1
|
Filipek K, Penzo M. Ribosomal rodeo: wrangling translational machinery in gynecologic tumors. Cancer Metastasis Rev 2024; 44:13. [PMID: 39621173 PMCID: PMC11611960 DOI: 10.1007/s10555-024-10234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024]
Abstract
Gynecologic cancers are a significant cause of morbidity and mortality among women worldwide. Despite advancements in diagnosis and treatment, the molecular mechanisms underlying the development and progression of these cancers remain poorly understood. Recent studies have implicated translational machinery (ribosomal proteins (RPs) and translation factors (TFs)) as potential drivers of oncogenic processes in various cancer types, including gynecologic cancers. RPs are essential components of the ribosome, which is responsible for protein synthesis. In this review paper, we aim to explore the role of translational machinery in gynecologic cancers. Specifically, we will investigate the potential mechanisms by which these components contribute to the oncogenic processes in these cancers and evaluate the feasibility of targeting RPs as a potential therapeutic strategy. By doing so, we hope to provide a broader view of the molecular pathogenesis of gynecologic cancers and highlight their potential as novel therapeutic targets for the management of these challenging diseases.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Medical and Surgical Sciences, and Center for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Marianna Penzo
- Department of Medical and Surgical Sciences, and Center for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Filipek K, Blanchet S, Molestak E, Zaciura M, Wu CCC, Horbowicz-Drożdżal P, Grela P, Zalewski M, Kmiecik S, González-Ibarra A, Krokowski D, Latoch P, Starosta AL, Mołoń M, Shao Y, Borkiewicz L, Michalec-Wawiórka B, Wawiórka L, Kubiński K, Socała K, Wlaź P, Cunningham KW, Green R, Rodnina MV, Tchórzewski M. Phosphorylation of P-stalk proteins defines the ribosomal state for interaction with auxiliary protein factors. EMBO Rep 2024; 25:5478-5506. [PMID: 39468350 PMCID: PMC11624264 DOI: 10.1038/s44319-024-00297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Ribosomal action is facilitated by the orchestrated work of trans-acting factors and ribosomal elements, which are subject to regulatory events, often involving phosphorylation. One such element is the ribosomal P-stalk, which plays a dual function: it activates translational GTPases, which support basic ribosomal functions, and interacts with the Gcn2 kinase, linking the ribosomes to the ISR pathway. We show that P-stalk proteins, which form a pentamer, exist in the cell exclusively in a phosphorylated state at five C-terminal domains (CTDs), ensuring optimal translation (speed and accuracy) and may play a role in the timely regulation of the Gcn2-dependent stress response. Phosphorylation of the CTD induces a structural transition from a collapsed to a coil-like structure, and the CTD gains conformational freedom, allowing specific but transient binding to various protein partners, optimizing the ribosome action. The report reveals a unique feature of the P-stalk proteins, indicating that, unlike most ribosomal proteins, which are regulated by phosphorylation in an on/off manner, the P-stalk proteins exist in a constantly phosphorylated state, which optimizes their interaction with auxiliary factors.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Monika Zaciura
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Colin Chih-Chien Wu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Section of Translational Control of Gene Expression, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Patrycja Horbowicz-Drożdżal
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Grela
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mateusz Zalewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Alan González-Ibarra
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Krokowski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Mołoń
- Institute of Biology, University of Rzeszow, Rzeszow, Poland
| | - Yutian Shao
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Lidia Borkiewicz
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
3
|
Fuentes P, Pelletier J, Gentilella A. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease. NAR Cancer 2024; 6:zcae032. [PMID: 39045153 PMCID: PMC11263879 DOI: 10.1093/narcan/zcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The ribosome is a remarkably complex machinery, at the interface with diverse cellular functions and processes. Evolutionarily conserved, yet intricately regulated, ribosomes play pivotal roles in decoding genetic information into the synthesis of proteins and in the generation of biomass critical for cellular physiological functions. Recent insights have revealed the existence of ribosome heterogeneity at multiple levels. Such heterogeneity extends to cancer, where aberrant ribosome biogenesis and function contribute to oncogenesis. This led to the emergence of the concept of 'onco-ribosomes', specific ribosomal variants with altered structural dynamics, contributing to cancer initiation and progression. Ribosomal proteins (RPs) are involved in many of these alterations, acting as critical factors for the translational reprogramming of cancer cells. In this review article, we highlight the roles of RPs in ribosome biogenesis, how mutations in RPs and their paralogues reshape the translational landscape, driving clonal evolution and therapeutic resistance. Furthermore, we present recent evidence providing new insights into post-translational modifications of RPs, such as ubiquitylation, UFMylation and phosphorylation, and how they regulate ribosome recycling, translational fidelity and cellular stress responses. Understanding the intricate interplay between ribosome complexity, heterogeneity and RP-mediated regulatory mechanisms in pathology offers profound insights into cancer biology and unveils novel therapeutic avenues targeting the translational machinery in cancer.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08908, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
4
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
5
|
Mogila I, Tamulaitiene G, Keda K, Timinskas A, Ruksenaite A, Sasnauskas G, Venclovas Č, Siksnys V, Tamulaitis G. Ribosomal stalk-captured CARF-RelE ribonuclease inhibits translation following CRISPR signaling. Science 2023; 382:1036-1041. [PMID: 38033086 DOI: 10.1126/science.adj2107] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Prokaryotic type III CRISPR-Cas antiviral systems employ cyclic oligoadenylate (cAn) signaling to activate a diverse range of auxiliary proteins that reinforce the CRISPR-Cas defense. Here we characterize a class of cAn-dependent effector proteins named CRISPR-Cas-associated messenger RNA (mRNA) interferase 1 (Cami1) consisting of a CRISPR-associated Rossmann fold sensor domain fused to winged helix-turn-helix and a RelE-family mRNA interferase domain. Upon activation by cyclic tetra-adenylate (cA4), Cami1 cleaves mRNA exposed at the ribosomal A-site thereby depleting mRNA and leading to cell growth arrest. The structures of apo-Cami1 and the ribosome-bound Cami1-cA4 complex delineate the conformational changes that lead to Cami1 activation and the mechanism of Cami1 binding to a bacterial ribosome, revealing unexpected parallels with eukaryotic ribosome-inactivating proteins.
Collapse
Affiliation(s)
- Irmantas Mogila
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Konstanty Keda
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Albertas Timinskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Audrone Ruksenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Česlovas Venclovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
6
|
Chang Z, Wang X, Pan X, Yan W, Wu W, Zhuang Y, Li Z, Wang D, Yuan S, Xu C, Chen Z, Liu D, Chen ZS, Tang X, Wu J. The ribosomal protein P0A is required for embryo development in rice. BMC PLANT BIOLOGY 2023; 23:465. [PMID: 37798654 PMCID: PMC10552409 DOI: 10.1186/s12870-023-04445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The P-stalk is a conserved and vital structural element of ribosome. The eukaryotic P-stalk exists as a P0-(P1-P2)2 pentameric complex, in which P0 function as a base structure for incorporating the stalk onto 60S pre-ribosome. Prior studies have suggested that P0 genes are indispensable for survival in yeast and animals. However, the functions of P0 genes in plants remain elusive. RESULTS In the present study, we show that rice has three P0 genes predicted to encode highly conserved proteins OsP0A, OsP0B and OsP0C. All of these P0 proteins were localized both in cytoplasm and nucleus, and all interacted with OsP1. Intriguingly, the transcripts of OsP0A presented more than 90% of the total P0 transcripts. Moreover, knockout of OsP0A led to embryo lethality, while single or double knockout of OsP0B and OsP0C did not show any visible defects in rice. The genomic DNA of OsP0A could well complement the lethal phenotypes of osp0a mutant. Finally, sequence and syntenic analyses revealed that OsP0C evolved from OsP0A, and that duplication of genomic fragment harboring OsP0C further gave birth to OsP0B, and both of these duplication events might happen prior to the differentiation of indica and japonica subspecies in rice ancestor. CONCLUSION These data suggested that OsP0A functions as the predominant P0 gene, playing an essential role in embryo development in rice. Our findings highlighted the importance of P0 genes in plant development.
Collapse
Affiliation(s)
- Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xia Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoying Pan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenshi Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yi Zhuang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhiai Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Dan Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuting Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Dongfeng Liu
- Shenzhen Agricultural Technology Promotion Center, Shenzhen, 518055, China
| | - Zi Sheng Chen
- Shenzhen Agricultural Technology Promotion Center, Shenzhen, 518055, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China.
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
McLaren M, Conners R, Isupov MN, Gil-Díez P, Gambelli L, Gold VAM, Walter A, Connell SR, Williams B, Daum B. CryoEM reveals that ribosomes in microsporidian spores are locked in a dimeric hibernating state. Nat Microbiol 2023; 8:1834-1845. [PMID: 37709902 PMCID: PMC10522483 DOI: 10.1038/s41564-023-01469-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/11/2023] [Indexed: 09/16/2023]
Abstract
Translational control is an essential process for the cell to adapt to varying physiological or environmental conditions. To survive adverse conditions such as low nutrient levels, translation can be shut down almost entirely by inhibiting ribosomal function. Here we investigated eukaryotic hibernating ribosomes from the microsporidian parasite Spraguea lophii in situ by a combination of electron cryo-tomography and single-particle electron cryo-microscopy. We show that microsporidian spores contain hibernating ribosomes that are locked in a dimeric (100S) state, which is formed by a unique dimerization mechanism involving the beak region. The ribosomes within the dimer are fully assembled, suggesting that they are ready to be activated once the host cell is invaded. This study provides structural evidence for dimerization acting as a mechanism for ribosomal hibernation in microsporidia, and therefore demonstrates that eukaryotes utilize this mechanism in translational control.
Collapse
Affiliation(s)
- Mathew McLaren
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rebecca Conners
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Michail N Isupov
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Patricia Gil-Díez
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Crop Science Centre, Cambridge University, Cambridge, UK
| | - Lavinia Gambelli
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Vicki A M Gold
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Andreas Walter
- Center of Optical Technologies, Aalen University, Aalen, Germany
| | - Sean R Connell
- Structural Biology of Cellular Machines, IIS Biobizkaia, Barakaldo, Spain
| | - Bryony Williams
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Bertram Daum
- Living Systems Institute, University of Exeter, Exeter, UK.
- Department of Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
8
|
Ragucci S, Landi N, Citores L, Iglesias R, Russo R, Clemente A, Saviano M, Pedone PV, Chambery A, Ferreras JM, Di Maro A. The Biological Action and Structural Characterization of Eryngitin 3 and 4, Ribotoxin-like Proteins from Pleurotus eryngii Fruiting Bodies. Int J Mol Sci 2023; 24:14435. [PMID: 37833883 PMCID: PMC10572553 DOI: 10.3390/ijms241914435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Ribotoxin-like proteins (RL-Ps) are specific ribonucleases found in mushrooms that are able to cleave a single phosphodiester bond located in the sarcin-ricin loop (SRL) of the large rRNA. The cleaved SRL interacts differently with some ribosomal proteins (P-stalk). This action blocks protein synthesis because the damaged ribosomes are unable to interact with elongation factors. Here, the amino acid sequences of eryngitin 3 and 4, RL-Ps isolated from Pleurotus eryngii fruiting bodies, were determined to (i) obtain structural information on this specific ribonuclease family from edible mushrooms and (ii) explore the structural determinants which justify their different biological and antipathogenic activities. Indeed, eryngitin 3 exhibited higher toxicity with respect to eryngitin 4 against tumoral cell lines and model fungi. Structurally, eryngitin 3 and 4 consist of 132 amino acids, most of them identical and exhibiting a single free cysteinyl residue. The amino acidic differences between the two toxins are (i) an additional phenylalanyl residue at the N-terminus of eryngitin 3, not retrieved in eryngitin 4, and (ii) an additional arginyl residue at the C-terminus of eryngitin 4, not retrieved in eryngitin 3. The 3D models of eryngitins show slight differences at the N- and C-terminal regions. In particular, the positive electrostatic surface at the C-terminal of eryngitin 4 is due to the additional arginyl residue not retrieved in eryngitin 3. This additional positive charge could interfere with the binding to the SRL (substrate) or with some ribosomal proteins (P-stalk structure) during substrate recognition.
Collapse
Affiliation(s)
- Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (N.L.); (R.R.); (A.C.); (P.V.P.); (A.C.)
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (N.L.); (R.R.); (A.C.); (P.V.P.); (A.C.)
- Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Lucía Citores
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.); (J.M.F.)
| | - Rosario Iglesias
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.); (J.M.F.)
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (N.L.); (R.R.); (A.C.); (P.V.P.); (A.C.)
| | - Angela Clemente
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (N.L.); (R.R.); (A.C.); (P.V.P.); (A.C.)
| | - Michele Saviano
- Institute of Crystallography, National Research Council, Via Vivaldi 43, 81100 Caserta, Italy;
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (N.L.); (R.R.); (A.C.); (P.V.P.); (A.C.)
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (N.L.); (R.R.); (A.C.); (P.V.P.); (A.C.)
| | - José Miguel Ferreras
- Department of Biochemistry and Molecular Biology and Physiology, Faculty of Sciences, University of Valladolid, E-47011 Valladolid, Spain; (L.C.); (R.I.); (J.M.F.)
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Via Vivaldi 43, 81100 Caserta, Italy; (S.R.); (N.L.); (R.R.); (A.C.); (P.V.P.); (A.C.)
| |
Collapse
|
9
|
Filipek K, Deryło K, Michalec-Wawiórka B, Zaciura M, González-Ibarra A, Krokowski D, Latoch P, Starosta AL, Czapiński J, Rivero-Müller A, Wawiórka L, Tchórzewski M. Identification of a novel alternatively spliced isoform of the ribosomal uL10 protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194890. [PMID: 36328276 DOI: 10.1016/j.bbagrm.2022.194890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Alternative splicing is one of the key mechanisms extending the complexity of genetic information and at the same time adaptability of higher eukaryotes. As a result, the broad spectrum of isoforms produced by alternative splicing allows organisms to fine-tune their proteome; however, the functions of the majority of alternatively spliced protein isoforms are largely unknown. Ribosomal protein isoforms are one of the groups for which data are limited. Here we report characterization of an alternatively spliced isoform of the ribosomal uL10 protein, named uL10β. The uL10 protein constitutes the core element of the ribosomal stalk structure within the GTPase associated center, which represents the landing platform for translational GTPases - trGTPases. The stalk plays an important role in the ribosome-dependent stimulation of GTP by trGTPases, which confer unidirectional trajectory for the ribosome, allosterically contributing to the speed and accuracy of translation. We have shown that the newly identified uL10β protein is stably expressed in mammalian cells and is primarily located within the nuclear compartment with a minor signal within the cytoplasm. Importantly, uL10β is able to bind to the ribosomal particle, but is mainly associated with 60S and 80S particles; additionally, the uL10β undergoes re-localization into the mitochondria upon endoplasmic reticulum stress induction. Our results suggest a specific stress-related dual role of uL10β, supporting the idea of existence of specialized ribosomes with an altered GTPase associated center.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kamil Deryło
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Monika Zaciura
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Alan González-Ibarra
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Krokowski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland; Polish-Japanese Academy of Information Technology, Warsaw 02-008, Poland
| | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093 Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 21-093 Lublin, Poland
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
10
|
Archaea/eukaryote-specific ribosomal proteins - guardians of a complex structure. Comput Struct Biotechnol J 2023; 21:1249-1261. [PMID: 36817958 PMCID: PMC9932298 DOI: 10.1016/j.csbj.2023.01.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023] Open
Abstract
In three domains of life, proteins are synthesized by large ribonucleoprotein particles called ribosomes. All ribosomes are composed of ribosomal RNAs (rRNA) and numerous ribosomal proteins (r-protein). The three-dimensional shape of ribosomes is mainly defined by a tertiary structure of rRNAs. In addition, rRNAs have a major role in decoding the information carried by messenger RNAs and catalyzing the peptide bond formation. R-proteins are essential for shaping the network of interactions that contribute to a various aspects of the protein synthesis machinery, including assembly of ribosomes and interaction of ribosomal subunits. Structural studies have revealed that many key components of ribosomes are conserved in all life domains. Besides the core structure, ribosomes contain domain-specific structural features that include additional r-proteins and extensions of rRNA and r-proteins. This review focuses specifically on those r-proteins that are found only in archaeal and eukaryotic ribosomes. The role of these archaea/eukaryote specific r-proteins in stabilizing the ribosome structure is discussed. Several examples illustrate their functions in the formation of the internal network of ribosomal subunits and interactions between the ribosomal subunits. In addition, the significance of these r-proteins in ribosome biogenesis and protein synthesis is highlighted.
Collapse
|
11
|
Kao CC, Nie Y, Ren S, De Costa NTTS, Pandey RK, Hong J, Smith DB, Symons JA, Beigelman L, Blatt LM. Mechanism of action of hepatitis B virus S antigen transport-inhibiting oligonucleotide polymer, STOPS, molecules. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:335-348. [PMID: 35024245 PMCID: PMC8717253 DOI: 10.1016/j.omtn.2021.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
A functional cure of chronic hepatitis B requires eliminating the hepatitis B virus (HBV)-encoded surface antigen (HBsAg), which can suppress immune responses. STOPS are phosphorothioated single-stranded oligonucleotides containing novel chemistries that significantly reduce HBsAgs produced by HBV-infected liver cells. The STOPS molecule ALG-10000 functions inside cells to reduce the levels of multiple HBV-encoded molecules. However, it does not bind HBV molecules. An affinity resin coupled with ALG-10000 was found to bind several proteins from liver cells harboring replicating HBV. Silencing RNAs targeting host factors SRSF1, HNRNPA2B1, GRP78 (HspA5), RPLP1, and RPLP2 reduced HBsAg levels and other HBV molecules that are concomitantly reduced by STOPS. Host proteins RPLP1/RPLP2 and GRP78 function in the translation of membrane proteins, protein folding, and degradation. ALG-10000 and the knockdowns of RPLP1/2 and GRP78 decreased the levels of HBsAg and increased their ubiquitination and proteasome degradation. GRP78, RPLP1, and RPLP2 affected HBsAg production only when HBsAg was expressed with HBV regulatory sequences, suggesting that HBV has evolved to engage with these STOPS-interacting molecules. The STOPS inhibition of HBsAg levels in HBV-infected cells occurs by sequestering cellular proteins needed for proper expression and folding of HBsAg.
Collapse
Affiliation(s)
- C Cheng Kao
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | - Yuchun Nie
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | - Suping Ren
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | | | - Rajendra K Pandey
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | - Jin Hong
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | - David B Smith
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | - Julian A Symons
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | - Leonid Beigelman
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| | - Lawrence M Blatt
- Aligos Therapeutics, Inc., 1 Corporate Drive, South San Francisco, CA 94080, USA
| |
Collapse
|
12
|
Strub MD, Ramachandran S, Boudko DY, Meleshkevitch E, Pezzulo AA, Subramanian A, Liberzon A, Bridges RJ, McCray PB. Translating in vitro CFTR rescue into small molecule correctors for cystic fibrosis using the Library of Integrated Network-based Cellular Signatures drug discovery platform. CPT Pharmacometrics Syst Pharmacol 2022; 11:240-251. [PMID: 34877817 PMCID: PMC8846631 DOI: 10.1002/psp4.12751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The common ΔF508-CFTR mutation results in protein misfolding and proteasomal degradation. If ΔF508-CFTR trafficks to the cell surface, its anion channel function may be partially restored. Several in vitro strategies can partially correct ΔF508-CFTR trafficking and function, including low-temperature, small molecules, overexpression of miR-138, or knockdown of SIN3A. The challenge remains to translate such interventions into therapies and to understand their mechanisms. One approach for connecting such interventions to small molecule therapies that has previously succeeded for CF and other diseases is via mRNA expression profiling and iterative searches of small molecules with similar expression signatures. Here, we query the Library of Integrated Network-based Cellular Signatures using transcriptomic signatures from previously generated CF expression data, including RNAi- and low temperature-based rescue signatures. This LINCS in silico screen prioritized 135 small molecules that mimicked our rescue interventions based on their genomewide transcriptional perturbations. Functional screens of these small molecules identified eight compounds that partially restored ΔF508-CFTR function, as assessed by cAMP-activated chloride conductance. Of these, XL147 rescued ΔF508-CFTR function in primary CF airway epithelia, while also showing cooperativity when administered with C18. Improved CF corrector therapies are needed and this integrative drug prioritization approach offers a novel method to both identify small molecules that may rescue ΔF508-CFTR function and identify gene networks underlying such rescue.
Collapse
Affiliation(s)
- Matthew D. Strub
- Department of PediatricsUniversity of IowaIowa CityIowaUSA
- Interdisciplinary Graduate Program in GeneticsUniversity of IowaIowa CityIowaUSA
| | - Shyam Ramachandran
- Department of PediatricsUniversity of IowaIowa CityIowaUSA
- Present address:
SanofiWalthamMassachusettsUSA
| | - Dmitri Y. Boudko
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoIllinoisUSA
- Present address:
ReCode TherapeuticsDallasTexasUSA
| | - Ella A. Meleshkevitch
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoIllinoisUSA
- Present address:
ReCode TherapeuticsDallasTexasUSA
| | | | | | - Arthur Liberzon
- Broad Institute of MIT and HarvardCambridgeMassachusettsUSA
- Present address:
AlkermesWalthamMassachusettsUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsRosalind Franklin UniversityNorth ChicagoIllinoisUSA
| | - Paul B. McCray
- Department of PediatricsUniversity of IowaIowa CityIowaUSA
- Interdisciplinary Graduate Program in GeneticsUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
13
|
High-speed atomic force microscopy tracks the dynamic parts of the ribosome. Proc Natl Acad Sci U S A 2021; 118:2024413118. [PMID: 33431655 DOI: 10.1073/pnas.2024413118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Suzuki T, Ito K, Miyoshi T, Murakami R, Uchiumi T. Structural insights into the Switching Off of the Interaction between the Archaeal Ribosomal Stalk and aEF1A by Nucleotide Exchange Factor aEF1B. J Mol Biol 2021; 433:167046. [PMID: 33971210 DOI: 10.1016/j.jmb.2021.167046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
The ribosomal stalk protein plays a crucial role in functional interactions with translational GTPase factors. It has been shown that the archaeal stalk aP1 binds to both GDP- and GTP-bound conformations of aEF1A through its C-terminal region in two different modes. To obtain an insight into how the aP1•aEF1A binding mode changes during the process of nucleotide exchange from GDP to GTP on aEF1A, we have analyzed structural changes in aEF1A upon binding of the nucleotide exchange factor aEF1B. The isolated archaeal aEF1B has nucleotide exchange ability in the presence of aa-tRNA but not deacylated tRNA, and increases activity of polyphenylalanine synthesis 4-fold. The aEF1B mutation, R90A, results in loss of its original nucleotide exchange activity but retains a remarkable ability to enhance polyphenylalanine synthesis. These results suggest an additional functional role for aEF1B other than in nucleotide exchange. The crystal structure of the aEF1A•aEF1B complex, resolved at 2.0 Å resolution, shows marked rotational movement of domain 1 of aEF1A compared to the structure of aEF1A•GDP•aP1, and this conformational change results in disruption of the original aP1 binding site between domains 1 and 3 of aEF1A. The loss of aP1 binding to the aEF1A•aEF1B complex was confirmed by native gel analysis. The results suggest that aEF1B plays a role in switching off the interaction between aP1 and aEF1A•GDP, as well as in nucleotide exchange, and promote translation elongation.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| | - Tomohiro Miyoshi
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Ryo Murakami
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan; The Institute of Science and Technology, Niigata University, Ikarashi 2-8050, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
15
|
Smith LJ, Green CW, Redfield C. The 'Shape-Shifter' Peptide from the Disulphide Isomerase PmScsC Shows Context-Dependent Conformational Preferences. Biomolecules 2021; 11:biom11050642. [PMID: 33926076 PMCID: PMC8146718 DOI: 10.3390/biom11050642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple crystal structures of the homo-trimeric protein disulphide isomerase PmScsC reveal that the peptide which links the trimerization stalk and catalytic domain can adopt helical, β-strand and loop conformations. This region has been called a 'shape-shifter' peptide. Characterisation of this peptide using NMR experiments and MD simulations has shown that it is essentially disordered in solution. Analysis of the PmScsC crystal structures identifies the role of intermolecular contacts, within an assembly of protein molecules, in stabilising the different linker peptide conformations. These context-dependent conformational properties may be important functionally, allowing for the binding and disulphide shuffling of a variety of protein substrates to PmScsC. They also have a relevance for our understanding of protein aggregation and misfolding showing how intermolecular quaternary interactions can lead to β-sheet formation by a sequence that in other contexts adopts a helical structure. This 'shape-shifting' peptide region within PmScsC is reminiscent of one-to-many molecular recognition features (MoRFs) found in intrinsically disordered proteins which are able to adopt different conformations when they fold upon binding to their protein partners.
Collapse
Affiliation(s)
- Lorna J. Smith
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK;
- Correspondence: (L.J.S.); (C.R.)
| | - Chloe W. Green
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK;
| | - Christina Redfield
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
- Correspondence: (L.J.S.); (C.R.)
| |
Collapse
|
16
|
Mohammadi A, Tschanz A, Leitner A. Expanding the Cross-Link Coverage of a Carboxyl-Group Specific Chemical Cross-Linking Strategy for Structural Proteomics Applications. Anal Chem 2021; 93:1944-1950. [PMID: 33399445 DOI: 10.1021/acs.analchem.0c03926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Carboxyl-group specific chemical cross-linking is gaining an increased interest as a structural mass spectrometry/structural proteomics technique that is complementary to the more commonly used amine-specific chemistry using succinimide esters. One of these protocols uses a combination of dihydrazide linkers and the coupling reagent DMTMM [4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium] chloride, which allows performing the reaction at neutral pH. The reaction yields two types of products, carboxyl-carboxyl cross-links that incorporate the dihydrazide linker and zero-length carboxyl-amine cross-links induced by DMTMM alone. Until now, it has not been systematically investigated how the balance between the two products is affected by experimental conditions. Here, we studied the role of the ratios of the two reagents (using pimelic dihydrazide and DMTMM) and demonstrate that the concentration of the two reagents can be systematically adjusted to favor one reaction product over the other. Using a set of five model proteins, we observed that the number of identified cross-linked peptides could be more than doubled by a combination of three different reaction conditions. We also applied this strategy to the bovine 20S proteasome and the Escherichia coli 70S ribosome, again demonstrating complementarity and increased cross-link coverage.
Collapse
Affiliation(s)
- Azadeh Mohammadi
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, bd. du Triomphe, Access 2 - 1050 Brussels, Belgium.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Aline Tschanz
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
17
|
Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Sci Rep 2021; 11:2410. [PMID: 33510206 PMCID: PMC7844247 DOI: 10.1038/s41598-021-81610-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Arabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10 °C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations respond by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis may buffer fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and alter paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.
Collapse
|
18
|
Direct visualization of translational GTPase factor pool formed around the archaeal ribosomal P-stalk by high-speed AFM. Proc Natl Acad Sci U S A 2020; 117:32386-32394. [PMID: 33288716 PMCID: PMC7768734 DOI: 10.1073/pnas.2018975117] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Translation of genetic information by the ribosome is a core biological process in all organisms. The ribosomal stalk is a multimeric ribosomal protein complex which plays an essential role in translation elongation. However, the working mechanism of the ribosomal stalk still remains unclear. In this study, we applied HS-AFM to investigate the working mechanism of the archaeal ribosomal P-stalk. HS-AFM movies demonstrate that the P-stalk collects two translational GTPase factors (trGTPases), aEF1A and aEF2, and increases their local concentration near the ribosome. These direct visual evidences show that the multiple arms of the ribosomal P-stalk catch the trGTPases for efficient protein synthesis in the crowded intracellular environment. In translation elongation, two translational guanosine triphosphatase (trGTPase) factors EF1A and EF2 alternately bind to the ribosome and promote polypeptide elongation. The ribosomal stalk is a multimeric ribosomal protein complex which plays an essential role in the recruitment of EF1A and EF2 to the ribosome and their GTP hydrolysis for efficient and accurate translation elongation. However, due to the flexible nature of the ribosomal stalk, its structural dynamics and mechanism of action remain unclear. Here, we applied high-speed atomic force microscopy (HS-AFM) to directly visualize the action of the archaeal ribosomal heptameric stalk complex, aP0•(aP1•aP1)3 (P-stalk). HS-AFM movies clearly demonstrated the wobbling motion of the P-stalk on the large ribosomal subunit where the stalk base adopted two conformational states, a predicted canonical state, and a newly identified flipped state. Moreover, we showed that up to seven molecules of archaeal EF1A (aEF1A) and archaeal EF2 (aEF2) assembled around the ribosomal P-stalk, corresponding to the copy number of the common C-terminal factor-binding site of the P-stalk. These results provide visual evidence for the factor-pooling mechanism by the P-stalk within the ribosome and reveal that the ribosomal P-stalk promotes translation elongation by increasing the local concentration of translational GTPase factors.
Collapse
|
19
|
Filipek K, Michalec-Wawiórka B, Boguszewska A, Kmiecik S, Tchórzewski M. Phosphorylation of the N-terminal domain of ribosomal P-stalk protein uL10 governs its association with the ribosome. FEBS Lett 2020; 594:3002-3019. [PMID: 32668052 DOI: 10.1002/1873-3468.13885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022]
Abstract
The uL10 protein is the main constituent of the ribosomal P-stalk, anchoring the whole stalk to the ribosome through interactions with rRNA. The P-stalk is the core of the GTPase-associated center (GAC), a critical element for ribosome biogenesis and ribosome translational activity. All P-stalk proteins (uL10, P1, and P2) undergo phosphorylation within their C termini. Here, we show that uL10 has multiple phosphorylation sites, mapped also within the N-terminal rRNA-binding domain. Our results reveal that the introduction of a negative charge within the N terminus of uL10 impairs its association with the ribosome. These findings demonstrate that uL10 N-terminal phosphorylation has regulatory potential governing the uL10 interaction with the ribosome and may control the activity of GAC.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Aleksandra Boguszewska
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
20
|
Gabdulkhakov A, Mitroshin I, Garber M. Structure of the ribosomal P stalk base in archaean Methanococcus jannaschii. J Struct Biol 2020; 211:107559. [PMID: 32653645 DOI: 10.1016/j.jsb.2020.107559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 11/29/2022]
Abstract
Complexes of archaeal ribosomal proteins uL11 and uL10/P0 (the two-domain N-terminal fragment of uL10, uL10NTF/P0NTF) with the adjacent 74 nucleotides of 23S rRNA fragment (23SrRNA(74)) from Methanococcus jannaschii (Mja) were obtained, crystallized and their structures were studied. The comparative structural analysis of the complexes of Mja uL10NTF•23SrRNA(74) and Mja uL10NTF•uL11•23SrRNA(74) shows that the insertion of uL11 in the binary complex does not change the conformation of the 23S rRNA fragment. On the other hand, the interaction with this specific RNA fragment leads to the restructuring of uL11 compared to the structure of this protein in the free state. Besides, although analysis confirmed the mobility of uL10/P0 domain II, disproved the assumption that it may be in contact with rRNA or uL11. In addition, the Mja uL10NTF•uL11•23SrRNA(74) complex was cocrystallized with the antibiotic thiostrepton, and the structure of this complex was solved. The thiostrepton binding site in this archaeal complex was found between the 23S rRNA and the N-terminal domain (NTD) of the Mja uL11 protein, similar to its binding site in the one of bacterial ribosome complex with thiostrepton. Upon binding of thiostrepton, the NTD of uL11 shifts toward rRNA by 7 Å. Such a shift may be the cause of the inhibitory effect of the antibiotic on the recruitment of translation factors to the GTPase-activating region in archaeal ribosomes, similar to its inhibitory effect on protein synthesis in bacterial ribosomes.
Collapse
Affiliation(s)
- Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino, Moscow Region 142290, Russian Federation.
| | - Ivan Mitroshin
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino, Moscow Region 142290, Russian Federation
| | - Maria Garber
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, Pushchino, Moscow Region 142290, Russian Federation
| |
Collapse
|
21
|
Younkin AD, Gregory ST, O'Connor M. Alterations in the ribosomal protein bL12 of E. coli affecting the initiation, elongation and termination of protein synthesis. Biochimie 2020; 175:173-180. [PMID: 32569619 DOI: 10.1016/j.biochi.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022]
Abstract
In bacteria, ribosomal protein bL12 forms the prominent stalk structure on the ribosome and binds to multiple, distinct translational GTPase factors during the sequential steps of translation. Using a genetic selection in E. coli for altered readthrough of UGA stop codons, we have isolated seven different mutations affecting the C-terminal domain of the protein that forms the interaction surface with translation factors. Analysis of these altered proteins, along with four additional alterations previously shown to affect IF2-ribosome interactions, indicates that multiple steps of translation are affected, consistent with bL12's interaction with multiple factors. Surprisingly, deletion of the release factor GTPase, RF3, has relatively little effect on bL12-promoted stop codon readthrough, suggesting that other steps in termination are also influenced by bL12.
Collapse
Affiliation(s)
- Adam D Younkin
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Steven T Gregory
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, 02881, USA
| | - Michael O'Connor
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
22
|
Tobiasson V, Amunts A. Ciliate mitoribosome illuminates evolutionary steps of mitochondrial translation. eLife 2020; 9:59264. [PMID: 32553108 PMCID: PMC7326499 DOI: 10.7554/elife.59264] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022] Open
Abstract
To understand the steps involved in the evolution of translation, we used Tetrahymena thermophila, a ciliate with high coding capacity of the mitochondrial genome, as the model organism and characterized its mitochondrial ribosome (mitoribosome) using cryo-EM. The structure of the mitoribosome reveals an assembly of 94-ribosomal proteins and four-rRNAs with an additional protein mass of ~700 kDa on the small subunit, while the large subunit lacks 5S rRNA. The structure also shows that the small subunit head is constrained, tRNA binding sites are formed by mitochondria-specific protein elements, conserved protein bS1 is excluded, and bacterial RNA polymerase binding site is blocked. We provide evidence for anintrinsic protein targeting system through visualization of mitochondria-specific mL105 by the exit tunnel that would facilitate the recruitment of a nascent polypeptide. Functional protein uS3m is encoded by three complementary genes from the nucleus and mitochondrion, establishing a link between genetic drift and mitochondrial translation. Finally, we reannotated nine open reading frames in the mitochondrial genome that code for mitoribosomal proteins.
Collapse
Affiliation(s)
- Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
23
|
Switch of the interactions between the ribosomal stalk and EF1A in the GTP- and GDP-bound conformations. Sci Rep 2019; 9:14761. [PMID: 31611569 PMCID: PMC6791870 DOI: 10.1038/s41598-019-51266-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/27/2019] [Indexed: 02/01/2023] Open
Abstract
Translation elongation factor EF1A delivers aminoacyl-tRNA to the ribosome in a GTP-bound form, and is released from the ribosome in a GDP-bound form. This association/dissociation cycle proceeds efficiently via a marked conformational change in EF1A. EF1A function is dependent on the ribosomal “stalk” protein of the ribosomal large subunit, although the precise mechanism of action of the stalk on EF1A remains unclear. Here, we clarify the binding mode of archaeal stalk aP1 to GTP-bound aEF1A associated with aPelota. Intriguingly, the C-terminal domain (CTD) of aP1 binds to aEF1A•GTP with a similar affinity to aEF1A•GDP. We have also determined the crystal structure of the aP1-CTD•aEF1A•GTP•aPelota complex at 3.0 Å resolution. The structure shows that aP1-CTD binds to a space between domains 1 and 3 of aEF1A. Biochemical analyses show that this binding is crucial for protein synthesis. Comparison of the structures of aP1-CTD•aEF1A•GTP and aP1-CTD•aEF1A•GDP demonstrates that the binding mode of aP1 changes markedly upon a conformational switch between the GTP- and GDP-bound forms of aEF1A. Taking into account biochemical data, we infer that aP1 employs its structural flexibility to bind to aEF1A before and after GTP hydrolysis for efficient protein synthesis.
Collapse
|
24
|
Choi KHA, Yang L, Lee KM, Yu CWH, Banfield DK, Ito K, Uchiumi T, Wong KB. Structural and Mutagenesis Studies Evince the Role of the Extended Protuberant Domain of Ribosomal Protein uL10 in Protein Translation. Biochemistry 2019; 58:3744-3754. [PMID: 31419120 DOI: 10.1021/acs.biochem.9b00528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The lateral stalk of ribosomes constitutes the GTPase-associated center and is responsible for recruiting translation factors to the ribosomes. The eukaryotic stalk contains a P-complex, in which one molecule of uL10 (formerly known as P0) protein binds two copies of P1/P2 heterodimers. Unlike bacterial uL10, eukaryotic uL10 has an extended protuberant (uL10ext) domain inserted into the N-terminal RNA-binding domain. Here, we determined the solution structure of the extended protuberant domain of Bombyx mori uL10 by nuclear magnetic resonance spectroscopy. Comparison of the structures of the B. mori uL10ext domain with eRF1-bound and eEF2-bound ribosomes revealed significant structural rearrangement in a "hinge" region surrounding Phe183, a residue conserved in eukaryotic but not in archaeal uL10. 15N relaxation analyses showed that residues in the hinge region have significantly large values of transverse relaxation rates. To test the role of the conserved phenylalanine residue, we created a yeast mutant strain expressing an F181A variant of uL10. An in vitro translation assay showed that the alanine substitution increased the level of polyphenylalanine synthesis by ∼33%. Taken together, our results suggest that the hinge motion of the uL10ext domain facilitates the binding of different translation factors to the GTPase-associated center during protein synthesis.
Collapse
Affiliation(s)
- Kwok-Ho Andrew Choi
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Lei Yang
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Ka-Ming Lee
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - Conny Wing-Heng Yu
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| | - David K Banfield
- Division of Life Science , Hong Kong University of Science and Technology , Clear Water Bay , Hong Kong , China
| | - Kosuke Ito
- Department of Biology, Faculty of Science , Niigata University , Ikarashi 2-8050 , Nishi-ku, Niigata 950-2191 , Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science , Niigata University , Ikarashi 2-8050 , Nishi-ku, Niigata 950-2191 , Japan
| | - Kam-Bo Wong
- School of Life Sciences, Centre for Protein Science and Crystallography, State Key Laboratory of Agrobiotechnology , The Chinese University of Hong Kong , Shatin , Hong Kong, China
| |
Collapse
|
25
|
Mustafi M, Weisshaar JC. Near Saturation of Ribosomal L7/L12 Binding Sites with Ternary Complexes in Slowly Growing E. coli. J Mol Biol 2019; 431:2343-2353. [PMID: 31051175 DOI: 10.1016/j.jmb.2019.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/26/2019] [Accepted: 04/21/2019] [Indexed: 11/26/2022]
Abstract
For Escherichia coli growing rapidly in rich medium at 37 °C, the doubling time can be as short as ~20 min and the average rate of translation (ktrl) can be as fast as ~20 amino acids/s. For slower growth arising from poor nutrient quality or from higher growth osmolality, ktrl decreases significantly. In earlier work from the Hwa lab, a simplified Michaelis-Menten model suggested that the decrease in ktrl arises from a shortage of ternary complexes (TCs) under nutrient limitation and from slower diffusion of TCs under high growth osmolality. Here we present a single-molecule tracking study of the diffusion of EF-Tu in E. coli growing with doubling times in the range 62-190 min at 37 °C due to nutrient limitation, high growth osmolality, or both. The diffusive properties of EF-Tu remain quantitatively indistinguishable across all growth conditions studied. Dissection of the total population into ribosome-bound and free sub-populations, combined with copy number estimates for EF-Tu and ribosomes, indicates that in all cases ~3.7 EF-Tu copies are bound on average to each translating 70S ribosome. Thus, the four L7/L12 binding sites adjacent to the ribosomal A-site in E. coli are essentially saturated with TCs in all conditions, facilitating rapid testing of aminoacyl-tRNAs for a codon match. Evidently, the average translation rate is not limited by either the supply of cognate TCs under nutrient limitation or by the diffusion of free TCs at high osmolality. Some other step or steps must be rate limiting for translation in slow growth.
Collapse
Affiliation(s)
- Mainak Mustafi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - James C Weisshaar
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
26
|
How Ricin Damages the Ribosome. Toxins (Basel) 2019; 11:toxins11050241. [PMID: 31035546 PMCID: PMC6562825 DOI: 10.3390/toxins11050241] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Ricin belongs to the group of ribosome-inactivating proteins (RIPs), i.e., toxins that have evolved to provide particular species with an advantage over other competitors in nature. Ricin possesses RNA N-glycosidase activity enabling the toxin to eliminate a single adenine base from the sarcin-ricin RNA loop (SRL), which is a highly conserved structure present on the large ribosomal subunit in all species from the three domains of life. The SRL belongs to the GTPase associated center (GAC), i.e., a ribosomal element involved in conferring unidirectional trajectory for the translational apparatus at the expense of GTP hydrolysis by translational GTPases (trGTPases). The SRL represents a critical element in the GAC, being the main triggering factor of GTP hydrolysis by trGTPases. Enzymatic removal of a single adenine base at the tip of SRL by ricin blocks GTP hydrolysis and, at the same time, impedes functioning of the translational machinery. Here, we discuss the consequences of SRL depurination by ricin for ribosomal performance, with emphasis on the mechanistic model overview of the SRL modus operandi.
Collapse
|