1
|
Bag SS, Banerjee A, Sinha S, Jana S. Facets of click-mediated triazoles in decorating amino acids and peptides. Chem Commun (Camb) 2025; 61:639-657. [PMID: 39552572 DOI: 10.1039/d4cc03887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decorating biomolecular building blocks, such as amino acids, to afford desired and tuneable photophysical/biophysical properties would allow chemical biologists to use them for several biotechnological and biosensing applications. While many synthetic methodologies have been explored in this direction, advantages provided by click-derived triazole moieties are second to none. However, since their discovery, click-mediated triazoles have been majorly utilised as linkers for conjugating biomolecules, creating materials with novel properties, such as polymers or drug conjugates. Despite exploring their profound role as linkers, click-mediated triazoles as an integral part of biomolecular building blocks have not been addressed. 1,2,3-Triazole, a transamide mimic, exhibits high aromatic stacking propensity, high associability with biomolecules through H-bonding, and high stability against enzymatic hydrolysis. Furthermore, triazoles can be considered donors useable for installation/modulation of the photophysics of a fluorophore. Therefore, triazole with a chromophoric unit may rightly be utilised as an integral part of biomolecular building blocks to install microenvironment-sensitive solvofluorochromic properties suitable for biological sensing, studying inter-biomolecular interactions and introducing novel physicochemical properties in a biomolecule. This review mainly focuses on the facets of click-derived triazole in designing novel fluorescent amino acids and peptides with a particular emphasis on those wherein triazole acts as an integral part of amino acids, i.e. the side chain, generating a new class of fluorescent unnatural triazolyl amino acids. Thus, fluorescent triazolyl unnatural amino acids, peptidomimetics with such amino acids and aliphatic/aromatic triazolyl amino acids as scaffolds for peptidomimetics are the central part. However, to start with, a brief history, followed by a discussion on various other relevant facets of triazoles as linkers in various fields ranging from therapeutics, materials science, diagnostics, and bioconjugation to peptidomimetics, is cited. Additionally, the possible roles of CuAAC-mediated triazoles in shaping the future of bioorganic chemistry, medicinal chemistry, diagnostics, nucleoside chemistry and protein engineering are briefly discussed.
Collapse
Affiliation(s)
- Subhendu Sekhar Bag
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
- Centre for the Environment, Indian Institute of Technology Guwahati, 781039, India
| | - Aniket Banerjee
- Centre for the Environment, Indian Institute of Technology Guwahati, 781039, India
| | - Sayantan Sinha
- Centre for the Environment, Indian Institute of Technology Guwahati, 781039, India
| | - Subhashis Jana
- Chemical Biology/Genomics Laboratory, Department of Chemistry, Indian Institute of Technology Guwahati, 781039, India.
| |
Collapse
|
2
|
Bunschoten R, Peschke F, Taladriz-Sender A, Alexander E, Andrews MJ, Kennedy AR, Fazakerley NJ, Lloyd Jones GC, Watson AJB, Burley GA. Mechanistic Basis of the Cu(OAc) 2 Catalyzed Azide-Ynamine (3 + 2) Cycloaddition Reaction. J Am Chem Soc 2024; 146:13558-13570. [PMID: 38712910 PMCID: PMC11099971 DOI: 10.1021/jacs.4c03348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024]
Abstract
The Cu-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is used as a ligation tool throughout chemical and biological sciences. Despite the pervasiveness of CuAAC, there is a need to develop more efficient methods to form 1,4-triazole ligated products with low loadings of Cu. In this paper, we disclose a mechanistic model for the ynamine-azide (3 + 2) cycloadditions catalyzed by copper(II) acetate. Using multinuclear nuclear magnetic resonance spectroscopy, electron paramagnetic resonance spectroscopy, and high-performance liquid chromatography analyses, a dual catalytic cycle is identified. First, the formation of a diyne species via Glaser-Hay coupling of a terminal ynamine forms a Cu(I) species competent to catalyze an ynamine-azide (3 + 2) cycloaddition. Second, the benzimidazole unit of the ynamine structure has multiple roles: assisting C-H activation, Cu coordination, and the formation of a postreaction resting state Cu complex after completion of the (3 + 2) cycloaddition. Finally, reactivation of the Cu resting state complex is shown by the addition of isotopically labeled ynamine and azide substrates to form a labeled 1,4-triazole product. This work provides a mechanistic basis for the use of mixed valency binuclear catalytic Cu species in conjunction with Cu-coordinating alkynes to afford superior reactivity in CuAAC reactions. Additionally, these data show how the CuAAC reaction kinetics can be modulated by changes to the alkyne substrate, which then has a predictable effect on the reaction mechanism.
Collapse
Affiliation(s)
- Roderick
P. Bunschoten
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Frederik Peschke
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Andrea Taladriz-Sender
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Emma Alexander
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Matthew J. Andrews
- EaStCHEM,
Purdie Building, School of Chemistry, University
of St Andrews, North
Haugh, St Andrews, FifeKY16 9ST, U.K.
| | - Alan R. Kennedy
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| | - Neal J. Fazakerley
- GlaxoSmithKline,
Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.
| | - Guy C. Lloyd Jones
- EaStCHEM.
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Allan J. B. Watson
- EaStCHEM,
Purdie Building, School of Chemistry, University
of St Andrews, North
Haugh, St Andrews, FifeKY16 9ST, U.K.
| | - Glenn A. Burley
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Thomas
Graham Building, 295 Cathedral Street, Glasgow G1 1XL, U.K.
| |
Collapse
|
3
|
Sharma VK, Mangla P, Singh SK, Prasad AK. Triazole-linked Nucleic Acids: Synthesis, Therapeutics and Synthetic Biology Applications. Curr Org Synth 2024; 21:436-455. [PMID: 37138439 DOI: 10.2174/1570179420666230502123950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Accepted: 03/10/2023] [Indexed: 05/05/2023]
Abstract
This article covers the triazole-linked nucleic acids where the triazole linkage (TL) replaces the natural phosphate backbone. The replacement is done at either a few selected linkages or all the phosphate linkages. Two triazole linkages, the four-atom TL1 and the six-atom TL2, have been discussed in detail. These triazole-modified oligonucleotides have found a wide range of applications, from therapeutics to synthetic biology. For example, the triazole-linked oligonucleotides have been used in the antisense oligonucleotide (ASO), small interfering RNA (siRNA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology as therapeutic agents. Due to the ease of the synthesis and a wide range of biocompatibility, the triazole linkage TL2 has been used to assemble a functional 300-mer DNA from alkyne- and azide-functionalized 100-mer oligonucleotides as well as an epigenetically modified variant of a 335 base-pair gene from ten short oligonucleotides. These outcomes highlight the potential of triazole-linked nucleic acids and open the doors for other TL designs and artificial backbones to fully exploit the vast potential of artificial nucleic acids in therapeutics, synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Vivek K Sharma
- Department of Medicine, University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
- MassBiologics of the University of Massachusetts Chan Medical School, Mattapan, MA 02126, USA
| | - Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sunil K Singh
- Department of Chemistry, Kirori Mal College, University of Delhi, Delhi, 110 007, India
| | - Ashok K Prasad
- Department of Chemistry, Bioorganic Laboratory, University of Delhi, Delhi, 110 007, India
| |
Collapse
|
4
|
Iadevaia G, Hunter CA. Recognition-Encoded Synthetic Information Molecules. Acc Chem Res 2023; 56:712-727. [PMID: 36894535 PMCID: PMC10035037 DOI: 10.1021/acs.accounts.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
ConspectusNucleic acids represent a unique class of highly programmable molecules, where the sequence of monomer units incorporated into the polymer chain can be read through duplex formation with a complementary oligomer. It should be possible to encode information in synthetic oligomers as a sequence of different monomer units in the same way that the four different bases program information into DNA and RNA. In this Account, we describe our efforts to develop synthetic duplex-forming oligomers composed of sequences of two complementary recognition units that can base-pair in organic solvents through formation of a single H-bond, and we outline some general guidelines for the design of new sequence-selective recognition systems.The design strategy has focused on three interchangeable modules that control recognition, synthesis, and backbone geometry. For a single H-bond to be effective as a base-pairing interaction, very polar recognition units, such as phosphine oxide and phenol, are required. Reliable base-pairing in organic solvents requires a nonpolar backbone, so that the only polar functional groups present are the donor and acceptor sites on the two recognition units. This criterion limits the range of functional groups that can be produced in the synthesis of oligomers. In addition, the chemistry used for polymerization should be orthogonal to the recognition units. Several compatible high yielding coupling chemistries that are suitable for the synthesis of recognition-encoded polymers are explored. Finally, the conformational properties of the backbone module play an important role in determining the supramolecular assembly pathways that are accessible to mixed sequence oligomers.Almost all complementary homo-oligomers will form duplexes provided the product of the association constant for formation of a base-pair and the effective molarity for the intramolecular base-pairing interactions that zip up the duplex is significantly greater than one. For these systems, the structure of the backbone does not play a major role, and the effective molarities for duplex formation tend to fall in the range 10-100 mM for both rigid and flexible backbones. For mixed sequences, intramolecular H-bonding interactions lead to folding. The competition between folding and duplex formation depends critically on the conformational properties of the backbone, and high-fidelity sequence-selective duplex formation is only observed for backbones that are sufficiently rigid to prevent short-range folding between bases that are close in sequence. The final section of the Account highlights the prospects for functional properties, other than duplex formation, that might be encoded with sequence.
Collapse
Affiliation(s)
- Giulia Iadevaia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
5
|
Müggenburg F, Müller S. Azide-modified Nucleosides as Versatile Tools for Bioorthogonal Labeling and Functionalization. CHEM REC 2022; 22:e202100322. [PMID: 35189013 DOI: 10.1002/tcr.202100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
Azide-modified nucleosides are important building blocks for RNA and DNA functionalization by click chemistry based on azide-alkyne cycloaddition. This has put demand on synthetic chemistry to develop approaches for the preparation of azide-modified nucleoside derivatives. We review here the available methods for the synthesis of various nucleosides decorated with azido groups at the sugar residue or nucleobase, their incorporation into oligonucleotides and cellular RNAs, and their application in azide-alkyne cycloadditions for labelling and functionalization.
Collapse
Affiliation(s)
- Frederik Müggenburg
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| | - Sabine Müller
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald, Germany
| |
Collapse
|
6
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
7
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|
8
|
Perrone D, Marchesi E, Preti L, Navacchia ML. Modified Nucleosides, Nucleotides and Nucleic Acids via Click Azide-Alkyne Cycloaddition for Pharmacological Applications. Molecules 2021; 26:3100. [PMID: 34067312 PMCID: PMC8196910 DOI: 10.3390/molecules26113100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
The click azide = alkyne 1,3-dipolar cycloaddition (click chemistry) has become the approach of choice for bioconjugations in medicinal chemistry, providing facile reaction conditions amenable to both small and biological molecules. Many nucleoside analogs are known for their marked impact in cancer therapy and for the treatment of virus diseases and new targeted oligonucleotides have been developed for different purposes. The click chemistry allowing the tolerated union between units with a wide diversity of functional groups represents a robust means of designing new hybrid compounds with an extraordinary diversity of applications. This review provides an overview of the most recent works related to the use of click chemistry methodology in the field of nucleosides, nucleotides and nucleic acids for pharmacological applications.
Collapse
Affiliation(s)
- Daniela Perrone
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (L.P.)
| | - Elena Marchesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (L.P.)
| | - Lorenzo Preti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (L.P.)
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity National Research Council, 40129 Bologna, Italy
| |
Collapse
|
9
|
Acevedo-Jake A, Ball AT, Galli M, Kukwikila M, Denis M, Singleton DG, Tavassoli A, Goldup SM. AT-CuAAC Synthesis of Mechanically Interlocked Oligonucleotides. J Am Chem Soc 2020; 142:5985-5990. [PMID: 32155338 PMCID: PMC8016193 DOI: 10.1021/jacs.0c01670] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Indexed: 12/22/2022]
Abstract
We present a simple strategy for the synthesis of main chain oligonucleotide rotaxanes with precise control over the position of the macrocycle. The novel DNA-based rotaxanes were analyzed to assess the effect of the mechanical bond on their properties.
Collapse
Affiliation(s)
- Amanda Acevedo-Jake
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Andrew T. Ball
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Marzia Galli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mikiembo Kukwikila
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Mathieu Denis
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Daniel G. Singleton
- ATDBio
Ltd, School of Chemistry, University of
Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Ali Tavassoli
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Stephen M. Goldup
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| |
Collapse
|
10
|
Baraniak D, Ruszkowski P, Baranowski D, Framski G, Boryski J. Nucleoside dimers analogs containing floxuridine and thymidine with unnatural linker groups: synthesis and cancer line studies. Part III. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:980-1005. [PMID: 31380708 DOI: 10.1080/15257770.2019.1641206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Two series of novel fluorinated nucleosides dimers with an unnatural 1,2,3-triazole linkage were synthesized. The obtained molecules were prepared using "click" chemistry approach based on copper(I) catalyzed Huisgen azide-alkyne cycloaddition. It was performed between 3'- and 5'-azido-nucleosides as the azide components, and the 3'-O- and 5'-O-propargyl-nucleosides as the alkyne components. Based on analysis of the 3 JHH, 3 JH1'C2 and 3 JH1'C6 we estimated conformational preferences of sugar part and orientation around glycosidic bond. All described nucleosides dimers analogs were characterized by spectroscopic methods and evaluated for their in vitro cytotoxicity in three human cancer cell lines: cervical (HeLa), oral (KB) and breast (MCF-7).
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznań , Poland
| | - Piotr Ruszkowski
- Department of Pharmacology, Faculty of Pharmacy, Poznań University of Medical Sciences , Poznań , Poland
| | - Daniel Baranowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznań , Poland
| | - Grzegorz Framski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznań , Poland
| | - Jerzy Boryski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznań , Poland
| |
Collapse
|
11
|
Osman EA, Gadzikwa T, Gibbs JM. Quick Click: The DNA-Templated Ligation of 3'-O-Propargyl- and 5'-Azide-Modified Strands Is as Rapid as and More Selective than Ligase. Chembiochem 2018; 19:2081-2087. [PMID: 30059599 DOI: 10.1002/cbic.201800305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/24/2022]
Abstract
The copper(I)-mediated azide-alkyne cycloaddition (CuAAC) of 3'-propargyl ether and 5'-azide oligonucleotides is a particularly promising ligation system because it results in triazole linkages that effectively mimic the phosphate-sugar backbone of DNA, leading to unprecedented tolerance of the ligated strands by polymerases. However, for a chemical ligation strategy to be a viable alternative to enzymatic systems, it must be equally as rapid, as discriminating, and as easy to use. We found that the DNA-templated reaction with these modifications was rapid under aerobic conditions, with nearly quantitative conversion in 5 min, resulting in a kobs value of 1.1 min-1 , comparable with that measured in an enzymatic ligation system by using the highest commercially available concentration of T4 DNA ligase. Moreover, the CuAAC reaction also exhibited greater selectivity in discriminating C:A or C:T mismatches from the C:G match than that of T4 DNA ligase at 29 °C; a temperature slightly below the perfect nicked duplex dissociation temperature, but above that of the mismatched duplexes. These results suggest that the CuAAC reaction of 3'-propargyl ether and 5'-azide-terminated oligonucleotides represents a complementary alternative to T4 DNA ligase, with similar reaction rates, ease of setup and even enhanced selectivity for certain mismatches.
Collapse
Affiliation(s)
- Eiman A Osman
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Tendai Gadzikwa
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| |
Collapse
|
12
|
Manuguerra I, Croce S, El-Sagheer AH, Krissanaprasit A, Brown T, Gothelf KV, Manetto A. Gene assembly via one-pot chemical ligation of DNA promoted by DNA nanostructures. Chem Commun (Camb) 2018; 54:4529-4532. [PMID: 29662975 PMCID: PMC5944424 DOI: 10.1039/c8cc00738a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A gene was obtained from 14 oligonucleotides self-assembled and chemically ligated in a DNA nanostructure.
Current gene synthesis methods are driven by enzymatic reactions. Here we report the one-pot synthesis of a chemically-ligated gene from 14 oligonucleotides. The chemical ligation benefits from the highly efficient click chemistry approach templated by DNA nanostructures, and produces modified DNA that is compatible with polymerase enzymes.
Collapse
Affiliation(s)
- Ilenia Manuguerra
- Interdisciplinary Nanoscience Center (iNANO), Gustav Wieds Vej 14 and Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Kramer M, Richert C. Enzyme-Free Ligation of 5'-Phosphorylated Oligodeoxynucleotides in a DNA Nanostructure. Chem Biodivers 2017; 14. [PMID: 28710838 DOI: 10.1002/cbdv.201700315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 01/05/2023]
Abstract
Multicomponent reactions are difficult synthetic transformations. For DNA, there is a special opportunity to align multiple strands in a folded nanostructure, so that they are preorganized to give a specific sequence. Multistrand reactions in DNA origami structures have previously been performed using photochemical crosslinking, 1,3-diploar cycloadditions or phosphoramidate-forming reactions. Here we report carbodiimide-driven phosphodiester formation in a small origami sheet that produces DNA strands up to 600 nucleotides in length in a single step. The method uses otherwise unmodified oligodeoxynucleotides with a 5'-terminal phosphate as starting materials. Compared to an enzymatic multistrand ligation involving linear duplexes, the carbodiimide-driven ligation gave fewer side products, as detected by gel electrophoresis. The full-length 600mer product was successfully amplified by polymerase chain reaction.
Collapse
Affiliation(s)
- Markus Kramer
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|