1
|
Khattak F, Galgano S, Pedersen NR, Hui Y, Matthiesen R, Houdijk J. Supplementation of lactobacillus-fermented rapeseed meal in broiler diet reduces Campylobacter jejuni cecal colonization and limits the l-tryptophan and l-histidine biosynthesis pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5474-5485. [PMID: 38391155 DOI: 10.1002/jsfa.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Campylobacter jejuni (C. jejuni), a widely distributed global foodborne pathogen, primarily linked with contaminated chicken meat, poses a significant health risk. Reducing the abundance of this pathogen in poultry meat is challenging but essential. This study assessed the impact of Lactobacillus-fermented rapeseed meal (LFRM) on broilers exposed to C. jejuni-contaminated litter, evaluating growth performance, Campylobacter levels, and metagenomic profile. RESULTS By day 35, the litter contamination successfully colonized broilers with Campylobacter spp., particularly C. jejuni. In the grower phase, LFRM improved (P < 0.05) body weight and daily weight gain, resulting in a 9.2% better feed conversion ratio during the pre-challenge period (the period before artificial infection; days 13-20). The LFRM also reduced the C. jejuni concentration in the ceca (P < 0.05), without altering alpha and beta diversity. However, metagenomic data analysis revealed LFRM targeted a reduction in the abundance of C. jejuni biosynthetic pathways of l-tryptophan and l-histidine and gene families associated with transcription and virulence factors while also possibly leading to selected stress-induced resistance mechanisms. CONCLUSION The study demonstrated that LFRM inclusion improved growth and decreased cecal Campylobacter spp. concentration and the relative abundance of pivotal C. jejuni genes. Performance benefits likely resulted from LFRM metabolites. At the molecular level, LFRM may have reduced C. jejuni colonization, likely by decreasing the abundance of energy transduction and l-histidine and l-tryptophan biosynthesis genes otherwise required for bacterial survival and increased virulence. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Farina Khattak
- Monogastric Science Research Centre, SRUC, Edinburgh, UK
| | | | | | - Yan Hui
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Jos Houdijk
- Monogastric Science Research Centre, SRUC, Edinburgh, UK
| |
Collapse
|
2
|
El-Saadony MT, Saad AM, Yang T, Salem HM, Korma SA, Ahmed AE, Mosa WFA, Abd El-Mageed TA, Selim S, Al Jaouni SK, Zaghloul RA, Abd El-Hack ME, El-Tarabily KA, Ibrahim SA. Avian campylobacteriosis, prevalence, sources, hazards, antibiotic resistance, poultry meat contamination, and control measures: a comprehensive review. Poult Sci 2023; 102:102786. [PMID: 37454641 PMCID: PMC10371856 DOI: 10.1016/j.psj.2023.102786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 07/18/2023] Open
Abstract
Avian campylobacteriosis is a vandal infection that poses human health hazards. Campylobacter is usually colonized in the avian gut revealing mild signs in the infected birds, but retail chicken carcasses have high contamination levels of Campylobacter spp. Consequently, the contaminated avian products constitute the main source of human infection with campylobacteriosis and result in severe clinical symptoms such as diarrhea, abdominal pain, spasm, and deaths in sensitive cases. Thus, the current review aims to shed light on the prevalence of Campylobacter in broiler chickens, Campylobacter colonization, bird immunity against Campylobacter, sources of poultry infection, antibiotic resistance, poultry meat contamination, human health hazard, and the use of standard antimicrobial technology during the chicken processing of possible control strategies to overcome such problems.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Tao Yang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Rashed A Zaghloul
- Department Agricultural Microbiology, Faculty of Agriculture, Benha University, Moshtohor, Qaluybia, 13736, Egypt
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, Carver Hall, College of Agriculture and Environmental Sciences, North Carolina A & T State University, Greensboro, NC, 27411-1064
| |
Collapse
|
3
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|
4
|
Nafarrate I, Lasagabaster A, Sevillano E, Mateo E. Prevalence, molecular typing and antimicrobial susceptibility of Campylobacter spp. isolates in northern Spain. J Appl Microbiol 2020; 130:1368-1379. [PMID: 32886839 DOI: 10.1111/jam.14842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
Abstract
AIM To analyse the prevalence, genetic diversity and antimicrobial susceptibility of Campylobacter spp. in northern Spain. METHODS AND RESULTS Campylobacter was isolated from 139 samples of broiler meat and faecal dropping of broiler and swine with a prevalence of 35·4, 62 and 42·8%, respectively. Campylobacter jejuni (n = 55) and Campylobacter coli (n = 31) were identified by multiplex-PCR in meat, faeces and human clinical samples while Campylobacter fetus (n = 3) was exclusively detected in the latter. Fingerprinting by flaA-RFLP and PFGE revealed 68 different genotypes from the 89 isolates with a Biodiversity Simpson's index of 0·98. The 86·5% of the isolates were resistant to ciprofloxacin, 85·4% to tetracycline and 49·4% to erythromycin; only three genotypes were susceptible to the three antimicrobial drugs. Multidrug resistance was detected in the 40·7% of the isolates. CONCLUSIONS Campylobacter remains prevalent in northern Spain with a high biodiversity degree. About 93·3% of the isolates were resistant to one or more drugs. SIGNIFICANCE AND IMPACT OF THE STUDY Although different measures are taken to control Campylobacter, the detection of isolates resistant to the drugs used in the treatment of campylobacteriosis is still high, including different species and genotypes. This evidences the need of additional strategies against this pathogen.
Collapse
Affiliation(s)
- I Nafarrate
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Derio (Bizkaia), Spain
| | - A Lasagabaster
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Derio (Bizkaia), Spain
| | - E Sevillano
- Department of Immunology, Microbiology and Parasitology, UFI 11/25, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - E Mateo
- Department of Immunology, Microbiology and Parasitology, UFI 11/25, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
5
|
Campylobacter and Arcobacter species in food-producing animals: prevalence at primary production and during slaughter. World J Microbiol Biotechnol 2019; 35:146. [DOI: 10.1007/s11274-019-2722-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
6
|
Khattak F, Paschalis V, Green M, Houdijk JGM, Soultanas P, Mahdavi J. TYPLEX® Chelate, a novel feed additive, inhibits Campylobacter jejuni biofilm formation and cecal colonization in broiler chickens. Poult Sci 2018; 97:1391-1399. [PMID: 29462463 PMCID: PMC5914411 DOI: 10.3382/ps/pex413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/01/2017] [Indexed: 12/03/2022] Open
Abstract
Reducing Campylobacter spp. carriage in poultry is challenging, but essential to control this major cause of human bacterial gastroenteritis worldwide. Although much is known about the mechanisms and route of Campylobacter spp. colonization in poultry, the literature is scarce on antibiotic-free solutions to combat Campylobacter spp. colonization in poultry. In vitro and in vivo studies were conducted to investigate the role of TYPLEX® Chelate (ferric tyrosine), a novel feed additive, in inhibiting Campylobacter jejuni (C. jejuni) biofilm formation and reducing C. jejuni and Escherichia coli (E. coli) colonization in broiler chickens at market age. In an in vitro study, the inhibitory effect on C. jejuni biofilm formation using a plastic bead assay was investigated. The results demonstrated that TYPLEX® Chelate significantly reduces biofilm formation. In an in vivo study, 800 broilers (one d old) were randomly allocated to 4 dietary treatments in a randomized block design, each having 10 replicate pens with 20 birds per pen. At d 21, all birds were challenged with C. jejuni via seeded litter. At d 42, cecal samples were collected and tested for volatile fatty acid (VFA) concentrations and C. jejuni and E. coli counts. The results showed that TYPLEX® Chelate reduced the carriage of C. jejuni and E. coli in poultry by 2 and 1 log10 per gram cecal sample, respectively, and increased cecal VFA concentrations. These findings support TYPLEX® Chelate as a novel non-antibiotic feed additive that may help produce poultry with a lower public health risk of Campylobacteriosis.
Collapse
Affiliation(s)
- F Khattak
- Monogastric Science Research Center, Scotland Rural College (SRUC), Ayr, KA6 5HW, Scotland, UK
| | - V Paschalis
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - M Green
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - J G M Houdijk
- Monogastric Science Research Center, Scotland Rural College (SRUC), Ayr, KA6 5HW, Scotland, UK
| | - P Soultanas
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| | - J Mahdavi
- School of Chemistry, Center for Biomolecular Sciences, University of Nottingham, NG7 2RD, UK
| |
Collapse
|