1
|
Wendegatz EC, Engelhardt M, Schüller HJ. Transcriptional activation domains interact with ATPase subunits of yeast chromatin remodelling complexes SWI/SNF, RSC and INO80. Curr Genet 2024; 70:15. [PMID: 39235627 PMCID: PMC11377671 DOI: 10.1007/s00294-024-01300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
Chromatin remodelling complexes (CRC) are ATP-dependent molecular machines important for the dynamic organization of nucleosomes along eukaryotic DNA. CRCs SWI/SNF, RSC and INO80 can move positioned nucleosomes in promoter DNA, leading to nucleosome-depleted regions which facilitate access of general transcription factors. This function is strongly supported by transcriptional activators being able to interact with subunits of various CRCs. In this work we show that SWI/SNF subunits Swi1, Swi2, Snf5 and Snf6 can bind to activation domains of Ino2 required for expression of phospholipid biosynthetic genes in yeast. We identify an activator binding domain (ABD) of ATPase Swi2 and show that this ABD is functionally dispensable, presumably because ABDs of other SWI/SNF subunits can compensate for the loss. In contrast, mutational characterization of the ABD of the Swi2-related ATPase Sth1 revealed that some conserved basic and hydrophobic amino acids within this domain are essential for the function of Sth1. While ABDs of Swi2 and Sth1 define separate functional protein domains, mapping of an ABD within ATPase Ino80 showed co-localization with its HSA domain also required for binding actin-related proteins. Comparative interaction studies finally demonstrated that several unrelated activators each exhibit a specific binding pattern with ABDs of Swi2, Sth1 and Ino80.
Collapse
Affiliation(s)
- Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
| | - Maike Engelhardt
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany
- Cheplapharm, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Strasse 8, 17487, Greifswald, Germany.
| |
Collapse
|
2
|
Dard A, Van Breusegem F, Mhamdi A. Redox regulation of gene expression: proteomics reveals multiple previously undescribed redox-sensitive cysteines in transcription complexes and chromatin modifiers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4476-4493. [PMID: 38642390 DOI: 10.1093/jxb/erae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Redox signalling is crucial for regulating plant development and adaptation to environmental changes. Proteins with redox-sensitive cysteines can sense oxidative stress and modulate their functions. Recent proteomics efforts have comprehensively mapped the proteins targeted by oxidative modifications. The nucleus, the epicentre of transcriptional reprogramming, contains a large number of proteins that control gene expression. Specific redox-sensitive transcription factors have long been recognized as key players in decoding redox signals in the nucleus and thus in regulating transcriptional responses. Consequently, the redox regulation of the nuclear transcription machinery and its cofactors has received less attention. In this review, we screened proteomic datasets for redox-sensitive cysteines on proteins of the core transcription complexes and chromatin modifiers in Arabidopsis thaliana. Our analysis indicates that redox regulation affects every step of gene transcription, from initiation to elongation and termination. We report previously undescribed redox-sensitive subunits in transcription complexes and discuss the emerging challenges in unravelling the landscape of redox-regulated processes involved in nuclear gene transcription.
Collapse
Affiliation(s)
- Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
3
|
Kim JM, Carcamo CC, Jazani S, Xie Z, Feng XA, Yamadi M, Poyton M, Holland KL, Grimm JB, Lavis LD, Ha T, Wu C. Dynamic 1D search and processive nucleosome translocations by RSC and ISW2 chromatin remodelers. eLife 2024; 12:RP91433. [PMID: 38497611 PMCID: PMC10948146 DOI: 10.7554/elife.91433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement, and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and two-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding, respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/s on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.
Collapse
Affiliation(s)
- Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sina Jazani
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Zepei Xie
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xinyu A Feng
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Maryam Yamadi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Matthew Poyton
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Katie L Holland
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical InstituteBostonUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
4
|
Kim JM, Carcamo CC, Jazani S, Xie Z, Feng XA, Yamadi M, Poyton M, Holland KL, Grimm JB, Lavis LD, Ha T, Wu C. Dynamic 1D Search and Processive Nucleosome Translocations by RSC and ISW2 Chromatin Remodelers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.13.544671. [PMID: 38293098 PMCID: PMC10827135 DOI: 10.1101/2023.06.13.544671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start-sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and 2-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/sec on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.
Collapse
Affiliation(s)
- Jee Min Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Claudia C. Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sina Jazani
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zepei Xie
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xinyu A. Feng
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maryam Yamadi
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Poyton
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Katie L. Holland
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Klein DC, Lardo SM, McCannell KN, Hainer SJ. FACT regulates pluripotency through proximal and distal regulation of gene expression in murine embryonic stem cells. BMC Biol 2023; 21:167. [PMID: 37542287 PMCID: PMC10403911 DOI: 10.1186/s12915-023-01669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The FACT complex is a conserved histone chaperone with critical roles in transcription and histone deposition. FACT is essential in pluripotent and cancer cells, but otherwise dispensable for most mammalian cell types. FACT deletion or inhibition can block induction of pluripotent stem cells, yet the mechanism through which FACT regulates cell fate decisions remains unclear. RESULTS To explore the mechanism for FACT function, we generated AID-tagged murine embryonic cell lines for FACT subunit SPT16 and paired depletion with nascent transcription and chromatin accessibility analyses. We also analyzed SPT16 occupancy using CUT&RUN and found that SPT16 localizes to both promoter and enhancer elements, with a strong overlap in binding with OCT4, SOX2, and NANOG. Over a timecourse of SPT16 depletion, nucleosomes invade new loci, including promoters, regions bound by SPT16, OCT4, SOX2, and NANOG, and TSS-distal DNaseI hypersensitive sites. Simultaneously, transcription of Pou5f1 (encoding OCT4), Sox2, Nanog, and enhancer RNAs produced from these genes' associated enhancers are downregulated. CONCLUSIONS We propose that FACT maintains cellular pluripotency through a precise nucleosome-based regulatory mechanism for appropriate expression of both coding and non-coding transcripts associated with pluripotency.
Collapse
Affiliation(s)
- David C Klein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Santana M Lardo
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kurtis N McCannell
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarah J Hainer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Soni A, Klebanov-Akopyan O, Erben E, Plaschkes I, Benyamini H, Mitesser V, Harel A, Yamin K, Onn I, Shlomai J. UMSBP2 is chromatin remodeler that functions in regulation of gene expression and suppression of antigenic variation in trypanosomes. Nucleic Acids Res 2023; 51:5678-5698. [PMID: 37207337 PMCID: PMC10287944 DOI: 10.1093/nar/gkad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.
Collapse
Affiliation(s)
- Awakash Soni
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Olga Klebanov-Akopyan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Esteban Erben
- Heidelberg University Center for Molecular Biology at Heidelberg University, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Inbar Plaschkes
- The Info-Core Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hadar Benyamini
- The Info-Core Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Vera Mitesser
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed1311502, Israel
| | - Katereena Yamin
- Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed1311502, Israel
| | - Itay Onn
- Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed1311502, Israel
| | - Joseph Shlomai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Kaneko I, Nishi T, Iwanaga S, Yuda M. Differentiation of Plasmodium male gametocytes is initiated by the recruitment of a chromatin remodeler to a male-specific cis-element. Proc Natl Acad Sci U S A 2023; 120:e2303432120. [PMID: 37155862 PMCID: PMC10193995 DOI: 10.1073/pnas.2303432120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Plasmodium parasites, the causative agents of malaria, possess a complex lifecycle; however, the mechanisms of gene regulation involved in the cell-type changes remain unknown. Here, we report that gametocyte sucrose nonfermentable 2 (gSNF2), an SNF2-like chromatin remodeling ATPase, plays an essential role in the differentiation of male gametocytes. Upon disruption of gSNF2, male gametocytes lost the capacity to develop into gametes. ChIP-seq analyses revealed that gSNF2 is widely recruited upstream of male-specific genes through a five-base, male-specific cis-acting element. In gSNF2-disrupted parasites, expression of over a hundred target genes was significantly decreased. ATAC-seq analysis demonstrated that decreased expression of these genes correlated with a decrease of the nucleosome-free region upstream of these genes. These results suggest that global changes induced in the chromatin landscape by gSNF2 are the initial step in male differentiation from early gametocytes. This study provides the possibility that chromatin remodeling is responsible for cell-type changes in the Plasmodium lifecycle.
Collapse
Affiliation(s)
- Izumi Kaneko
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu514-8507, Japan
| | - Tsubasa Nishi
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu514-8507, Japan
| | - Shiroh Iwanaga
- Department of Molecular Protozoology, Research Center for Infectious Disease Control, Suita, Osaka565-0871, Japan
| | - Masao Yuda
- Department of Medical Zoology, Mie University School of Medicine, Mie, Tsu514-8507, Japan
| |
Collapse
|
8
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Akcan TS, Vilov S, Heinig M. Predictive model of transcriptional elongation control identifies trans regulatory factors from chromatin signatures. Nucleic Acids Res 2023; 51:1608-1624. [PMID: 36727445 PMCID: PMC9976927 DOI: 10.1093/nar/gkac1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/09/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Promoter-proximal Polymerase II (Pol II) pausing is a key rate-limiting step for gene expression. DNA and RNA-binding trans-acting factors regulating the extent of pausing have been identified. However, we lack a quantitative model of how interactions of these factors determine pausing, therefore the relative importance of implicated factors is unknown. Moreover, previously unknown regulators might exist. Here we address this gap with a machine learning model that accurately predicts the extent of promoter-proximal Pol II pausing from large-scale genome and transcriptome binding maps and gene annotation and sequence composition features. We demonstrate high accuracy and generalizability of the model by validation on an independent cell line which reveals the model's cell line agnostic character. Model interpretation in light of prior knowledge about molecular functions of regulatory factors confirms the interconnection of pausing with other RNA processing steps. Harnessing underlying feature contributions, we assess the relative importance of each factor, quantify their predictive effects and systematically identify previously unknown regulators of pausing. We additionally identify 16 previously unknown 7SK ncRNA interacting RNA-binding proteins predictive of pausing. Our work provides a framework to further our understanding of the regulation of the critical early steps in transcriptional elongation.
Collapse
Affiliation(s)
- Toray S Akcan
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany
| | - Sergey Vilov
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.,Department of Computer Science, TUM School of Computation, Information and Technology, Technical University Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Munich Heart Association, Partner Site Munich, 10785 Berlin, Germany
| |
Collapse
|
10
|
Takizawa Y, Kurumizaka H. Chromatin structure meets cryo-EM: Dynamic building blocks of the functional architecture. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194851. [PMID: 35952957 DOI: 10.1016/j.bbagrm.2022.194851] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Chromatin is a dynamic molecular complex composed of DNA and proteins that package the DNA in the nucleus of eukaryotic cells. The basic structural unit of chromatin is the nucleosome core particle, composed of ~150 base pairs of genomic DNA wrapped around a histone octamer containing two copies each of four histones, H2A, H2B, H3, and H4. Individual nucleosome core particles are connected by short linker DNAs, forming a nucleosome array known as a beads-on-a-string fiber. Higher-order structures of chromatin are closely linked to nuclear events such as replication, transcription, recombination, and repair. Recently, a variety of chromatin structures have been determined by single-particle cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), and their structural details have provided clues about the chromatin architecture functions in the cell. In this review, we highlight recent cryo-EM structural studies of a fundamental chromatin unit to clarify the functions of chromatin.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
11
|
Mereshchuk A, Johnstone PS, Chew JSK, Dobson MJ. The yeast 2-micron plasmid Rep2 protein has Rep1-independent partitioning function. Nucleic Acids Res 2022; 50:10571-10585. [PMID: 36156142 PMCID: PMC9561267 DOI: 10.1093/nar/gkac810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Equal partitioning of the multi-copy 2-micron plasmid of the budding yeast Saccharomyces cerevisiae requires association of the plasmid Rep1 and Rep2 proteins with the plasmid STB partitioning locus. Determining how the Rep proteins contribute has been complicated by interactions between the components. Here, each Rep protein was expressed fused to the DNA-binding domain of the bacterial repressor protein LexA in yeast harboring a replication-competent plasmid that had LexA-binding sites but lacked STB. Plasmid transmission to daughter cells was increased only by Rep2 fusion expression. Neither Rep1 nor a functional RSC2 complex (a chromatin remodeler required for 2-micron plasmid partitioning) were needed for the improvement. Deletion analysis showed the carboxy-terminal 65 residues of Rep2 were required and sufficient for this Rep1-independent inheritance. Mutation of a conserved basic motif in this domain impaired Rep1-independent and Rep protein/STB-dependent plasmid partitioning. Our findings suggest Rep2, which requires Rep1 and the RSC2 complex for functional association with STB, directly participates in 2-micron plasmid partitioning by linking the plasmid to a host component that is efficiently partitioned during cell division. Further investigation is needed to reveal the host factor targeted by Rep2 that contributes to the survival of these plasmids in their budding yeast hosts.
Collapse
Affiliation(s)
- Anastasiia Mereshchuk
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Peter S Johnstone
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Joyce S K Chew
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melanie J Dobson
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
12
|
Sanz AB, Díez-Muñiz S, Moya J, Petryk Y, Nombela C, Rodríguez-Peña JM, Arroyo J. Systematic Identification of Essential Genes Required for Yeast Cell Wall Integrity: Involvement of the RSC Remodelling Complex. J Fungi (Basel) 2022; 8:jof8070718. [PMID: 35887473 PMCID: PMC9323250 DOI: 10.3390/jof8070718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
Conditions altering the yeast cell wall lead to the activation of an adaptive transcriptional response mainly governed by the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway. Two high-throughput screenings were developed using the yTHC collection of yeast conditional mutant strains to systematically identify essential genes related to cell wall integrity, and those required for the transcriptional program elicited by cell wall stress. Depleted expression of 52 essential genes resulted in hypersensitivity to the dye Calcofluor white, with chromatin organization, Golgi vesicle transport, rRNA processing, and protein glycosylation processes, as the most highly representative functional groups. Via a flow cytometry-based quantitative assay using a CWI reporter plasmid, 97 strains exhibiting reduced gene-reporter expression levels upon stress were uncovered, highlighting genes associated with RNA metabolism, transcription/translation, protein degradation, and chromatin organization. This screening also led to the discovery of 41 strains displaying a basal increase in CWI-associated gene expression, including mainly putative cell wall-related genes. Interestingly, several members of the RSC chromatin remodelling complex were uncovered in both screenings. Notably, Rsc9 was necessary to regulate the gene expression of CWI-related genes both under stress and non-stress conditions, suggesting distinct requirements of the RSC complex for remodelling particular genes.
Collapse
|
13
|
Yang T, Wang D, Tian G, Sun L, Yang M, Yin X, Xiao J, Sheng Y, Zhu D, He H, Zhou Y. Chromatin remodeling complexes regulate genome architecture in Arabidopsis. THE PLANT CELL 2022; 34:2638-2651. [PMID: 35445713 PMCID: PMC9252501 DOI: 10.1093/plcell/koac117] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/13/2022] [Indexed: 05/29/2023]
Abstract
In eukaryotes, three-dimensional (3D) chromatin architecture maintains genome stability and is important in regulating gene transcription. However, little is known about the mechanisms by which diverse ATP-dependent chromatin remodeling complexes regulate the 3D chromatin structure in plants. We examined the 3D chromatin structure within the ATPase subunit of the SWI/SNF, ISWI, INO80, and CHD remodeling complexes in wild-type (WT) and mutant Arabidopsis thaliana plants by combining high-throughput sequencing with in situ Hi-C, the enrichment of histone marks, nucleosome density, and gene expression. We found that compartment regions switched and compartmental strength was significantly weakened in all four enzyme mutants. Chromatin remodeling complexes differentially regulated the nucleosome distribution pattern and density within the switching compartments. Alterations of nucleosome distribution pattern and density were associated with a reduction in H3K27me3 levels in the chromatin remodeling enzyme mutants and led to compartment switching. Our data show that chromatin remodeling complexes regulate the linear nucleosome distribution pattern and density to promote H3K27me3 deposition, which in turn regulates 3D chromatin structure.
Collapse
Affiliation(s)
- Tingting Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Dingyue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guangmei Tian
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Linhua Sun
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- School of Life Science, Peking University, 100871 Beijing, China
| | - Minqi Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Xiaochang Yin
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, 100101 Beijing, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yu Sheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Danmeng Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- School of Life Science, Peking University, 100871 Beijing, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
- School of Life Science, Peking University, 100871 Beijing, China
| | | |
Collapse
|
14
|
Zhou S, Shu Y. Transcriptional Regulation of Solute Carrier (SLC) Drug Transporters. Drug Metab Dispos 2022; 50:DMD-MR-2021-000704. [PMID: 35644529 PMCID: PMC9488976 DOI: 10.1124/dmd.121.000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 09/03/2023] Open
Abstract
Facilitated transport is necessitated for large size, charged, and/or hydrophilic drugs to move across the membrane. The drug transporters in the solute carrier (SLC) superfamily, mainly including organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug and toxin extrusion proteins (MATEs), are critical facilitators of drug transport and distribution in human body. The expression of these SLC drug transporters is found in tissues throughout the body, with high abundance in the epithelial cells of major organs for drug disposition, such as intestine, liver, and kidney. These SLC drug transporters are clinically important in drug absorption, metabolism, distribution, and excretion. The mechanisms underlying their regulation have been revealing in recent years. Epigenetic and nuclear receptor-mediated transcriptional regulation of SLC drug transporters have particularly attracted much attention. This review focuses on the transcriptional regulation of major SLC drug transporter genes. Revealing the mechanisms underlying the transcription of those critical drug transporters will help us understand pharmacokinetics and pharmacodynamics, ultimately improving drug therapeutic effectiveness while minimizing drug toxicity. Significance Statement It has become increasingly recognized that solute carrier (SLC) drug transporters play a crucial, and sometimes determinative, role in drug disposition and response, which is reflected in decision-making during not only clinical drug therapy but also drug development. Understanding the mechanisms accounting for the transcription of these transporters is critical to interpret their abundance in various tissues under different conditions, which is necessary to clarify the pharmacological response, adverse effects, and drug-drug interactions for clinically used drugs.
Collapse
Affiliation(s)
- Shiwei Zhou
- Pharmaceutical Sciences, University of Maryland, United States
| | - Yan Shu
- Pharmaceutical Sciences, University of Maryland, United States
| |
Collapse
|
15
|
Greenstein RA, Ng H, Barrales RR, Tan C, Braun S, Al-Sady B. Local chromatin context regulates the genetic requirements of the heterochromatin spreading reaction. PLoS Genet 2022; 18:e1010201. [PMID: 35584134 PMCID: PMC9154106 DOI: 10.1371/journal.pgen.1010201] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/31/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Heterochromatin spreading, the expansion of repressive chromatin structure from sequence-specific nucleation sites, is critical for stable gene silencing. Spreading re-establishes gene-poor constitutive heterochromatin across cell cycles but can also invade gene-rich euchromatin de novo to steer cell fate decisions. How chromatin context (i.e. euchromatic, heterochromatic) or different nucleation pathways influence heterochromatin spreading remains poorly understood. Previously, we developed a single-cell sensor in fission yeast that can separately record heterochromatic gene silencing at nucleation sequences and distal sites. Here we couple our quantitative assay to a genetic screen to identify genes encoding nuclear factors linked to the regulation of heterochromatin nucleation and the distal spreading of gene silencing. We find that mechanisms underlying gene silencing distal to a nucleation site differ by chromatin context. For example, Clr6 histone deacetylase complexes containing the Fkh2 transcription factor are specifically required for heterochromatin spreading at constitutive sites. Fkh2 recruits Clr6 to nucleation-distal chromatin sites in such contexts. In addition, we find that a number of chromatin remodeling complexes antagonize nucleation-distal gene silencing. Our results separate the regulation of heterochromatic gene silencing at nucleation versus distal sites and show that it is controlled by context-dependent mechanisms. The results of our genetic analysis constitute a broad community resource that will support further analysis of the mechanisms underlying the spread of epigenetic silencing along chromatin. Repressive structures, or heterochromatin, are seeded at specific genome sequences and then “spread” to silence nearby chromosomal regions. While much is known about the factors that seed heterochromatin, the genetic requirements for spreading are less clear. We devised a fission yeast single-cell method to examine how gene silencing is propagated by the heterochromatin spreading process specifically. Here we use this platform to ask if specific genes are required for the spreading process and whether the same or different genes direct spreading from different chromosomal seeding sites. We find a significant number of genes that specifically promote or antagonize the heterochromatin spreading process. However, different genes are required to enact spreading from different seeding sites. These results have potential implications for cell fate specification, where genes are newly silenced by heterochromatin spreading from diverse chromosomal sites. In a central finding, we show that the Clr6 protein complex, which removes chromatin marks linked to active genes, associates with the Forkhead 2 transcription factor to promote spreading of silencing structures from seeding sites at numerous chromosomal loci. In contrast, we show that proteins that remodel chromatin antagonize the spreading of gene silencing.
Collapse
Affiliation(s)
- R. A. Greenstein
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- TETRAD graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Henry Ng
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- TETRAD graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Ramon R. Barrales
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität of Munich, Planegg-Martinsried, Germany
| | - Catherine Tan
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences graduate program, University of California San Francisco, San Francisco, California, United States of America
| | - Sigurd Braun
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität of Munich, Planegg-Martinsried, Germany
- Institute for Genetics, Justus-Liebig University Giessen, Giessen, Germany
| | - Bassem Al-Sady
- Department of Microbiology &Immunology, George Williams Hooper Foundation, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Acidic patch histone mutations and their effects on nucleosome remodeling. Biochem Soc Trans 2022; 50:907-919. [PMID: 35356970 DOI: 10.1042/bst20210773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Structural and biochemical studies have identified a histone surface on each side of the nucleosome disk termed 'the nucleosome acidic patch' that acts as a regulatory hub for the function of numerous nuclear proteins, including ATP-dependent chromatin complexes (remodelers). Four major remodeler subfamilies, SWI/SNF, ISWI, CHD, and INO80, have distinct modes of interaction with one or both nucleosome acidic patches, contributing to their specific remodeling outcomes. Genome-wide sequencing analyses of various human cancers have uncovered high-frequency mutations in histone coding genes, including some that map to the acidic patch. How cancer-related acidic patch histone mutations affect nucleosome remodeling is mainly unknown. Recent advances in in vitro chromatin reconstitution have enabled access to physiologically relevant nucleosomes, including asymmetric nucleosomes that possess both wild-type and acidic patch mutant histone copies. Biochemical investigation of these substrates revealed unexpected remodeling outcomes with far-reaching implications for alteration of chromatin structure. This review summarizes recent findings of how different remodeler families interpret wild-type and mutant acidic patches for their remodeling functions and discusses models for remodeler-mediated changes in chromatin landscapes as a consequence of acidic patch mutations.
Collapse
|
17
|
Sanz AB, García R, Pavón-Vergés M, Rodríguez-Peña JM, Arroyo J. Control of Gene Expression via the Yeast CWI Pathway. Int J Mol Sci 2022; 23:ijms23031791. [PMID: 35163713 PMCID: PMC8836261 DOI: 10.3390/ijms23031791] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Living cells exposed to stressful environmental situations can elicit cellular responses that guarantee maximal cell survival. Most of these responses are mediated by mitogen-activated protein kinase (MAPK) cascades, which are highly conserved from yeast to humans. Cell wall damage conditions in the yeast Saccharomyces cerevisiae elicit rescue mechanisms mainly associated with reprogramming specific transcriptional responses via the cell wall integrity (CWI) pathway. Regulation of gene expression by this pathway is coordinated by the MAPK Slt2/Mpk1, mainly via Rlm1 and, to a lesser extent, through SBF (Swi4/Swi6) transcription factors. In this review, we summarize the molecular mechanisms controlling gene expression upon cell wall stress and the role of chromatin structure in these processes. Some of these mechanisms are also discussed in the context of other stresses governed by different yeast MAPK pathways. Slt2 regulates both transcriptional initiation and elongation by interacting with chromatin at the promoter and coding regions of CWI-responsive genes but using different mechanisms for Rlm1- and SBF-dependent genes. Since MAPK pathways are very well conserved in eukaryotic cells and are essential for controlling cellular physiology, improving our knowledge regarding how they regulate gene expression could impact the future identification of novel targets for therapeutic intervention.
Collapse
|
18
|
Nussinov R, Zhang M, Maloney R, Jang H. Ras isoform-specific expression, chromatin accessibility, and signaling. Biophys Rev 2021; 13:489-505. [PMID: 34466166 PMCID: PMC8355297 DOI: 10.1007/s12551-021-00817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical compaction, which allow (or curb) access to "chromatinized DNA." Genes are preferentially expressed in tissues: proteins expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule-not an exception, and it can be at least partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably, chromatin accessibility can similarly determine expression of drug resistance genes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University, 69978 Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Ryan Maloney
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| |
Collapse
|
19
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
20
|
Expansion and Functional Diversification of TFIIB-Like Factors in Plants. Int J Mol Sci 2021; 22:ijms22031078. [PMID: 33498602 PMCID: PMC7865254 DOI: 10.3390/ijms22031078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
As sessile organisms, plants have evolved unique patterns of growth and development, elaborate metabolism and special perception and signaling mechanisms to environmental cues. Likewise, plants have complex and highly special programs for transcriptional control of gene expression. A case study for the special transcription control in plants is the expansion of general transcription factors, particularly the family of Transcription Factor IIB (TFIIB)-like factors with 15 members in Arabidopsis. For more than a decade, molecular and genetic analysis has revealed important functions of these TFIIB-like factors in specific biological processes including gametogenesis, pollen tube growth guidance, embryogenesis, endosperm development, and plant-microbe interactions. The redundant, specialized, and diversified roles of these TFIIB-like factors challenge the traditional definition of general transcription factors established in other eukaryotes. In this review, we discuss general transcription factors in plants with a focus on the expansion and functional analysis of plant TFIIB-like proteins to highlight unique aspects of plant transcription programs that can be highly valuable for understanding the molecular basis of plant growth, development and responses to stress conditions.
Collapse
|
21
|
Lehmann LC, Bacic L, Hewitt G, Brackmann K, Sabantsev A, Gaullier G, Pytharopoulou S, Degliesposti G, Okkenhaug H, Tan S, Costa A, Skehel JM, Boulton SJ, Deindl S. Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Patch. Cell Rep 2020; 33:108529. [PMID: 33357431 PMCID: PMC7116876 DOI: 10.1016/j.celrep.2020.108529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/08/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023] Open
Abstract
Upon DNA damage, the ALC1/CHD1L nucleosome remodeling enzyme (remodeler) is activated by binding to poly(ADP-ribose). How activated ALC1 recognizes the nucleosome, as well as how this recognition is coupled to remodeling, is unknown. Here, we show that remodeling by ALC1 requires a wild-type acidic patch on the entry side of the nucleosome. The cryo-electron microscopy structure of a nucleosome-ALC1 linker complex reveals a regulatory linker segment that binds to the acidic patch. Mutations within this interface alter the dynamics of ALC1 recruitment to DNA damage and impede the ATPase and remodeling activities of ALC1. Full activation requires acidic patch-linker segment interactions that tether the remodeler to the nucleosome and couple ATP hydrolysis to nucleosome mobilization. Upon DNA damage, such a requirement may be used to modulate ALC1 activity via changes in the nucleosome acidic patches.
Collapse
Affiliation(s)
- Laura C Lehmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Graeme Hewitt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Sofia Pytharopoulou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Gianluca Degliesposti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden.
| |
Collapse
|
22
|
Magaña-Acosta M, Valadez-Graham V. Chromatin Remodelers in the 3D Nuclear Compartment. Front Genet 2020; 11:600615. [PMID: 33329746 PMCID: PMC7673392 DOI: 10.3389/fgene.2020.600615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Mauro Magaña-Acosta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
23
|
Zhang W, Liu S, Han D, He Z. Engineered nanoparticle-induced epigenetic changes: An important consideration in nanomedicine. Acta Biomater 2020; 117:93-107. [PMID: 32980543 DOI: 10.1016/j.actbio.2020.09.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022]
Abstract
Engineered nanoparticles (ENPs) are now being applied across a range of disciplines, and as a result numerous studies have now assessed ENP-related bioeffects. Among them, ENP-induced epigenetic changes including DNA methylation, histone modifications, and miRNA-mediated regulation of gene expression have recently attracted attention. In this review, we describe the diversity of ENP-induced epigenetic changes, focusing on their interplay with related functional biological events, especially oxidative stress, MAPK pathway activation, and inflammation. In doing so, we highlight the underlying mechanisms and biological effects of ENP-induced epigenetic changes. We also summarize how high-throughput technologies have helped to uncover ENP-induced epigenetic changes. Finally, we discuss future perspectives and the challenges related to ENP-induced epigenetic changes that still need to be addressed.
Collapse
|
24
|
Wu J, Zhao Y, Wang X, Kong L, Johnston LJ, Lu L, Ma X. Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications. Crit Rev Food Sci Nutr 2020; 62:783-797. [PMID: 33043708 DOI: 10.1080/10408398.2020.1828813] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jianmin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Lingchang Kong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J. Johnston
- West Central Research & Outreach Centre, University of Minnesota, Morris, Minnesota, USA
| | - Lin Lu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Milavetz B, Haugen J, Rowbotham K. Comparing a new method for mapping nucleosomes in simian virus 40 chromatin to standard procedures. Epigenetics 2020; 16:587-596. [PMID: 32838633 DOI: 10.1080/15592294.2020.1814487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The location of nucleosomes in chromatin significantly impacts many biological processes including DNA replication, repair, and gene expression. A number of techniques have been developed for mapping nucleosome locations in chromatin including MN-Seq (micrococcal nuclease digestion followed by next-generation sequencing), ATAC-Seq (Assay for Transposase-Accessible Chromatin followed by next-generation sequencing), and ChIP-Seq (chromatin immunoprecipitation and fragmentation followed by next-generation sequencing). All of these techniques have been successfully used, but each with its own limitations. Recently, New England Biolabs has marketed a new kit, the NEBNext Ultra II FS Library Prep kit, for preparing libraries for next-generation sequencing from purified genomic DNA. This kit is based on a novel proprietary DNA fragmentation procedure which appears to cleave DNA that is not bound by proteins. Because DNA is fragmented directly in the FS kit, we tested whether the kit might also be useful for mapping the location of nucleosomes in chromatin. Using simian virus 40 (SV40) chromatin isolated at different times in an infection, we have compared nucleosome mapping using the NEB FS kit (referred to as FS-Seq) to MN-Seq, ATAC-Seq, and ChIP-Seq. Mapping nucleosomes using FS-Seq generated nucleosome profiles similar to those generated by ATAC-Seq and ChIP-Seq in regulatory regions of the SV40 genome. We conclude that FS-Seq is a simple, robust, cost-effective procedure for mapping nucleosomes in SV40 chromatin that should be useful for other forms of chromatin as well. We also present evidence that FS-Seq may be useful for mapping transcription factors.
Collapse
Affiliation(s)
- Barry Milavetz
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, USA
| | - Jacob Haugen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, USA
| | - Kincaid Rowbotham
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, USA
| |
Collapse
|
26
|
Kornberg RD, Lorch Y. Primary Role of the Nucleosome. Mol Cell 2020; 79:371-375. [PMID: 32763226 DOI: 10.1016/j.molcel.2020.07.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 12/16/2019] [Accepted: 03/10/2020] [Indexed: 11/18/2022]
Abstract
Whereas the core nucleosome is thought to serve as a packaging device for the coiling and contraction in length of genomic DNA, we suggest that it serves primarily in the regulation of transcription. A nucleosome on a promoter prevents the initiation of transcription. The association of nucleosomes with most genomic DNA prevents initiation from cryptic promoters. The nucleosome thus serves not only as a general gene repressor, but also as a repressor of all transcription (genic, intragenic, and intergenic). The core nucleosome performs a fundamental regulatory role, apart from the histone "tails," which modulate gene activity.
Collapse
Affiliation(s)
- Roger D Kornberg
- Department of Structural Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Yahli Lorch
- Department of Structural Biology, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Interplay among ATP-Dependent Chromatin Remodelers Determines Chromatin Organisation in Yeast. BIOLOGY 2020; 9:biology9080190. [PMID: 32722483 PMCID: PMC7466152 DOI: 10.3390/biology9080190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Cellular DNA is packaged into chromatin, which is composed of regularly-spaced nucleosomes with occasional gaps corresponding to active regulatory elements, such as promoters and enhancers, called nucleosome-depleted regions (NDRs). This chromatin organisation is primarily determined by the activities of a set of ATP-dependent remodeling enzymes that are capable of moving nucleosomes along DNA, or of evicting nucleosomes altogether. In yeast, the nucleosome-spacing enzymes are ISW1 (Imitation SWitch protein 1), Chromodomain-Helicase-DNA-binding (CHD)1, ISW2 (Imitation SWitch protein 2) and INOsitol-requiring 80 (INO80); the nucleosome eviction enzymes are the SWItching/Sucrose Non-Fermenting (SWI/SNF) family, the Remodeling the Structure of Chromatin (RSC) complexes and INO80. We discuss the contributions of each set of enzymes to chromatin organisation. ISW1 and CHD1 are the major spacing enzymes; loss of both enzymes results in major chromatin disruption, partly due to the appearance of close-packed di-nucleosomes. ISW1 and CHD1 compete to set nucleosome spacing on most genes. ISW1 is dominant, setting wild type spacing, whereas CHD1 sets short spacing and may dominate on highly-transcribed genes. We propose that the competing remodelers regulate spacing, which in turn controls the binding of linker histone (H1) and therefore the degree of chromatin folding. Thus, genes with long spacing bind more H1, resulting in increased chromatin compaction. RSC, SWI/SNF and INO80 are involved in NDR formation, either directly by nucleosome eviction or repositioning, or indirectly by affecting the size of the complex that resides in the NDR. The nature of this complex is controversial: some suggest that it is a RSC-bound “fragile nucleosome”, whereas we propose that it is a non-histone transcription complex. In either case, this complex appears to serve as a barrier to nucleosome formation, resulting in the formation of phased nucleosomal arrays on both sides.
Collapse
|
28
|
Schlichter A, Kasten MM, Parnell TJ, Cairns BR. Specialization of the chromatin remodeler RSC to mobilize partially-unwrapped nucleosomes. eLife 2020; 9:e58130. [PMID: 32496195 PMCID: PMC7308085 DOI: 10.7554/elife.58130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 12/19/2022] Open
Abstract
SWI/SNF-family chromatin remodeling complexes, such as S. cerevisiae RSC, slide and eject nucleosomes to regulate transcription. Within nucleosomes, stiff DNA sequences confer spontaneous partial unwrapping, prompting whether and how SWI/SNF-family remodelers are specialized to remodel partially-unwrapped nucleosomes. RSC1 and RSC2 are orthologs of mammalian PBRM1 (polybromo) which define two separate RSC sub-complexes. Remarkably, in vitro the Rsc1-containing complex remodels partially-unwrapped nucleosomes much better than does the Rsc2-containing complex. Moreover, a rsc1Δ mutation, but not rsc2Δ, is lethal with histone mutations that confer partial unwrapping. Rsc1/2 isoforms both cooperate with the DNA-binding proteins Rsc3/30 and the HMG protein, Hmo1, to remodel partially-unwrapped nucleosomes, but show differential reliance on these factors. Notably, genetic impairment of these factors strongly reduces the expression of genes with wide nucleosome-deficient regions (e.g., ribosomal protein genes), known to harbor partially-unwrapped nucleosomes. Taken together, Rsc1/2 isoforms are specialized through composition and interactions to manage and remodel partially-unwrapped nucleosomes.
Collapse
Affiliation(s)
- Alisha Schlichter
- Howard Hughes Medical Institute (HHMI), Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Margaret M Kasten
- Howard Hughes Medical Institute (HHMI), Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Timothy J Parnell
- Howard Hughes Medical Institute (HHMI), Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| | - Bradley R Cairns
- Howard Hughes Medical Institute (HHMI), Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
29
|
Yang J, Wang Q, Feng G, Zeng M. Significance of Selective Protein Degradation in the Development of Novel Targeted Drugs and Its Implications in Cancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Guo‐Kai Feng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Mu‐Sheng Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer Center Guangzhou 510060 China
| |
Collapse
|
30
|
Structure of SWI/SNF chromatin remodeller RSC bound to a nucleosome. Nature 2020; 579:448-451. [PMID: 32188943 PMCID: PMC7093204 DOI: 10.1038/s41586-020-2088-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/08/2020] [Indexed: 12/25/2022]
Abstract
Chromatin remodelling complexes of the SWI/SNF family function in the formation of nucleosome-depleted, transcriptionally active promoter regions (NDRs)1,2. The essential Saccharomyces cerevisiae SWI/SNF complex RSC3 contains 16 subunits, including the ATP-dependent DNA translocase Sth14,5. RSC removes nucleosomes from promoter regions6,7 and positions the specialized +1 and –1 nucleosomes that flank NDRs8,9. Here, we present the cryo-EM structure of RSC in complex with a nucleosome substrate. The structure reveals that RSC forms five protein modules and suggests key features of the remodelling mechanism. The body module serves as a scaffold for the four flexible modules that we call DNA-interacting, ATPase, arm and ARP modules. The DNA-interacting module binds extra-nucleosomal DNA and is involved in the recognition of promoter DNA elements8,10,11 that influence RSC functionality12. The ATPase and arm modules sandwich the nucleosome disc with their ‘SnAC’ and ‘finger’ elements, respectively. The translocase motor of the ATPase module engages with the edge of the nucleosome at superhelical location +2. The mobile ARP module may modulate translocase-nucleosome interactions to regulate RSC activity5. The RSC-nucleosome structure provides a basis for understanding NDR formation and the structure and function of human SWI/SNF complexes that are frequently mutated in cancer13.
Collapse
|
31
|
Campbell JB, Edwards MJ, Ozersky SA, Duina AA. Evidence that dissociation of Spt16 from transcribed genes is partially dependent on RNA Polymerase II termination. Transcription 2019; 10:195-206. [PMID: 31809228 PMCID: PMC6948958 DOI: 10.1080/21541264.2019.1685837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
FACT (FAcilitates Chromatin Transactions) is a highly conserved histone chaperone complex in eukaryotic cells that can interact and manipulate nucleosomes in order to promote a variety of DNA-based processes and to maintain the integrity of chromatin throughout the genome. Whereas key features of the physical interactions that occur between FACT and nucleosomes in vitro have been elucidated in recent years, less is known regarding FACT functional dynamics in vivo. Using the Saccharomyces cerevisiae system, we now provide evidence that at least at some genes dissociation of the FACT subunit Spt16 from their 3′ ends is partially dependent on RNA Polymerase II (Pol II) termination. Combined with other studies, our results are consistent with a two-phase mechanism for FACT dissociation from genes, one that occurs upstream from Pol II dissociation and is Pol II termination-independent and the other that occurs further downstream and is dependent on Pol II termination.
Collapse
Affiliation(s)
| | | | | | - Andrea A Duina
- Biology Department, Hendrix College, Conway, Arkansas, USA
| |
Collapse
|
32
|
Kobayashi W, Kurumizaka H. Structural transition of the nucleosome during chromatin remodeling and transcription. Curr Opin Struct Biol 2019; 59:107-114. [DOI: 10.1016/j.sbi.2019.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/17/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
|
33
|
Benner L, Castro EA, Whitworth C, Venken KJT, Yang H, Fang J, Oliver B, Cook KR, Lerit DA. Drosophila Heterochromatin Stabilization Requires the Zinc-Finger Protein Small Ovary. Genetics 2019; 213:877-895. [PMID: 31558581 PMCID: PMC6827387 DOI: 10.1534/genetics.119.302590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/21/2019] [Indexed: 02/04/2023] Open
Abstract
Heterochromatin-mediated repression is essential for controlling the expression of transposons and for coordinated cell type-specific gene regulation. The small ovary (sov) locus was identified in a screen for female-sterile mutations in Drosophila melanogaster, and mutants show dramatic ovarian morphogenesis defects. We show that the null sov phenotype is lethal and map the locus to the uncharacterized gene CG14438, which encodes a nuclear zinc-finger protein that colocalizes with the essential Heterochromatin Protein 1 (HP1a). We demonstrate Sov functions to repress inappropriate gene expression in the ovary, silence transposons, and suppress position-effect variegation in the eye, suggesting a central role in heterochromatin stabilization.
Collapse
Affiliation(s)
- Leif Benner
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Elias A Castro
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Cale Whitworth
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology
- McNair Medical Institute at the Robert and Janice McNair Foundation
- Dan L. Duncan Cancer Center, Center for Drug Discovery
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Haiwang Yang
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Brian Oliver
- Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kevin R Cook
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
34
|
Ye Y, Wu H, Chen K, Clapier CR, Verma N, Zhang W, Deng H, Cairns BR, Gao N, Chen Z. Structure of the RSC complex bound to the nucleosome. Science 2019; 366:838-843. [PMID: 31672915 DOI: 10.1126/science.aay0033] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
Abstract
The RSC complex remodels chromatin structure and regulates gene transcription. We used cryo-electron microscopy to determine the structure of yeast RSC bound to the nucleosome. RSC is delineated into the adenosine triphosphatase motor, the actin-related protein module, and the substrate recruitment module (SRM). RSC binds the nucleosome mainly through the motor, with the auxiliary subunit Sfh1 engaging the H2A-H2B acidic patch to enable nucleosome ejection. SRM is organized into three substrate-binding lobes poised to bind their respective nucleosomal epitopes. The relative orientations of the SRM and the motor on the nucleosome explain the directionality of DNA translocation and promoter nucleosome repositioning by RSC. Our findings shed light on RSC assembly and functionality, and they provide a framework to understand the mammalian homologs BAF/PBAF and the Sfh1 ortholog INI1/BAF47, which are frequently mutated in cancers.
Collapse
Affiliation(s)
- Youpi Ye
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, P.R. China.,School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Hao Wu
- School of Life Science, Tsinghua University, Beijing 100084, P.R. China.,Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Beijing 100084, China
| | - Kangjing Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, P.R. China.,School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Cedric R Clapier
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Naveen Verma
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Wenhao Zhang
- School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Haiteng Deng
- School of Life Science, Tsinghua University, Beijing 100084, P.R. China
| | - Bradley R Cairns
- Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhucheng Chen
- MOE Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, P.R. China. .,School of Life Science, Tsinghua University, Beijing 100084, P.R. China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing 100084, China
| |
Collapse
|
35
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|
36
|
Muñoz S, Minamino M, Casas-Delucchi CS, Patel H, Uhlmann F. A Role for Chromatin Remodeling in Cohesin Loading onto Chromosomes. Mol Cell 2019; 74:664-673.e5. [PMID: 30922844 PMCID: PMC6527865 DOI: 10.1016/j.molcel.2019.02.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
Cohesin is a conserved, ring-shaped protein complex that topologically embraces DNA. Its central role in genome organization includes functions in sister chromatid cohesion, DNA repair, and transcriptional regulation. Cohesin loading onto chromosomes requires the Scc2-Scc4 cohesin loader, whose presence on chromatin in budding yeast depends on the RSC chromatin remodeling complex. Here we reveal a dual role of RSC in cohesin loading. RSC acts as a chromatin receptor that recruits Scc2-Scc4 by a direct protein interaction independent of chromatin remodeling. In addition, chromatin remodeling is required to generate a nucleosome-free region that is the substrate for cohesin loading. An engineered cohesin loading module can be created by fusing the Scc2 C terminus to RSC or to other chromatin remodelers, but not to unrelated DNA binding proteins. These observations demonstrate the importance of nucleosome-free DNA for cohesin loading and provide insight into how cohesin accesses DNA during its varied chromosomal activities.
Collapse
Affiliation(s)
- Sofía Muñoz
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Masashi Minamino
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Corella S Casas-Delucchi
- Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
37
|
Gažová I, Lengeling A, Summers KM. Lysine demethylases KDM6A and UTY: The X and Y of histone demethylation. Mol Genet Metab 2019; 127:31-44. [PMID: 31097364 DOI: 10.1016/j.ymgme.2019.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Histone demethylases remove transcriptional repressive marks from histones in the nucleus. KDM6A (also known as UTX) is a lysine demethylase which acts on the trimethylated lysine at position 27 in histone 3. The KDM6A gene is located on the X chromosome but escapes X inactivation even though it is not located in the pseudoautosomal region. There is a homologue of KDM6A on the Y chromosome, known as UTY. UTY was thought to have lost its demethylase activity and to represent a non-functional remnant of the ancestral KDM6A gene. However, results with knockout mice suggest that the gene is expressed and the protein performs some function within the cell. Female mice with homozygous deletion of Kdm6a do not survive, but hemizygous males are viable, attributed to the presence of the Uty gene. KDM6A is mutated in the human condition Kabuki syndrome type 2 (OMIM 300867) and in many cases of cancer. The amino acid sequence of KDM6A has been conserved across animal phyla, although it is only found on the X chromosome in eutherian mammals. In this review, we reanalyse existing data from various sources (protein sequence comparison, evolutionary genetics, transcription factor binding and gene expression analysis) to determine the function, expression and evolution of KDM6A and UTY and show that UTY has a functional role similar to KDM6A in metabolism and development.
Collapse
Affiliation(s)
- Iveta Gažová
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Andreas Lengeling
- Max Planck Society, Administrative Headquarters, Hofgartenstrasse 8, 80539 Munich, Germany
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
38
|
Konishi M, Yanagisawa S. The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression. BMC PLANT BIOLOGY 2019; 19:90. [PMID: 30819094 PMCID: PMC6393987 DOI: 10.1186/s12870-019-1692-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/21/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND NIN-LIKE PROTEIN (NLP) transcription factors are master regulators of nitrate-inducible gene expression in higher plants. NLP transcription factors contain a nitrate signal-responsive domain in the amino-terminal region, an RWP-RK-type DNA-binding domain in the middle, and a Phox and Bem1 (PB1) domain at the carboxy terminus. Although the PB1 domain of NLP transcription factors appears to mediate protein-protein interactions associated with nitrate-inducible gene expression in higher plants, its precise role in nitrate-inducible gene expression has not previously been characterized. RESULTS Yeast two-hybrid assays with the PB1 domain of the Arabidopsis transcription factor NLP7 revealed NLP-NLP interactions that required the core amino acid residues (K867, D909, D911, and E913) within the PB1 domain. Consistent with previous speculation on redundant and overlapping functions between different Arabidopsis NLP transcription factors, NLP-NLP interactions were observed between a variety of combinations of different NLP transcription factors. Furthermore, a mutated form of NLP7 that harbored amino acid substitutions at K867, D909, D911, and E913 required a far higher level of expression than wild-type NLP7 to restore nitrate-responsive gene expression and growth of nlp6 nlp7-1 double mutants. Surprisingly, however, the ability to transactivate nitrate-responsive promoters in protoplast transient expression assays was similar between wild-type and mutant forms of NLP7, suggesting that the PB1 domain was not required for transcription from naked DNA. CONCLUSIONS Protein-protein interactions mediated by the PB1 domain of NLP transcription factors are necessary for full induction of nitrate-dependent expression of target genes in planta. The PB1 domains of NLP transcription factors may act on gene expression from chromosomal DNA via homo- and hetero-oligomerization in the presence of nitrate.
Collapse
Affiliation(s)
- Mineko Konishi
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
39
|
Barman P, Reddy D, Bhaumik SR. Mechanisms of Antisense Transcription Initiation with Implications in Gene Expression, Genomic Integrity and Disease Pathogenesis. Noncoding RNA 2019; 5:ncrna5010011. [PMID: 30669611 PMCID: PMC6468509 DOI: 10.3390/ncrna5010011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/01/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Non-coding antisense transcripts arise from the strand opposite the sense strand. Over 70% of the human genome generates non-coding antisense transcripts while less than 2% of the genome codes for proteins. Antisense transcripts and/or the act of antisense transcription regulate gene expression and genome integrity by interfering with sense transcription and modulating histone modifications or DNA methylation. Hence, they have significant pathological and physiological relevance. Indeed, antisense transcripts were found to be associated with various diseases including cancer, diabetes, cardiac and neurodegenerative disorders, and, thus, have promising potentials for prognostic and diagnostic markers and therapeutic development. However, it is not clearly understood how antisense transcription is initiated and epigenetically regulated. Such knowledge would provide new insights into the regulation of antisense transcription, and hence disease pathogenesis with therapeutic development. The recent studies on antisense transcription initiation and its epigenetic regulation, which are limited, are discussed here. Furthermore, we concisely describe how antisense transcription/transcripts regulate gene expression and genome integrity with implications in disease pathogenesis and therapeutic development.
Collapse
Affiliation(s)
- Priyanka Barman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | - Divya Reddy
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
40
|
Brahma S, Henikoff S. RSC-Associated Subnucleosomes Define MNase-Sensitive Promoters in Yeast. Mol Cell 2018; 73:238-249.e3. [PMID: 30554944 PMCID: PMC6475595 DOI: 10.1016/j.molcel.2018.10.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
The classic view of nucleosome organization at active promoters is that two well-positioned nucleosomes flank a nucleosome-depleted region (NDR). However, this view has been recently disputed by contradictory reports as to whether wider (≳150 bp) NDRs instead contain unstable, micrococcal nuclease-sensitive ("fragile") nucleosomal particles. To determine the composition of fragile particles, we introduce CUT&RUN.ChIP, in which targeted nuclease cleavage and release is followed by chromatin immunoprecipitation. We find that fragile particles represent the occupancy of the RSC (remodeling the structure of chromatin) nucleosome remodeling complex and RSC-bound, partially unwrapped nucleosomal intermediates. We also find that general regulatory factors (GRFs) bind to partially unwrapped nucleosomes at these promoters. We propose that RSC binding and its action cause nucleosomes to unravel, facilitate subsequent binding of GRFs, and constitute a dynamic cycle of nucleosome deposition and clearance at the subset of wide Pol II promoter NDRs.
Collapse
Affiliation(s)
- Sandipan Brahma
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
41
|
Schumacher DI, Lütkenhaus R, Altegoer F, Teichert I, Kück U, Nowrousian M. The transcription factor PRO44 and the histone chaperone ASF1 regulate distinct aspects of multicellular development in the filamentous fungus Sordaria macrospora. BMC Genet 2018; 19:112. [PMID: 30545291 PMCID: PMC6293562 DOI: 10.1186/s12863-018-0702-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Background Fungal fruiting bodies are complex three-dimensional structures that are formed to protect and disperse the sexual spores. Their morphogenesis requires the concerted action of numerous genes; however, at the molecular level, the spatio-temporal sequence of events leading to the mature fruiting body is largely unknown. In previous studies, the transcription factor gene pro44 and the histone chaperone gene asf1 were shown to be essential for fruiting body formation in the ascomycete Sordaria macrospora. Both PRO44 and ASF1 are predicted to act on the regulation of gene expression in the nucleus, and mutants in both genes are blocked at the same stage of development. Thus, we hypothesized that PRO44 and ASF1 might be involved in similar aspects of transcriptional regulation. In this study, we characterized their roles in fruiting body development in more detail. Results The PRO44 protein forms homodimers, localizes to the nucleus, and is strongly expressed in the outer layers of the developing young fruiting body. Analysis of single and double mutants of asf1 and three other chromatin modifier genes, cac2, crc1, and rtt106, showed that only asf1 is essential for fruiting body formation whereas cac2 and rtt106 might have redundant functions in this process. RNA-seq analysis revealed distinct roles for asf1 and pro44 in sexual development, with asf1 acting as a suppressor of weakly expressed genes during morphogenesis. This is most likely not due to global mislocalization of nucleosomes as micrococcal nuclease-sequencing did not reveal differences in nucleosome spacing and positioning around transcriptional start sites between Δasf1 and the wild type. However, bisulfite sequencing revealed a decrease in DNA methylation in Δasf1, which might be a reason for the observed changes in gene expression. Transcriptome analysis of gene expression in young fruiting bodies showed that pro44 is required for correct expression of genes involved in extracellular metabolism. Deletion of the putative transcription factor gene asm2, which is downregulated in young fruiting bodies of Δpro44, results in defects during ascospore maturation. Conclusions In summary, the results indicate distinct roles for the transcription factor PRO44 and the histone chaperone ASF1 in the regulation of sexual development in fungi. Electronic supplementary material The online version of this article (10.1186/s12863-018-0702-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ramona Lütkenhaus
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Florian Altegoer
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.,LOEWE-Zentrum für Synthetische Mikrobiologie & Department of Chemistry, Philipps University of Marburg, Marburg, Germany
| | - Ines Teichert
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, 44780, Bochum, Germany.
| |
Collapse
|
42
|
Kujirai T, Ehara H, Fujino Y, Shirouzu M, Sekine SI, Kurumizaka H. Structural basis of the nucleosome transition during RNA polymerase II passage. Science 2018; 362:595-598. [PMID: 30287617 DOI: 10.1126/science.aau9904] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 12/28/2022]
Abstract
Genomic DNA forms chromatin, in which the nucleosome is the repeating unit. The mechanism by which RNA polymerase II (RNAPII) transcribes the nucleosomal DNA remains unclear. Here we report the cryo-electron microscopy structures of RNAPII-nucleosome complexes in which RNAPII pauses at the superhelical locations SHL(-6), SHL(-5), SHL(-2), and SHL(-1) of the nucleosome. RNAPII pauses at the major histone-DNA contact sites, and the nucleosome interactions with the RNAPII subunits stabilize the pause. These structures reveal snapshots of nucleosomal transcription, in which RNAPII gradually tears DNA from the histone surface while preserving the histone octamer. The nucleosomes in the SHL(-1) complexes are bound to a "foreign" DNA segment, which might explain the histone transfer mechanism. These results provide the foundations for understanding chromatin transcription and epigenetic regulation.
Collapse
Affiliation(s)
- Tomoya Kujirai
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Ehara
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuka Fujino
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shun-Ichi Sekine
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan. .,RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|