1
|
Marcelot O, Marcelot C, Rolando S. Limitations and drawbacks of DQE estimation methods applied to electron detectors. Microscopy (Oxf) 2024; 73:405-413. [PMID: 38498372 DOI: 10.1093/jmicro/dfae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024] Open
Abstract
The detective quantum efficiency (DQE) is generally accepted as the main figure of merit for the comparison between electron detectors, and most of the time given as a unique number at the Nyquist frequency while it is known to vary with electron dose. It is usually estimated, thanks to a method improved by McMullan in 2009. The purpose of this work is to analyze and to criticize this DQE extraction method on the basis of measurement and model results, and to give recommendations for fair comparison between detectors, wondering if the DQE is the right figure of merit for electron detectors.
Collapse
|
2
|
Basha A, Levi G, Houben L, Amrani T, Goldfarb I, Kohn A. Evaluating direct detection detectors for short-range order characterization of amorphous materials by electron scattering. Ultramicroscopy 2023; 249:113737. [PMID: 37037087 DOI: 10.1016/j.ultramic.2023.113737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
The introduction of direct electron detectors (DEDs) to transmission electron microscopy has set off the 'resolution revolution', especially for cryoTEM low-dose imaging of soft matter. In comparison to traditional indirect electron detectors such as Charged-Coupled Devices (CCD), DEDs show an improved modulation transfer function (MTF) and detective quantum efficiency (DQE) across all spatial frequencies, as well as faster frame rates which enable single electron counting. The benefits of such characteristics for imaging, spectroscopy and electron holography have been demonstrated previously. However, studies are lacking on the application of DEDs for localized characterization of short- to medium- range-order (SRO, MRO) in amorphous materials using electron scattering. Therefore, we evaluate the performance of a Monolithic Active Pixel Sensor DED for the characterization of SRO and MRO in nanoscale volumes of amorphous materials, using SiO2 and Ta2O5 thin films as test cases. The performance of the detector is compared systematically to electron scattering measurements recorded on an indirect detector (CCD) using 200 keV electrons and electron doses starting at approximately 500e-Å2 . In addition, the effects of sample cooling and energy-filtering on the measured SRO of the oxides were investigated. We demonstrate that the performance of the DED resulted in improved SRO characterization in comparison to that obtained from the CCD measurements. The DED enabled to achieve a larger measured maximal scattering vector, ∼16.51Å compared to ∼151Å, for the CCD. Furthermore, an improved signal-to-noise ratio of approximately two-fold was observed across all spatial frequencies for both 200 keV and 80 keV electrons. These improvements are shown to result from the superior DQE of the DED. Consequently, the DED measurements enabled to determine the coordination numbers of atomic bonds more accurately. We expect that further benefits of the DED for S/MRO characterization will be highlighted for ultra- sensitive materials that cannot withstand electron doses above several e-Å2 .
Collapse
Affiliation(s)
- Adham Basha
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - George Levi
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Lothar Houben
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamir Amrani
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Ilan Goldfarb
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Amit Kohn
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel.
| |
Collapse
|
3
|
Walker V, Vuister GW. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 2023; 113:43-100. [PMID: 36858649 DOI: 10.1016/bs.acc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRPV6 is a Transient Receptor Potential Vanilloid (TRPV) cation channel with high selectivity for Ca2+ ions. First identified in 1999 in a search for the gene which mediates intestinal Ca2+ absorption, its far more extensive repertoire as a guardian of intracellular Ca2+ has since become apparent. Studies on TRPV6-deficient mice demonstrated additional important roles in placental Ca2+ transport, fetal bone development and male fertility. The first reports of inherited deficiency in newborn babies appeared in 2018, revealing its physiological importance in humans. There is currently strong evidence that TRPV6 also contributes to the pathogenesis of some common cancers. The recently reported association of TRPV6 deficiency with non-alcoholic chronic pancreatitis suggests a role in normal pancreatic function. Over time and with greater awareness of TRPV6, other disease-associations are likely to emerge. Powerful analytical tools have provided invaluable insights into the structure and operation of TRPV6. Its roles in Ca2+ signaling and carcinogenesis, and the use of channel inhibitors in cancer treatment are being intensively investigated. This review first briefly describes the biochemistry and physiology of the channel, and analytical methods used to investigate these. The focus subsequently shifts to the clinical disorders associated with abnormal expression and the underlying pathophysiology. The aims of this review are to increase awareness of this channel, and to draw together findings from a wide range of sources which may help to formulate new ideas for further studies.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
4
|
A new TCAD simulation method for direct CMOS electron detectors optimization. Ultramicroscopy 2022; 243:113628. [DOI: 10.1016/j.ultramic.2022.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
5
|
Walsh RM, Mayer ML, Sun CH, Rawson S, Nair R, Sterling SM, Li Z. Practices for running a research-oriented shared cryo-EM facility. Front Mol Biosci 2022; 9:960940. [PMID: 36188224 PMCID: PMC9521047 DOI: 10.3389/fmolb.2022.960940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The Harvard Cryo-Electron Microscopy Center for Structural Biology, which was formed as a consortium between Harvard Medical School, Boston Children’s Hospital, Dana-Farber Cancer Institute, and Massachusetts General Hospital, serves both academic and commercial users in the greater Harvard community. The facility strives to optimize research productivity while training users to become expert electron microscopists. These two tasks may be at odds and require careful balance to keep research projects moving forward while still allowing trainees to develop independence and expertise. This article presents the model developed at Harvard Medical School for running a research-oriented cryo-EM facility. Being a research-oriented facility begins with training in cryo-sample preparation on a trainee’s own sample, ideally producing grids that can be screened and optimized on the Talos Arctica via multiple established pipelines. The first option, staff assisted screening, requires no user experience and a staff member provides instant feedback about the suitability of the sample for cryo-EM investigation and discusses potential strategies for sample optimization. Another option, rapid access, allows users short sessions to screen samples and introductory training for basic microscope operation. Once a sample reaches the stage where data collection is warranted, new users are trained on setting up data collection for themselves on either the Talos Arctica or Titan Krios microscope until independence is established. By providing incremental training and screening pipelines, the bottleneck of sample preparation can be overcome in parallel with developing skills as an electron microscopist. This approach allows for the development of expertise without hindering breakthroughs in key research areas.
Collapse
Affiliation(s)
- Richard M. Walsh
- Harvard Cryo-EM Center for Structural Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Megan L. Mayer
- Harvard Cryo-EM Center for Structural Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Christopher H. Sun
- Harvard Cryo-EM Center for Structural Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Shaun Rawson
- Harvard Cryo-EM Center for Structural Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Remya Nair
- Harvard Cryo-EM Center for Structural Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Sarah M. Sterling
- Harvard Cryo-EM Center for Structural Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Zongli Li
- Harvard Cryo-EM Center for Structural Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Zongli Li,
| |
Collapse
|
6
|
Heiligenstein X, Lucas MS. One for All, All for One: A Close Look at In-Resin Fluorescence Protocols for CLEM. Front Cell Dev Biol 2022; 10:866472. [PMID: 35846358 PMCID: PMC9280628 DOI: 10.3389/fcell.2022.866472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Sample preparation is the novel bottleneck for high throughput correlative light and electron microscopy (CLEM). Protocols suitable for both imaging methods must therefore balance the requirements of each technique. For fluorescence light microscopy, a structure of interest can be targeted using: 1) staining, which is often structure or tissue specific rather than protein specific, 2) dye-coupled proteins or antibodies, or 3) genetically encoded fluorescent proteins. Each of these three methods has its own advantages. For ultrastructural investigation by electron microscopy (EM) resin embedding remains a significant sample preparation approach, as it stabilizes the sample such that it withstands the vacuum conditions of the EM, and enables long-term storage. Traditionally, samples are treated with heavy metal salts prior to resin embedding, in order to increase imaging contrast for EM. This is particularly important for volume EM (vEM) techniques. Yet, commonly used contrasting agents (e.g., osmium tetroxide, uranyl acetate) tend to impair fluorescence. The discovery that fluorescence can be preserved in resin-embedded specimens after mild heavy metal staining was a game changer for CLEM. These so-called in-resin fluorescence protocols present a significant leap forward for CLEM approaches towards high precision localization of a fluorescent signal in (volume) EM data. Integrated microscopy approaches, combining LM and EM detection into a single instrument certainly require such an “all in one” sample preparation. Preserving, or adding, dedicated fluorescence prior to resin embedding requires a compromise, which often comes at the expense of EM imaging contrast and membrane visibility. Especially vEM can be strongly hampered by a lack of heavy metal contrasting. This review critically reflects upon the fundamental aspects of resin embedding with regard to 1) specimen fixation and the physics and chemistry underlying the preservation of protein structure with respect to fluorescence and antigenicity, 2) optimization of EM contrast for transmission or scanning EM, and 3) the choice of embedding resin. On this basis, various existing workflows employing in-resin fluorescence are described, highlighting their common features, discussing advantages and disadvantages of the respective approach, and finally concluding with promising future developments for in-resin CLEM.
Collapse
Affiliation(s)
| | - Miriam S. Lucas
- Scientific Center for Light and Electron Microscopy (ScopeM), ETH Zurich, Zurich, Switzerland
- *Correspondence: Miriam S. Lucas,
| |
Collapse
|
7
|
|
8
|
Kühlbrandt W. Forty years in cryoEM of membrane proteins. Microscopy (Oxf) 2022; 71:i30-i50. [PMID: 35275191 PMCID: PMC8855526 DOI: 10.1093/jmicro/dfab041] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
In a surprisingly short time, electron cryo-microscopy (cryoEM) has developed from a niche technique in structural biology to a mainstream method practiced in a rapidly growing number of laboratories around the world. From its beginnings about 40 years ago, cryoEM has had a major impact on the study of membrane proteins, in particular the energy-converting systems from bacterial, mitochondrial and chloroplast membranes. Early work on two-dimensional crystals attained resolutions ∼3.5 Å, but at present, single-particle cryoEM delivers much more detailed structures without crystals. Electron cryo-tomography of membranes and membrane-associated proteins adds valuable context, usually at lower resolution. The review ends with a brief outlook on future prospects.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, Frankfurt am Main 60438, Germany
| |
Collapse
|
9
|
Warshamanage R, Yamashita K, Murshudov GN. EMDA: A Python package for Electron Microscopy Data Analysis. J Struct Biol 2021; 214:107826. [PMID: 34915128 PMCID: PMC8935390 DOI: 10.1016/j.jsb.2021.107826] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022]
Abstract
An open-source Python library EMDA for cryo-EM map and model manipulation is presented with a specific focus on validation. The use of several functionalities in the library is presented through several examples. The utility of local correlation as a metric for identifying map-model differences and unmodeled regions in maps, and how it is used as a metric of map-model validation is demonstrated. The mapping of local correlation to individual atoms, and its use to draw insights on local signal variations are discussed. EMDA’s likelihood-based map overlay is demonstrated by carrying out a superposition of two domains in two related structures. The overlay is carried out first to bring both maps into the same coordinate frame and then to estimate the relative movement of domains. Finally, the map magnification refinement in EMDA is presented with an example to highlight the importance of adjusting the map magnification in structural comparison studies.
Collapse
Affiliation(s)
- Rangana Warshamanage
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Keitaro Yamashita
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
10
|
Simpkin AJ, Winn MD, Rigden DJ, Keegan RM. Redeployment of automated MrBUMP search-model identification for map fitting in cryo-EM. Acta Crystallogr D Struct Biol 2021; 77:1378-1385. [PMID: 34726166 PMCID: PMC8561737 DOI: 10.1107/s2059798321009165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
In crystallography, the phase problem can often be addressed by the careful preparation of molecular-replacement search models. This has led to the development of pipelines such as MrBUMP that can automatically identify homologous proteins from an input sequence and edit them to focus on the areas that are most conserved. Many of these approaches can be applied directly to cryo-EM to help discover, prepare and correctly place models (here called cryo-EM search models) into electrostatic potential maps. This can significantly reduce the amount of manual model building that is required for structure determination. Here, MrBUMP is repurposed to fit automatically obtained PDB-derived chains and domains into cryo-EM maps. MrBUMP was successfully able to identify and place cryo-EM search models across a range of resolutions. Methods such as map segmentation are also explored as potential routes to improved performance. Map segmentation was also found to improve the effectiveness of the pipeline for higher resolution (<8 Å) data sets.
Collapse
Affiliation(s)
- Adam J. Simpkin
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Martyn D. Winn
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Daniel J. Rigden
- Institute of Structural, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Ronan M. Keegan
- UKRI–STFC, Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
11
|
Bustillo KC, Zeltmann SE, Chen M, Donohue J, Ciston J, Ophus C, Minor AM. 4D-STEM of Beam-Sensitive Materials. Acc Chem Res 2021; 54:2543-2551. [PMID: 33979131 DOI: 10.1021/acs.accounts.1c00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ConspectusScanning electron nanobeam diffraction, or 4D-STEM (four-dimensional scanning transmission electron microscopy), is a flexible and powerful approach to elucidate structure from "soft" materials that are challenging to image in the transmission electron microscope because their structure is easily damaged by the electron beam. In a 4D-STEM experiment, a converged electron beam is scanned across the sample, and a pixelated camera records a diffraction pattern at each scan position. This four-dimensional data set can be mined for various analyses, producing maps of local crystal orientation, structural distortions, crystallinity, or different structural classes. Holding the sample at cryogenic temperatures minimizes diffusion of radicals and the resulting damage and disorder caused by the electron beam. The total fluence of incident electrons can easily be controlled during 4D-STEM experiments by careful use of the beam blanker, steering of the localized electron dose, and by minimizing the fluence in the convergent beam thus minimizing beam damage. This technique can be applied to both organic and inorganic materials that are known to be beam-sensitive; they can be highly crystalline, semicrystalline, mixed phase, or amorphous.One common example is the case for many organic materials that have a π-π stacking of polymer chains or rings on the order of 3.4-4.2 Å separation. If these chains or rings are aligned in some regions, they will produce distinct diffraction spots (as would other crystalline spacings in this range), though they may be weak or diffuse for disordered or weakly scattering materials. We can reconstruct the orientation of the π-π stacking, the degree of π-π stacking in the sample, and the domain size of the aligned regions. This Account summarizes illumination conditions and experimental parameters for 4D-STEM experiments with the goal of producing images of structural features for materials that are beam-sensitive. We will discuss experimental parameters including sample cooling, probe size and shape, fluence, and cameras. 4D-STEM has been applied to a variety of materials, not only as an advanced technique for model systems, but as a technique for the beginning microscopist to answer materials science questions. It is noteworthy that the experimental data acquisition does not require an aberration-corrected TEM but can be produced on a variety of instruments with the right attention to experimental parameters.
Collapse
Affiliation(s)
- Karen C. Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Steven E. Zeltmann
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Min Chen
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Jennifer Donohue
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Jim Ciston
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andrew M. Minor
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Ahmed I, Akram Z, Sahar MSU, Iqbal HMN, Landsberg MJ, Munn AL. WITHDRAWN: Structural studies of vitrified biological proteins and macromolecules - A review on the microimaging aspects of cryo-electron microscopy. Int J Biol Macromol 2020:S0141-8130(20)33915-5. [PMID: 32710963 DOI: 10.1016/j.ijbiomac.2020.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - M Sana Ullah Sahar
- School of Engineering, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
13
|
Ohashi M, Maeda SI, Sato C. Bayesian inference for three-dimensional helical reconstruction using a soft-body model. Phys Rev E 2019; 100:042411. [PMID: 31770999 DOI: 10.1103/physreve.100.042411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 11/07/2022]
Abstract
Estimation of the three-dimensional (3D) structure of a protein using cryo transmission electron microscopy (cryo-TEM) is an inverse problem, which aims to estimate the parameters of a specific physical process from observations. In general, we need to model the observation process to estimate a structure. However, the inconsistency between the model and a real observation process decreases the estimation accuracy. In cryo-TEM, the flexibility of a soft protein, including the bending of a helix, can lead to inconsistencies between the observations because of the assumption that there is a consistent 3D structure behind each observed image. In this paper, we propose a 3D reconstruction algorithm for helical structures using a parametric soft-body model that can represent continuous deformation. We performed an approximate Bayesian inference for unobservable (hidden) variables, such as the deformation parameters, projection angle, and two-dimensional origin offset (shift) of each protein in the 3D structure estimation problem. Our principled approach is not only beneficial to deal with the uncertainties in the estimation, but also beneficial to make the optimization algorithm convergent and efficient. Reconstructions with artificial molecules validated the advantage of the proposed method, particularly, when deformed helices were imaged under a low signal-to-noise ratio condition. Moreover, we confirmed that the proposed method successfully reconstructed a 3D structure from cryo-TEM images of the tobacco mosaic virus.
Collapse
Affiliation(s)
- Masataka Ohashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki Prefecture 305-8574, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture 305-8566, Japan.,BioNet Ltd., 2-3-28 Nishikityo, Tachikawa, Tokyo 190-0022, Japan
| | - Shin-Ichi Maeda
- Preferred Networks, Inc., 1-6-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Chikara Sato
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki Prefecture 305-8574, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture 305-8566, Japan
| |
Collapse
|
14
|
Wilkinson ME, Kumar A, Casañal A. Methods for merging data sets in electron cryo-microscopy. Acta Crystallogr D Struct Biol 2019; 75:782-791. [PMID: 31478901 PMCID: PMC6719665 DOI: 10.1107/s2059798319010519] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/23/2019] [Indexed: 11/26/2022] Open
Abstract
Recent developments have resulted in electron cryo-microscopy (cryo-EM) becoming a useful tool for the structure determination of biological macromolecules. For samples containing inherent flexibility, heterogeneity or preferred orientation, the collection of extensive cryo-EM data using several conditions and microscopes is often required. In such a scenario, merging cryo-EM data sets is advantageous because it allows improved three-dimensional reconstructions to be obtained. Since data sets are not always collected with the same pixel size, merging data can be challenging. Here, two methods to combine cryo-EM data are described. Both involve the calculation of a rescaling factor from independent data sets. The effects of errors in the scaling factor on the results of data merging are also estimated. The methods described here provide a guideline for cryo-EM users who wish to combine data sets from the same type of microscope and detector.
Collapse
Affiliation(s)
- Max E. Wilkinson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Ananthanarayanan Kumar
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| | - Ana Casañal
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, England
| |
Collapse
|
15
|
Nicholls RA, Tykac M, Kovalevskiy O, Murshudov GN. Current approaches for the fitting and refinement of atomic models into cryo-EM maps using CCP-EM. Acta Crystallogr D Struct Biol 2018; 74:492-505. [PMID: 29872001 PMCID: PMC6096485 DOI: 10.1107/s2059798318007313] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/15/2018] [Indexed: 11/10/2022] Open
Abstract
Recent advances in instrumentation and software have resulted in cryo-EM rapidly becoming the method of choice for structural biologists, especially for those studying the three-dimensional structures of very large macromolecular complexes. In this contribution, the tools available for macromolecular structure refinement into cryo-EM reconstructions that are available via CCP-EM are reviewed, specifically focusing on REFMAC5 and related tools. Whilst originally designed with a view to refinement against X-ray diffraction data, some of these tools have been able to be repurposed for cryo-EM owing to the same principles being applicable to refinement against cryo-EM maps. Since both techniques are used to elucidate macromolecular structures, tools encapsulating prior knowledge about macromolecules can easily be transferred. However, there are some significant qualitative differences that must be acknowledged and accounted for; relevant differences between these techniques are highlighted. The importance of phases is considered and the potential utility of replacing inaccurate amplitudes with their expectations is justified. More pragmatically, an upper bound on the correlation between observed and calculated Fourier coefficients, expressed in terms of the Fourier shell correlation between half-maps, is demonstrated. The importance of selecting appropriate levels of map blurring/sharpening is emphasized, which may be facilitated by considering the behaviour of the average map amplitude at different resolutions, as well as the utility of simultaneously viewing multiple blurred/sharpened maps. Features that are important for the purposes of computational efficiency are discussed, notably the Divide and Conquer pipeline for the parallel refinement of large macromolecular complexes. Techniques that have recently been developed or improved in Coot to facilitate and expedite the building, fitting and refinement of atomic models into cryo-EM maps are summarized. Finally, a tool for symmetry identification from a given map or coordinate set, ProSHADE, which can identify the point group of a map and thus may be used during deposition as well as during molecular visualization, is introduced.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Michal Tykac
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Oleg Kovalevskiy
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| |
Collapse
|
16
|
Sawicka M, Aramayo R, Ayala R, Glyde R, Zhang X. Single-Particle Electron Microscopy Analysis of DNA Repair Complexes. Methods Enzymol 2018; 592:159-186. [PMID: 28668120 DOI: 10.1016/bs.mie.2017.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA repair complexes play crucial roles in maintaining genome integrity, which is essential for the survival of an organism. The understanding of their modes of action is often obscure due to limited structural knowledge. Structural characterizations of these complexes are often challenging due to a poor protein production yield, a conformational flexibility, and a relatively high molecular mass. Single-particle electron microscopy (EM) has been successfully applied to study some of these complexes as it requires low amount of samples, is not limited by the high molecular mass of a protein or a complex, and can separate heterogeneous assemblies. Recently, near-atomic resolution structures have been obtained with EM owing to the advances in technology and image processing algorithms. In this chapter, we review the EM methodology of obtaining three-dimensional reconstructions of macromolecular complexes and provide a workflow that can be applied to DNA repair complex assemblies.
Collapse
Affiliation(s)
- Marta Sawicka
- Section of Structural Biology, Imperial College London, South Kensington, London, United Kingdom
| | - Ricardo Aramayo
- Section of Structural Biology, Imperial College London, South Kensington, London, United Kingdom
| | - Rafael Ayala
- Section of Structural Biology, Imperial College London, South Kensington, London, United Kingdom
| | - Robert Glyde
- Section of Structural Biology, Imperial College London, South Kensington, London, United Kingdom
| | - Xiaodong Zhang
- Section of Structural Biology, Imperial College London, South Kensington, London, United Kingdom.
| |
Collapse
|
17
|
Wilkinson ME, Lin PC, Plaschka C, Nagai K. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization. Annu Rev Biophys 2018; 47:175-199. [PMID: 29494253 DOI: 10.1146/annurev-biophys-070317-033410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The removal of noncoding introns from pre-messenger RNA (pre-mRNA) is an essential step in eukaryotic gene expression and is catalyzed by a dynamic multi-megadalton ribonucleoprotein complex called the spliceosome. The spliceosome assembles on pre-mRNA substrates by the stepwise addition of small nuclear ribonucleoprotein particles and numerous protein factors. Extensive remodeling is required to form the RNA-based active site and to mediate the pre-mRNA branching and ligation reactions. In the past two years, cryo-electron microscopy (cryo-EM) structures of spliceosomes captured in different assembly and catalytic states have greatly advanced our understanding of its mechanism. This was made possible by long-standing efforts in the purification of spliceosome intermediates as well as recent developments in cryo-EM imaging and computational methodology. The resulting high-resolution densities allow for de novo model building in core regions of the complexes. In peripheral and less ordered regions, the combination of cross-linking, bioinformatics, biochemical, and genetic data is essential for accurate modeling. Here, we summarize these achievements and highlight the critical steps in obtaining near-atomic resolution structures of the spliceosome.
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Pei-Chun Lin
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Clemens Plaschka
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; , , ,
| |
Collapse
|
18
|
Saiga R, Takeuchi A, Uesugi K, Terada Y, Suzuki Y, Mizutani R. Method for estimating modulation transfer function from sample images. Micron 2017; 105:64-69. [PMID: 29179010 DOI: 10.1016/j.micron.2017.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/17/2022]
Abstract
The modulation transfer function (MTF) represents the frequency domain response of imaging modalities. Here, we report a method for estimating the MTF from sample images. Test images were generated from a number of images, including those taken with an electron microscope and with an observation satellite. These original images were convolved with point spread functions (PSFs) including those of circular apertures. The resultant test images were subjected to a Fourier transformation. The logarithm of the squared norm of the Fourier transform was plotted against the squared distance from the origin. Linear correlations were observed in the logarithmic plots, indicating that the PSF of the test images can be approximated with a Gaussian. The MTF was then calculated from the Gaussian-approximated PSF. The obtained MTF closely coincided with the MTF predicted from the original PSF. The MTF of an x-ray microtomographic section of a fly brain was also estimated with this method. The obtained MTF showed good agreement with the MTF determined from an edge profile of an aluminum test object. We suggest that this approach is an alternative way of estimating the MTF, independently of the image type.
Collapse
Affiliation(s)
- Rino Saiga
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kitakaname 4-1-1, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Akihisa Takeuchi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan
| | - Yasuko Terada
- Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan
| | - Yoshio Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, 277-8561, Japan
| | - Ryuta Mizutani
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kitakaname 4-1-1, Hiratsuka, Kanagawa, 259-1292, Japan.
| |
Collapse
|
19
|
Clabbers MTB, van Genderen E, Wan W, Wiegers EL, Gruene T, Abrahams JP. Protein structure determination by electron diffraction using a single three-dimensional nanocrystal. Acta Crystallogr D Struct Biol 2017; 73:738-748. [PMID: 28876237 PMCID: PMC5586247 DOI: 10.1107/s2059798317010348] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 07/12/2017] [Indexed: 11/11/2022] Open
Abstract
Three-dimensional nanometre-sized crystals of macromolecules currently resist structure elucidation by single-crystal X-ray crystallography. Here, a single nanocrystal with a diffracting volume of only 0.14 µm3, i.e. no more than 6 × 105 unit cells, provided sufficient information to determine the structure of a rare dimeric polymorph of hen egg-white lysozyme by electron crystallography. This is at least an order of magnitude smaller than was previously possible. The molecular-replacement solution, based on a monomeric polyalanine model, provided sufficient phasing power to show side-chain density, and automated model building was used to reconstruct the side chains. Diffraction data were acquired using the rotation method with parallel beam diffraction on a Titan Krios transmission electron microscope equipped with a novel in-house-designed 1024 × 1024 pixel Timepix hybrid pixel detector for low-dose diffraction data collection. Favourable detector characteristics include the ability to accurately discriminate single high-energy electrons from X-rays and count them, fast readout to finely sample reciprocal space and a high dynamic range. This work, together with other recent milestones, suggests that electron crystallography can provide an attractive alternative in determining biological structures.
Collapse
Affiliation(s)
- M. T. B. Clabbers
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, Basel University, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - E. van Genderen
- Department of Biology and Chemistry, Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
| | - W. Wan
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - E. L. Wiegers
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - T. Gruene
- Department of Biology and Chemistry, Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
| | - J. P. Abrahams
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, Basel University, Mattenstrasse 26, CH-4058 Basel, Switzerland
- Department of Biology and Chemistry, Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
- Leiden Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
20
|
Structural Study of Heterogeneous Biological Samples by Cryoelectron Microscopy and Image Processing. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1032432. [PMID: 28191458 PMCID: PMC5274696 DOI: 10.1155/2017/1032432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022]
Abstract
In living organisms, biological macromolecules are intrinsically flexible and naturally exist in multiple conformations. Modern electron microscopy, especially at liquid nitrogen temperatures (cryo-EM), is able to visualise biocomplexes in nearly native conditions and in multiple conformational states. The advances made during the last decade in electronic technology and software development have led to the revelation of structural variations in complexes and also improved the resolution of EM structures. Nowadays, structural studies based on single particle analysis (SPA) suggests several approaches for the separation of different conformational states and therefore disclosure of the mechanisms for functioning of complexes. The task of resolving different states requires the examination of large datasets, sophisticated programs, and significant computing power. Some methods are based on analysis of two-dimensional images, while others are based on three-dimensional studies. In this review, we describe the basic principles implemented in the various techniques that are currently used in the analysis of structural conformations and provide some examples of successful applications of these methods in structural studies of biologically significant complexes.
Collapse
|
21
|
Wu J, Shan H, Chen W, Gu X, Tao P, Song C, Shang W, Deng T. In Situ Environmental TEM in Imaging Gas and Liquid Phase Chemical Reactions for Materials Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9686-9712. [PMID: 27628711 DOI: 10.1002/adma.201602519] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/10/2016] [Indexed: 05/26/2023]
Abstract
Gas and liquid phase chemical reactions cover a broad range of research areas in materials science and engineering, including the synthesis of nanomaterials and application of nanomaterials, for example, in the areas of sensing, energy storage and conversion, catalysis, and bio-related applications. Environmental transmission electron microscopy (ETEM) provides a unique opportunity for monitoring gas and liquid phase reactions because it enables the observation of those reactions at the ultra-high spatial resolution, which is not achievable through other techniques. Here, the fundamental science and technology developments of gas and liquid phase TEM that facilitate the mechanistic study of the gas and liquid phase chemical reactions are discussed. Combined with other characterization tools integrated in TEM, unprecedented material behaviors and reaction mechanisms are observed through the use of the in situ gas and liquid phase TEM. These observations and also the recent applications in this emerging area are described. The current challenges in the imaging process are also discussed, including the imaging speed, imaging resolution, and data management.
Collapse
Affiliation(s)
- Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Hao Shan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Wenlong Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Xin Gu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, People's Republic of China
| |
Collapse
|
22
|
Samsó M. A guide to the 3D structure of the ryanodine receptor type 1 by cryoEM. Protein Sci 2016; 26:52-68. [PMID: 27671094 DOI: 10.1002/pro.3052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/04/2023]
Abstract
Signal transduction by the ryanodine receptor (RyR) is essential in many excitable cells including all striated contractile cells and some types of neurons. While its transmembrane domain is a classic tetrameric, six-transmembrane cation channel, the cytoplasmic domain is uniquely large and complex, hosting a multiplicity of specialized domains. The overall outline and substructure readily recognizable by electron microscopy make RyR a geometrically well-behaved specimen. Hence, for the last two decades, the 3D structural study of the RyR has tracked closely the technological advances in electron microscopy, cryo-electron microscopy (cryoEM), and computerized 3D reconstruction. This review summarizes the progress in the structural determination of RyR by cryoEM and, bearing in mind the leap in resolution provided by the recent implementation of direct electron detection, analyzes the first near-atomic structures of RyR. These reveal a complex orchestration of domains controlling the channel's function, and help to understand how this could break down as a consequence of disease-causing mutations.
Collapse
Affiliation(s)
- Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
23
|
Abstract
This review describes some of the methods for atomic structure refinement (fitting) against medium/high-resolution single-particle cryo-EM reconstructed maps. Some of the tools developed for macromolecular X-ray crystal structure analysis, especially those encapsulating prior chemical and structural information can be transferred directly for fitting into cryo-EM maps. However, despite the similarities, there are significant differences between data produced by these two techniques; therefore, different likelihood functions linking the data and model must be used in cryo-EM and crystallographic refinement. Although tools described in this review are mostly designed for medium/high-resolution maps, if maps have sufficiently good quality, then these tools can also be used at moderately low resolution, as shown in one example. In addition, the use of several popular crystallographic methods is strongly discouraged in cryo-EM refinement, such as 2Fo-Fc maps, solvent flattening, and feature-enhanced maps (FEMs) for visualization and model (re)building. Two problems in the cryo-EM field are overclaiming resolution and severe map oversharpening. Both of these should be avoided; if data of higher resolution than the signal are used, then overfitting of model parameters into the noise is unavoidable, and if maps are oversharpened, then at least parts of the maps might become very noisy and ultimately uninterpretable. Both of these may result in suboptimal and even misleading atomic models.
Collapse
Affiliation(s)
- G N Murshudov
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| |
Collapse
|
24
|
Joseph AP, Malhotra S, Burnley T, Wood C, Clare DK, Winn M, Topf M. Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment. Methods 2016; 100:42-9. [PMID: 26988127 PMCID: PMC4854230 DOI: 10.1016/j.ymeth.2016.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 01/19/2023] Open
Abstract
As the resolutions of Three Dimensional Electron Microscopic reconstructions of biological macromolecules are being improved, there is a need for better fitting and refinement methods at high resolutions and robust approaches for model assessment. Flex-EM/MODELLER has been used for flexible fitting of atomic models in intermediate-to-low resolution density maps of different biological systems. Here, we demonstrate the suitability of the method to successfully refine structures at higher resolutions (2.5-4.5Å) using both simulated and experimental data, including a newly processed map of Apo-GroEL. A hierarchical refinement protocol was adopted where the rigid body definitions are relaxed and atom displacement steps are reduced progressively at successive stages of refinement. For the assessment of local fit, we used the SMOC (segment-based Manders' overlap coefficient) score, while the model quality was checked using the Qmean score. Comparison of SMOC profiles at different stages of refinement helped in detecting regions that are poorly fitted. We also show how initial model errors can have significant impact on the goodness-of-fit. Finally, we discuss the implementation of Flex-EM in the CCP-EM software suite.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Sony Malhotra
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Tom Burnley
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Chris Wood
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Daniel K Clare
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science & Innovation Campus, OX11 0DE, United Kingdom
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom.
| |
Collapse
|
25
|
Heel MV, Portugal RV, Schatz M. Multivariate Statistical Analysis of Large Datasets: Single Particle Electron Microscopy. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ojs.2016.64059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Clough R, Kirkland A. Direct Digital Electron Detectors. ADVANCES IN IMAGING AND ELECTRON PHYSICS 2016. [DOI: 10.1016/bs.aiep.2016.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Irobalieva RN, Martins B, Medalia O. Cellular structural biology as revealed by cryo-electron tomography. J Cell Sci 2016; 129:469-76. [DOI: 10.1242/jcs.171967] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Understanding the function of cellular machines requires a thorough analysis of the structural elements that underline their function. Electron microscopy (EM) has been pivotal in providing information about cellular ultrastructure, as well as macromolecular organization. Biological materials can be physically fixed by vitrification and imaged with cryo-electron tomography (cryo-ET) in a close-to-native condition. Using this technique, one can acquire three-dimensional (3D) information about the macromolecular architecture of cells, depict unique cellular states and reconstruct molecular networks. Technical advances over the last few years, such as improved sample preparation and electron detection methods, have been instrumental in obtaining data with unprecedented structural details. This presents an exciting opportunity to explore the molecular architecture of both individual cells and multicellular organisms at nanometer to subnanometer resolution. In this Commentary, we focus on the recent developments and in situ applications of cryo-ET to cell and structural biology.
Collapse
Affiliation(s)
- Rossitza N. Irobalieva
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Bruno Martins
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| |
Collapse
|
28
|
Vinothkumar KR. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol 2015; 33:103-14. [PMID: 26435463 PMCID: PMC4764762 DOI: 10.1016/j.sbi.2015.07.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/13/2015] [Accepted: 07/24/2015] [Indexed: 11/25/2022]
Abstract
Electron microscopy of membrane proteins as single particles. Membrane protein structures without crystals. Direct electron detectors have high signal to noise. Medium to high-resolution structures of molecules between 0.13 and 2 MDa. Sub-tomogram averaging to study membrane proteins in situ.
It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques.
Collapse
Affiliation(s)
- Kutti R Vinothkumar
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
29
|
Two-Dimensional Crystallization Procedure, from Protein Expression to Sample Preparation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:693869. [PMID: 26413539 PMCID: PMC4564634 DOI: 10.1155/2015/693869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/02/2015] [Indexed: 11/18/2022]
Abstract
Membrane proteins play important roles for living cells. Structural studies of membrane proteins provide deeper understanding of their mechanisms and further aid in drug design. As compared to other methods, electron microscopy is uniquely suitable for analysis of a broad range of specimens, from small proteins to large complexes. Of various electron microscopic methods, electron crystallography is particularly well-suited to study membrane proteins which are reconstituted into two-dimensional crystals in lipid environments. In this review, we discuss the steps and parameters for obtaining large and well-ordered two-dimensional crystals. A general description of the principle in each step is provided since this information can also be applied to other biochemical and biophysical methods. The examples are taken from our own studies and published results with related proteins. Our purpose is to give readers a more general idea of electron crystallography and to share our experiences in obtaining suitable crystals for data collection.
Collapse
|
30
|
Chiu PL, Li X, Li Z, Beckett B, Brilot AF, Grigorieff N, Agard DA, Cheng Y, Walz T. Evaluation of super-resolution performance of the K2 electron-counting camera using 2D crystals of aquaporin-0. J Struct Biol 2015; 192:163-73. [PMID: 26318383 DOI: 10.1016/j.jsb.2015.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023]
Abstract
The K2 Summit camera was initially the only commercially available direct electron detection camera that was optimized for high-speed counting of primary electrons and was also the only one that implemented centroiding so that the resolution of the camera can be extended beyond the Nyquist limit set by the physical pixel size. In this study, we used well-characterized two-dimensional crystals of the membrane protein aquaporin-0 to characterize the performance of the camera below and beyond the physical Nyquist limit and to measure the influence of electron dose rate on image amplitudes and phases.
Collapse
Affiliation(s)
- Po-Lin Chiu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Xueming Li
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Zongli Li
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; The Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Brian Beckett
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Axel F Brilot
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | - David A Agard
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA; The Howard Hughes Medical Institute, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | - Yifan Cheng
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, USA.
| | - Thomas Walz
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; The Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Cheng Y, Grigorieff N, Penczek PA, Walz T. A primer to single-particle cryo-electron microscopy. Cell 2015; 161:438-449. [PMID: 25910204 DOI: 10.1016/j.cell.2015.03.050] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/14/2023]
Abstract
Cryo-electron microscopy (cryo-EM) of single-particle specimens is used to determine the structure of proteins and macromolecular complexes without the need for crystals. Recent advances in detector technology and software algorithms now allow images of unprecedented quality to be recorded and structures to be determined at near-atomic resolution. However, compared with X-ray crystallography, cryo-EM is a young technique with distinct challenges. This primer explains the different steps and considerations involved in structure determination by single-particle cryo-EM to provide an overview for scientists wishing to understand more about this technique and the interpretation of data obtained with it, as well as a starting guide for new practitioners.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin Street, MSB 6.220, Houston, TX 77030, USA
| | - Thomas Walz
- Department of Cell Biology and Howard Hughes Medical Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Stahlberg H, Biyani N, Engel A. 3D reconstruction of two-dimensional crystals. Arch Biochem Biophys 2015; 581:68-77. [PMID: 26093179 DOI: 10.1016/j.abb.2015.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 02/02/2023]
Abstract
Electron crystallography of two-dimensional (2D) crystals determines the structure of membrane proteins in the lipid bilayer by imaging with cryo-electron microscopy and image processing. Membrane proteins can be packed in regular 2D arrays by their reconstitution in the presence of lipids at low lipid to protein weight-to-weight ratio. The crystal quality depends on the protein purity and homogeneity, its stability, and on the crystallization conditions. A 2D crystal presents the membrane protein in a functional and fully lipidated state. Electron crystallography determines the 3D structure even of small membrane proteins up to atomic resolution, but 3D density maps have a better resolution in the membrane plane than in the vertical direction. This problem can be partly eliminated by applying an iterative algorithm that exploits additional known constraints about the 2D crystal. 2D electron crystallography is particularly attractive for the structural analysis of membrane proteins that are too small for single particle analyses and too unstable to form 3D crystals. With the recent introduction of direct electron detector cameras, the routine determination of the atomic 3D structure of membrane-embedded membrane proteins is in reach.
Collapse
Affiliation(s)
- Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Nikhil Biyani
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Andreas Engel
- Department of BioNanoscience, Delft University of Technology, Van der Waalsweg 8, 2628 CH Delft, The Netherlands; Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Wood Bldg 321D, Cleveland, OH 44106-4965, USA.
| |
Collapse
|
33
|
Eggeman AS, Krakow R, Midgley PA. Scanning precession electron tomography for three-dimensional nanoscale orientation imaging and crystallographic analysis. Nat Commun 2015; 6:7267. [PMID: 26028514 PMCID: PMC4458861 DOI: 10.1038/ncomms8267] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/23/2015] [Indexed: 11/17/2022] Open
Abstract
Three-dimensional (3D) reconstructions from electron tomography provide important morphological, compositional, optical and electro-magnetic information across a wide range of materials and devices. Precession electron diffraction, in combination with scanning transmission electron microscopy, can be used to elucidate the local orientation of crystalline materials. Here we show, using the example of a Ni-base superalloy, that combining these techniques and extending them to three dimensions, to produce scanning precession electron tomography, enables the 3D orientation of nanoscale sub-volumes to be determined and provides a one-to-one correspondence between 3D real space and 3D reciprocal space for almost any polycrystalline or multi-phase material. High-resolution microscopy allows imaging of information on the atomic scale. Here, by combining precession electron diffraction with scanning transmission electron microscopy, the authors demonstrate an efficient, alternative technique to determine the three-dimensional orientation of materials.
Collapse
Affiliation(s)
- Alexander S Eggeman
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Robert Krakow
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Paul A Midgley
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
34
|
Gorelik TE, Schmidt MU, Kolb U, Billinge SJL. Total-scattering pair-distribution function of organic material from powder electron diffraction data. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:459-471. [PMID: 25510245 DOI: 10.1017/s1431927614014561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper shows that pair-distribution function (PDF) analyses can be carried out on organic and organometallic compounds from powder electron diffraction data. Different experimental setups are demonstrated, including selected area electron diffraction and nanodiffraction in transmission electron microscopy or nanodiffraction in scanning transmission electron microscopy modes. The methods were demonstrated on organometallic complexes (chlorinated and unchlorinated copper phthalocyanine) and on purely organic compounds (quinacridone). The PDF curves from powder electron diffraction data, called ePDF, are in good agreement with PDF curves determined from X-ray powder data demonstrating that the problems of obtaining kinematical scattering data and avoiding beam damage of the sample are possible to resolve.
Collapse
Affiliation(s)
- Tatiana E Gorelik
- 1Institute of Physical Chemistry,Johannes Gutenberg-University,Jakob Welder Weg 11,55128 MainzGermany
| | - Martin U Schmidt
- 2Institute of Inorganic and Analytical Chemistry,Goethe University,Max-von-Laue-Str. 7,D-60438 Frankfurt am Main,Germany
| | - Ute Kolb
- 1Institute of Physical Chemistry,Johannes Gutenberg-University,Jakob Welder Weg 11,55128 MainzGermany
| | - Simon J L Billinge
- 4Department of Applied Physics and Applied Mathematics,Columbia University,New York,NY 10027,USA
| |
Collapse
|
35
|
Benchmarking the stability of human detergent-solubilised voltage-gated sodium channels for structural studies using eel as a reference. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1545-51. [PMID: 25838126 PMCID: PMC4557063 DOI: 10.1016/j.bbamem.2015.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 12/19/2022]
Abstract
With the ultimate goal of detailed structural analysis of mammalian and particularly human voltage-gated sodium channels (VGSCs), we have investigated the relative stability of human and rat VGSCs and compared them with electric eel VGSC. We found that NaV1.3 from rat was the most stable after detergent solubilisation. The order of stability was rNaV1.3>hNaV1.2>hNaV1.1>hNaV1.6>hNaV1.3>hNaV1.4. However, a comparison with the VGSC from Electrophorus electricus, which is most similar to NaV1.4, shows that the eel VGSC is considerably more stable in detergent than the human VGSCs examined. We conclude that current methods of structural analysis, such as single particle electron cryomicroscopy (cryoEM), may be most usefully targeted to eel VGSC or rNaV1.3, but that structural analysis on the full spectrum of VGSCs, by methods that require greater stability such as crystallisation and X-ray crystallography, will require further stabilisation of the channel.
Collapse
|
36
|
How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 2015; 40:49-57. [DOI: 10.1016/j.tibs.2014.10.005] [Citation(s) in RCA: 570] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
|
37
|
Faruqi A, Henderson R, McMullan G. Progress and Development of Direct Detectors for Electron Cryomicroscopy. ADVANCES IN IMAGING AND ELECTRON PHYSICS 2015. [DOI: 10.1016/bs.aiep.2015.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:136-53. [PMID: 25615868 PMCID: PMC4304694 DOI: 10.1107/s1399004714021683] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/01/2014] [Indexed: 11/24/2022]
Abstract
The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 Å. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.
Collapse
Affiliation(s)
- Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Fei Long
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Jaan Toots
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| |
Collapse
|
39
|
Chen D, Goris B, Bleichrodt F, Mezerji HH, Bals S, Batenburg KJ, de With G, Friedrich H. The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections. Ultramicroscopy 2014; 147:137-48. [DOI: 10.1016/j.ultramic.2014.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/25/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
40
|
Liao M, Cao E, Julius D, Cheng Y. Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol 2014; 27:1-7. [PMID: 24681231 DOI: 10.1016/j.sbi.2014.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/24/2014] [Accepted: 02/28/2014] [Indexed: 12/22/2022]
Abstract
The transient receptor potential (TRP) ion channel family is large and functionally diverse, second only to potassium channels. Despite their prominence within the animal kingdom, TRP channels have resisted crystallization and structural determination for many years. This barrier was recently broken when the three-dimensional structure of the vanilloid receptor 1 (TRPV1) was determined by single particle electron cryo-microscopy (cryo-EM). Moreover, this is the first example in which the near atomic resolution structure of an integral membrane protein was elucidated by this technique and in a manner not requiring crystals, demonstrating the transformative power of single particle cryo-EM for revealing high-resolution structures of integral membrane proteins, particularly those of mammalian origin. Here we summarize technical advances, in both biochemistry and cryo-EM, that led to this major breakthrough.
Collapse
Affiliation(s)
- Maofu Liao
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Erhu Cao
- Department of Physiology, University of California, San Francisco, CA 94158-2517, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA 94158-2517, USA.
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA.
| |
Collapse
|
41
|
Granja C, Krist P, Chvatil D, Solc J, Pospisil S, Jakubek J, Opalka L. Energy loss and online directional track visualization of fast electrons with the pixel detector Timepix. RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Li X, Zheng SQ, Egami K, Agard DA, Cheng Y. Influence of electron dose rate on electron counting images recorded with the K2 camera. J Struct Biol 2013; 184:251-60. [PMID: 23968652 PMCID: PMC3854003 DOI: 10.1016/j.jsb.2013.08.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 11/24/2022]
Abstract
A recent technological breakthrough in electron cryomicroscopy (cryoEM) is the development of direct electron detection cameras for data acquisition. By bypassing the traditional phosphor scintillator and fiber optic coupling, these cameras have greatly enhanced sensitivity and detective quantum efficiency (DQE). Of the three currently available commercial cameras, the Gatan K2 Summit was designed specifically for counting individual electron events. Counting further enhances the DQE, allows for practical doubling of detector resolution and eliminates noise arising from the variable deposition of energy by each primary electron. While counting has many advantages, undercounting of electrons happens when more than one electron strikes the same area of the detector within the analog readout period (coincidence loss), which influences image quality. In this work, we characterized the K2 Summit in electron counting mode, and studied the relationship of dose rate and coincidence loss and its influence on the quality of counted images. We found that coincidence loss reduces low frequency amplitudes but has no significant influence on the signal-to-noise ratio of the recorded image. It also has little influence on high frequency signals. Images of frozen hydrated archaeal 20S proteasome (~700 kDa, D7 symmetry) recorded at the optimal dose rate retained both high-resolution signal and low-resolution contrast and enabled calculating a 3.6 Å three-dimensional reconstruction from only 10,000 particles.
Collapse
Affiliation(s)
- Xueming Li
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, United States
| | - Shawn Q. Zheng
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, United States
- The Howard Hughes Medical Institute, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, United States
| | - Kiyoshi Egami
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, United States
- Graduate Group in Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, United States
| | - David A. Agard
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, United States
- The Howard Hughes Medical Institute, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, United States
| | - Yifan Cheng
- The Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California San Francisco, 600 16th Street, San Francisco, CA 94158, United States
| |
Collapse
|
43
|
Georges AD, Hashem Y, Buss SN, Jossinet F, Zhang Q, Liao HY, Fu J, Jobe A, Grassucci RA, Langlois R, Bajaj C, Westhof E, Madison-Antenucci S, Frank J. High-resolution Cryo-EM Structure of the Trypanosoma brucei Ribosome: A Case Study. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-4614-9521-5_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
44
|
Nederlof I, van Genderen E, Li YW, Abrahams JP. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1223-30. [PMID: 23793148 PMCID: PMC3689525 DOI: 10.1107/s0907444913009700] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/09/2013] [Indexed: 11/10/2022]
Abstract
When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e(-) Å(-2)), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins.
Collapse
Affiliation(s)
- Igor Nederlof
- Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Eric van Genderen
- Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Yao-Wang Li
- Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jan Pieter Abrahams
- Biophysical Structural Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
45
|
Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM, Scheres SH, Henderson R. High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 2013; 135:24-35. [PMID: 23872039 PMCID: PMC3834153 DOI: 10.1016/j.ultramic.2013.06.004] [Citation(s) in RCA: 704] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 06/04/2013] [Accepted: 06/08/2013] [Indexed: 12/03/2022]
Abstract
Three-dimensional (3D) structure determination by single particle electron cryomicroscopy (cryoEM) involves the calculation of an initial 3D model, followed by extensive iterative improvement of the orientation determination of the individual particle images and the resulting 3D map. Because there is much more noise than signal at high resolution in the images, this creates the possibility of noise reinforcement in the 3D map, which can give a false impression of the resolution attained. The balance between signal and noise in the final map at its limiting resolution depends on the image processing procedure and is not easily predicted. There is a growing awareness in the cryoEM community of how to avoid such over-fitting and over-estimation of resolution. Equally, there has been a reluctance to use the two principal methods of avoidance because they give lower resolution estimates, which some people believe are too pessimistic. Here we describe a simple test that is compatible with any image processing protocol. The test allows measurement of the amount of signal and the amount of noise from overfitting that is present in the final 3D map. We have applied the method to two different sets of cryoEM images of the enzyme beta-galactosidase using several image processing packages. Our procedure involves substituting the Fourier components of the initial particle image stack beyond a chosen resolution by either the Fourier components from an adjacent area of background, or by simple randomisation of the phases of the particle structure factors. This substituted noise thus has the same spectral power distribution as the original data. Comparison of the Fourier Shell Correlation (FSC) plots from the 3D map obtained using the experimental data with that from the same data with high-resolution noise (HR-noise) substituted allows an unambiguous measurement of the amount of overfitting and an accompanying resolution assessment. A simple formula can be used to calculate an unbiased FSC from the two curves, even when a substantial amount of overfitting is present. The approach is software independent. The user is therefore completely free to use any established method or novel combination of methods, provided the HR-noise test is carried out in parallel. Applying this procedure to cryoEM images of beta-galactosidase shows how overfitting varies greatly depending on the procedure, but in the best case shows no overfitting and a resolution of ~6 Å. (382 words) A new method to validate 3D cryoEM maps of biological structures is described. High-resolution noise substitution is a tool to measure the amount of overfitting of noise in single particle cryoEM. A reliable, unbiased resolution estimation can be obtained even when some overfitting is present. Structure of beta-galactosidase at ~6 Å resolution is determined by cryoEM.
Collapse
|
46
|
Shigematsu H, Sigworth FJ. Noise models and cryo-EM drift correction with a direct-electron camera. Ultramicroscopy 2013; 131:61-9. [PMID: 23748163 DOI: 10.1016/j.ultramic.2013.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 04/01/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Blurring due to specimen-holder drift is a common occurrence in cryo-EM images. Cameras employing active-pixel sensors are capable of high frame rates such that a single low-dose exposure can be acquired as a series of frames. In this paper we consider the possibility of tracking and compensating for overall drift in typical single-particle specimens through the analysis of frame sequences. A problem that arises in tracking through cross-correlation of frames obtained with the DE-12 camera from Direct Electron LLC is the presence of "hot-pixel noise". This random pattern of bright pixels is highly correlated among frames. We show how a model of this noise can be employed to greatly reduce its effects. A filter function is derived that optimizes the tracking of image shifts by cross-correlation, and we demonstrate the tracking of specimen drift in typical cryo-EM specimens.
Collapse
Affiliation(s)
- H Shigematsu
- Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States.
| | | |
Collapse
|
47
|
Milne JLS, Borgnia MJ, Bartesaghi A, Tran EEH, Earl LA, Schauder DM, Lengyel J, Pierson J, Patwardhan A, Subramaniam S. Cryo-electron microscopy--a primer for the non-microscopist. FEBS J 2012. [PMID: 23181775 DOI: 10.1111/febs.12078] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cryo-electron microscopy (cryo-EM) is increasingly becoming a mainstream technology for studying the architecture of cells, viruses and protein assemblies at molecular resolution. Recent developments in microscope design and imaging hardware, paired with enhanced image processing and automation capabilities, are poised to further advance the effectiveness of cryo-EM methods. These developments promise to increase the speed and extent of automation, and to improve the resolutions that may be achieved, making this technology useful to determine a wide variety of biological structures. Additionally, established modalities for structure determination, such as X-ray crystallography and nuclear magnetic resonance spectroscopy, are being routinely integrated with cryo-EM density maps to achieve atomic-resolution models of complex, dynamic molecular assemblies. In this review, which is directed towards readers who are not experts in cryo-EM methodology, we provide an overview of emerging themes in the application of this technology to investigate diverse questions in biology and medicine. We discuss the ways in which these methods are being used to study structures of macromolecular assemblies that range in size from whole cells to small proteins. Finally, we include a description of how the structural information obtained by cryo-EM is deposited and archived in a publicly accessible database.
Collapse
Affiliation(s)
- Jacqueline L S Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fernandez JJ. Computational methods for electron tomography. Micron 2012; 43:1010-30. [DOI: 10.1016/j.micron.2012.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/13/2023]
|
49
|
Kudryashev M, Stahlberg H, Castaño-Díez D. Assessing the benefits of focal pair cryo-electron tomography. J Struct Biol 2012; 178:88-97. [DOI: 10.1016/j.jsb.2011.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/12/2011] [Accepted: 10/19/2011] [Indexed: 01/28/2023]
|
50
|
Scheres SHW. A Bayesian view on cryo-EM structure determination. J Mol Biol 2011; 415:406-18. [PMID: 22100448 PMCID: PMC3314964 DOI: 10.1016/j.jmb.2011.11.010] [Citation(s) in RCA: 583] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/27/2011] [Accepted: 11/03/2011] [Indexed: 11/02/2022]
Abstract
Three-dimensional (3D) structure determination by single-particle analysis of cryo-electron microscopy (cryo-EM) images requires many parameters to be determined from extremely noisy data. This makes the method prone to overfitting, that is, when structures describe noise rather than signal, in particular near their resolution limit where noise levels are highest. Cryo-EM structures are typically filtered using ad hoc procedures to prevent overfitting, but the tuning of arbitrary parameters may lead to subjectivity in the results. I describe a Bayesian interpretation of cryo-EM structure determination, where smoothness in the reconstructed density is imposed through a Gaussian prior in the Fourier domain. The statistical framework dictates how data and prior knowledge should be combined, so that the optimal 3D linear filter is obtained without the need for arbitrariness and objective resolution estimates may be obtained. Application to experimental data indicates that the statistical approach yields more reliable structures than existing methods and is capable of detecting smaller classes in data sets that contain multiple different structures.
Collapse
Affiliation(s)
- Sjors H W Scheres
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|