA at various critical positions. The results of our studies suggest a possible structural framework for understanding the roles of DNA breathing in driving the processes of protein-DNA complex assembly and function.
Collapse
Affiliation(s)
- Andrew H Marcus
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Dylan Heussman
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Jack Maurer
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Claire S Albrecht
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Physics, University of Oregon, Eugene, Oregon, USA
| | - Patrick Herbert
- Center for Optical, Molecular and Quantum Science, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Peter H von Hippel
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
38
|
Sandberg E, Piguet J, Kostiv U, Baryshnikov G, Liu H, Widengren J. Photoisomerization of Heptamethine Cyanine Dyes Results in Red-Emissive Species: Implications for Near-IR, Single-Molecule, and Super-Resolution Fluorescence Spectroscopy and Imaging. J Phys Chem B 2023; 127:3208-3222. [PMID: 37011608 PMCID: PMC10108366 DOI: 10.1021/acs.jpcb.2c08016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Photoisomerization kinetics of the near-infrared (NIR) fluorophore Sulfo-Cyanine7 (SCy7) was studied by a combination of fluorescence correlation spectroscopy (FCS) and transient state (TRAST) excitation modulation spectroscopy. A photoisomerized state with redshifted emission was identified, with kinetics consistent with a three-state photoisomerization model. Combining TRAST excitation modulation with spectrofluorimetry (spectral-TRAST) further confirmed an excitation-induced redshift in the emission spectrum of SCy7. We show how this red-emissive photoisomerized state contributes to the blinking kinetics in different emission bands of NIR cyanine dyes, and how it can influence single-molecule, super-resolution, as well as Förster resonance energy transfer (FRET) and multicolor readouts. Since this state can also be populated at moderate excitation intensities, it can also more broadly influence fluorescence readouts, also readouts not relying on high excitation conditions. However, this additional red-emissive state and its photodynamics, as identified and characterized in this work, can also be used as a strategy to push the emission of NIR cyanine dyes further into the NIR and to enhance photosensitization of nanoparticles with absorption spectra further into the NIR. Finally, we show that the photoisomerization kinetics of SCy7 and the formation of its redshifted photoisomer depend strongly on local environmental conditions, such as viscosity, polarity, and steric constraints, which suggests the use of SCy7 and other NIR cyanine dyes as environmental sensors. Such environmental information can be monitored by TRAST, in the NIR, with low autofluorescence and scattering conditions and on a broad range of samples and experimental conditions.
Collapse
Affiliation(s)
- Elin Sandberg
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Joachim Piguet
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Uliana Kostiv
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Glib Baryshnikov
- Dept. Science and Technology, Linköping University, Campus Norrköping, 601 74 Norrköping, Sweden
| | - Haichun Liu
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| | - Jerker Widengren
- Experimental Biomolecular Physics, Dept. Applied Physics, Royal Institute of Technology (KTH), Albanova Univ Center, 106 91 Stockholm, Sweden
| |
Collapse
|
39
|
Cha M, Jeong SH, Bae S, Park JH, Baeg Y, Han DW, Kim SS, Shin J, Park JE, Oh SW, Gho YS, Shon MJ. Efficient Labeling of Vesicles with Lipophilic Fluorescent Dyes via the Salt-Change Method. Anal Chem 2023; 95:5843-5849. [PMID: 36990442 PMCID: PMC10100391 DOI: 10.1021/acs.analchem.2c05166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Fluorescent labeling allows for imaging and tracking of vesicles down to single-particle level. Among several options to introduce fluorescence, staining of lipid membranes with lipophilic dyes provides a straightforward approach without interfering with vesicle content. However, incorporating lipophilic molecules into vesicle membranes in an aqueous solution is generally not efficient because of their low water solubility. Here, we describe a simple, fast (<30 min), and highly effective procedure for fluorescent labeling of vesicles including natural extracellular vesicles. By adjusting the ionic strength of the staining buffer with NaCl, the aggregation status of DiI, a representative lipophilic tracer, can be controlled reversibly. Using cell-derived vesicles as a model system, we show that dispersion of DiI under low-salt condition improved its incorporation into vesicles by a factor of 290. In addition, increasing NaCl concentration after labeling induced free dye molecules to form aggregates, which can be filtered and thus effectively removed without ultracentrifugation. We consistently observed 6- to 85-fold increases in the labeled vesicle count across different types of dyes and vesicles. The method is expected to reduce the concern about off-target labeling resulting from the use of high concentrations of dyes.
Collapse
Affiliation(s)
- Minkwon Cha
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic Korea
| | - Sang Hyeok Jeong
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seoyoon Bae
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jun Hyuk Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yoonjin Baeg
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Dong Woo Han
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Sang Soo Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyeon Shin
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong Eun Park
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Seung Wook Oh
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Min Ju Shon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
40
|
Zhang Y, Yang C, Peng S, Ling J, Chen P, Ma Y, Wang W, Chen Z, Chen C. General Strategy To Improve the Photon Budget of Thiol-Conjugated Cyanine Dyes. J Am Chem Soc 2023; 145:4187-4198. [PMID: 36756850 DOI: 10.1021/jacs.2c12635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Maleimide-cysteine chemistry has been a routine practice for the site-specific labeling of fluorophores to proteins since the 1950s. This approach, however, cannot bring out the best photon budget of fluorophores. Here, we systematically measured the Cyanine3/5 dye conjugates via maleimide-thiol and amide linkages by counting the total emitted photons at the single-molecule level. While brightness and signal-to-noise ratios do not change significantly, dyes with thioether linkages exhibit more severe photobleaching than amide linkers. We then screened modern arylation-type bioconjugation strategies to alleviate this damage. Labeling thiols with phenyloxadiazole (POD) methyl sulfone, p-chloronitrobenzene, and fluorobenzene probes gave rise to electron-deficient aryl thioethers, effectively increasing the total emitted photons by 1.5-3 fold. Among the linkers, POD maintains labeling efficiency and specificity that are comparable to maleimide. Such an increase has proved to be universal among bulk and single-molecule assays, with or without triplet-state quenchers and oxygen scavengers, and on conformationally unrestricted or restricted cyanines. We demonstrated that cyanine-POD conjugates are general and superior fluorophores for thiol labeling in single-molecule FRET measurements of biomolecular conformational dynamics and in two-color STED nanoscopy using site-selectively labeled nanobodies. This work sheds light on the photobleaching mechanism of cyanines under single-molecule imaging while highlighting the interplay between the protein microenvironment, bioconjugation chemistry, and fluorophore photochemistry.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Chen Yang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Sijia Peng
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Jing Ling
- Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Chen
- PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Yumiao Ma
- BSJ Institute, Beijing 100084, China
- Hangzhou Yanqu Information Technology Co., Ltd., Xihu District, Hangzhou City, Zhejiang Province 310003, China
| | - Wenjuan Wang
- School of Life Sciences, Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Zhixing Chen
- Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- PKU-Nanjing Institute of Translational Medicine, Nanjing 211800, China
| | - Chunlai Chen
- School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|
41
|
Sandberg E, Piguet J, Liu H, Widengren J. Combined Fluorescence Fluctuation and Spectrofluorometric Measurements Reveal a Red-Shifted, Near-IR Emissive Photo-Isomerized Form of Cyanine 5. Int J Mol Sci 2023; 24:ijms24031990. [PMID: 36768309 PMCID: PMC9916991 DOI: 10.3390/ijms24031990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Cyanine fluorophores are extensively used in fluorescence spectroscopy and imaging. Upon continuous excitation, especially at excitation conditions used in single-molecule and super-resolution experiments, photo-isomerized states of cyanines easily reach population probabilities of around 50%. Still, effects of photo-isomerization are largely ignored in such experiments. Here, we studied the photo-isomerization of the pentamethine cyanine 5 (Cy5) by two similar, yet complementary means to follow fluorophore blinking dynamics: fluorescence correlation spectroscopy (FCS) and transient-state (TRAST) excitation-modulation spectroscopy. Additionally, we combined TRAST and spectrofluorimetry (spectral-TRAST), whereby the emission spectra of Cy5 were recorded upon different rectangular pulse-train excitations. We also developed a framework for analyzing transitions between multiple emissive states in FCS and TRAST experiments, how the brightness of the different states is weighted, and what initial conditions that apply. Our FCS, TRAST, and spectral-TRAST experiments showed significant differences in dark-state relaxation amplitudes for different spectral detection ranges, which we attribute to an additional red-shifted, emissive photo-isomerized state of Cy5, not previously considered in FCS and single-molecule experiments. The photo-isomerization kinetics of this state indicate that it is formed under moderate excitation conditions, and its population and emission may thus deserve also more general consideration in fluorescence imaging and spectroscopy experiments.
Collapse
|
42
|
Deng S, Li L, Zhang J, Wang Y, Huang Z, Chen H. Semiconducting Polymer Dots for Point-of-Care Biosensing and In Vivo Bioimaging: A Concise Review. BIOSENSORS 2023; 13:bios13010137. [PMID: 36671972 PMCID: PMC9855952 DOI: 10.3390/bios13010137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 05/28/2023]
Abstract
In recent years, semiconducting polymer dots (Pdots) have attracted much attention due to their excellent photophysical properties and applicability, such as large absorption cross section, high brightness, tunable fluorescence emission, excellent photostability, good biocompatibility, facile modification and regulation. Therefore, Pdots have been widely used in various types of sensing and imaging in biological medicine. More importantly, the recent development of Pdots for point-of-care biosensing and in vivo imaging has emerged as a promising class of optical diagnostic technologies for clinical applications. In this review, we briefly outline strategies for the preparation and modification of Pdots and summarize the recent progress in the development of Pdots-based optical probes for analytical detection and biomedical imaging. Finally, challenges and future developments of Pdots for biomedical applications are given.
Collapse
|
43
|
Kikuchi K, Adair LD, Lin J, New EJ, Kaur A. Photochemical Mechanisms of Fluorophores Employed in Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202204745. [PMID: 36177530 PMCID: PMC10100239 DOI: 10.1002/anie.202204745] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 02/02/2023]
Abstract
Decoding cellular processes requires visualization of the spatial distribution and dynamic interactions of biomolecules. It is therefore not surprising that innovations in imaging technologies have facilitated advances in biomedical research. The advent of super-resolution imaging technologies has empowered biomedical researchers with the ability to answer long-standing questions about cellular processes at an entirely new level. Fluorescent probes greatly enhance the specificity and resolution of super-resolution imaging experiments. Here, we introduce key super-resolution imaging technologies, with a brief discussion on single-molecule localization microscopy (SMLM). We evaluate the chemistry and photochemical mechanisms of fluorescent probes employed in SMLM. This Review provides guidance on the identification and adoption of fluorescent probes in single molecule localization microscopy to inspire the design of next-generation fluorescent probes amenable to single-molecule imaging.
Collapse
Affiliation(s)
- Kai Kikuchi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Liam D Adair
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jiarun Lin
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J New
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.,School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Melbourne, VIC 305, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
44
|
Aristova D, Selin R, Heil HS, Kosach V, Slominsky Y, Yarmoluk S, Pekhnyo V, Kovalska V, Henriques R, Mokhir A, Chernii S. Trimethine Cyanine Dyes as NA-Sensitive Probes for Visualization of Cell Compartments in Fluorescence Microscopy. ACS OMEGA 2022; 7:47734-47746. [PMID: 36591208 PMCID: PMC9798395 DOI: 10.1021/acsomega.2c05231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
We propose symmetrical cationic trimethine cyanine dyes with β-substituents in the polymethine chain based on modified benzothiazole and benzoxazole heterocycles as probes for the detection and visualization of live and fixed cells by fluorescence microscopy. The spectral-luminescent properties of trimethine cyanines have been characterized for free dyes and in the presence of nucleic acids (NA) and globular proteins. The studied cyanines are low to moderate fluorescent when free, but in the presence of NA, they show an increase in emission intensity up to 111 times; the most pronounced emission increase was observed for the dyes T-2 in the presence of dsDNA and T-1 with RNA. Spectral methods showed the binding of all dyes to nucleic acids, and different interaction mechanisms have been proposed. The ability to visualize cell components of the studied dyes has been evaluated using different human cell lines (MCF-7, A2780, HeLa, and Hs27). We have shown that all dyes are cell-permeant staining nucleus components, probably RNA-rich nucleoli with background fluorescence in the cytoplasm, except for the dye T-5. The dye T-5 selectively stains some structures in the cytoplasm of MCF-7 and A2780 cells associated with mitochondria or lysosomes. This effect has also been confirmed for the normal type of cell line-human foreskin fibroblasts (Hs27). The costaining of dye T-5 with MitoTracker CMXRos Red demonstrates specificity to mitochondria at a concentration of 0.1 μM. Colocalization analysis has shown signals overlapping of dye T-5 and MitoTracker CMXRos Red (Pearson's Coefficient value = 0.92 ± 0.04). The photostability study shows benzoxazole dyes to be up to ∼7 times more photostable than benzothiazole ones. Moreover, studied benzoxazoles are less cytotoxic at working concentrations than benzothiazoles (67% of cell viability for T-4, T-5 compared to 12% for T-1, and ∼30% for T-2, T-3 after 24 h). Therefore, the benzoxazole T-4 dye is proposed for nucleic acid detection in vitro and intracellular fluorescence imaging of live and fixed cells. In contrast, the benzoxazole dye T-5 is proposed as a good alternative to commercial dyes for mitochondria staining in the green-yellow region of the spectrum.
Collapse
Affiliation(s)
- Daria Aristova
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
- Instituto
Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Roman Selin
- V.I.
Vernadsky Institute of General and Inorganic Chemistry NASU, 32/34 Palladin Ave, 03142 Kyiv, Ukraine
- Organic
Chemistry II, Friedrich-Alexander-University
of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Hannah Sophie Heil
- Instituto
Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Viktoriia Kosach
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Yuriy Slominsky
- Institute
of Organic Chemistry NASU, 5 Murmans’ka St., 02094 Kyiv, Ukraine
| | - Sergiy Yarmoluk
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Vasyl Pekhnyo
- V.I.
Vernadsky Institute of General and Inorganic Chemistry NASU, 32/34 Palladin Ave, 03142 Kyiv, Ukraine
| | - Vladyslava Kovalska
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Ricardo Henriques
- Instituto
Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Andriy Mokhir
- Organic
Chemistry II, Friedrich-Alexander-University
of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Svitlana Chernii
- Institute
of Molecular Biology and Genetics NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
- V.I.
Vernadsky Institute of General and Inorganic Chemistry NASU, 32/34 Palladin Ave, 03142 Kyiv, Ukraine
| |
Collapse
|
45
|
Fernandes R, Chowdhary S, Mikula N, Saleh N, Kanevche K, Berlepsch HV, Hosogi N, Heberle J, Weber M, Böttcher C, Koksch B. Cyanine Dye Coupling Mediates Self-assembly of a pH Sensitive Peptide into Novel 3D Architectures. Angew Chem Int Ed Engl 2022; 61:e202208647. [PMID: 36161448 PMCID: PMC9828782 DOI: 10.1002/anie.202208647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/12/2023]
Abstract
Synthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale. Unbranched compact layered rods are observed at pH 7.4 and two-dimensional membrane-like assemblies at pH 3.4, both species displaying spectral features of H-aggregates. Molecular dynamics simulations reveal that the coupling of Cy5 moieties promotes the formation of both ultrastructures, whereas the protonation states of acidic and basic amino acid side chains dictates their ultimate three-dimensional organization.
Collapse
Affiliation(s)
- Rita Fernandes
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Suvrat Chowdhary
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Natalia Mikula
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Noureldin Saleh
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Katerina Kanevche
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Hans v. Berlepsch
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | | | - Joachim Heberle
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Marcus Weber
- Mathematics for Life and Materials SciencesZuse Institute BerlinTakustraße 714195BerlinGermany
| | - Christoph Böttcher
- Research Center for Electron Microscopy and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Beate Koksch
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
46
|
Ma X, Shi L, Fu Y, Zhang B, Zhang X. Construction of Different Cyanine Dye Supramolecular Aggregates Induced by Rare Earth Ions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Xiaoying Ma
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Lei Shi
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Yao Fu
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Buyue Zhang
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
| | - Xiufeng Zhang
- College of Chemical Engineering North China University of Science and Technology Tangshan 063210 China
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine North China University of Science and Technology Tangshan 063210 China
| |
Collapse
|
47
|
Rose NC, Sanchez AV, Tipple EF, Lynam JM, Spicer CD. Insight into ortho-boronoaldehyde conjugation via a FRET-based reporter assay. Chem Sci 2022; 13:12791-12798. [PMID: 36519041 PMCID: PMC9645387 DOI: 10.1039/d2sc04574e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2023] Open
Abstract
Ortho-boronoaldehydes react with amine-based nucleophiles with dramatically increased rates and product stabilities, relative to unfunctionalised benzaldehydes, leading to exciting applications across biological and material chemistry. We have developed a novel Förster resonance energy transfer (FRET)-based assay to provide key new insights into the reactivity of these boronoaldehydes, allowing us to track conjugation with unprecedented sensitivity and accuracy under standardised conditions. Our results highlight the key role played by reaction pH, buffer additives, and boronoaldehyde structure in controlling conjugation speed and stability, providing design criteria for further innovations and applications in the field.
Collapse
Affiliation(s)
- Nicholas C Rose
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| | - Anaïs V Sanchez
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| | - Eve F Tipple
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| | - Jason M Lynam
- Department of Chemistry, University of York Heslington YO10 5DD UK
| | - Christopher D Spicer
- Department of Chemistry, University of York Heslington YO10 5DD UK
- York Biomedical Research Institute, University of York Heslington YO10 5DD UK
| |
Collapse
|
48
|
Wai DCC, Naseem MU, Mocsár G, Babu Reddiar S, Pan Y, Csoti A, Hajdu P, Nowell C, Nicolazzo JA, Panyi G, Norton RS. Fluorescent Peptide Toxin for Selective Visualization of the Voltage-Gated Potassium Channel K V1.3. Bioconjug Chem 2022; 33:2197-2212. [DOI: 10.1021/acs.bioconjchem.2c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dorothy C. C. Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
- Damjanovich Cell Analysis Core Facility, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Sanjeevini Babu Reddiar
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
- Department of Dental Biochemistry, Faculty of Dentistry, University of Debrecen, Debrecen4032, Hungary
| | - Cameron Nowell
- Imaging, FACS and Analysis Core, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen4032, Hungary
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria3052, Australia
| |
Collapse
|
49
|
Fluorescent properties of amphi-PIC J-aggregates in the complexes with bovine serum albumin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Photonics of Trimethine Cyanine Dyes as Probes for Biomolecules. Molecules 2022; 27:molecules27196367. [PMID: 36234904 PMCID: PMC9573451 DOI: 10.3390/molecules27196367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Cyanine dyes are widely used as fluorescent probes in biophysics and medical biochemistry due to their unique photophysical and photochemical properties (their photonics). This review is focused on a subclass of the most widespread and studied cyanine dyes—trimethine cyanines, which can serve as potential probes for biomolecules. The works devoted to the study of the noncovalent interaction of trimethine cyanine dyes with biomolecules and changing the properties of these dyes upon the interaction are reviewed. In addition to the spectral-fluorescent properties, elementary photochemical properties of trimethine cyanines are considered, including: photoisomerization and back isomerization of the photoisomer, generation and decay of the triplet state, and its quenching by oxygen and other quenchers. The influence of DNA and other nucleic acids, proteins, and other biomolecules on these properties is covered. The interaction of a monomer dye molecule with a biomolecule usually leads to a fluorescence growth, damping of photoisomerization (if any), and an increase in intersystem crossing to the triplet state. Sometimes aggregation of dye molecules on biomolecules is observed. Quenching of the dye triplet state in a complex with biomolecules by molecular oxygen usually occurs with a rate constant much lower than the diffusion limit with allowance for the spin-statistical factor 1/9. The practical application of trimethine cyanines in biophysics and (medical) biochemistry is also considered. In conclusion, the prospects for further studies on the cyanine dye–biomolecule system and the development of new effective dye probes (including probes of a new type) for biomolecules are discussed.
Collapse
|