1
|
Beetz MJ. A perspective on neuroethology: what the past teaches us about the future of neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:325-346. [PMID: 38411712 PMCID: PMC10995053 DOI: 10.1007/s00359-024-01695-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
For 100 years, the Journal of Comparative Physiology-A has significantly supported research in the field of neuroethology. The celebration of the journal's centennial is a great time point to appreciate the recent progress in neuroethology and to discuss possible avenues of the field. Animal behavior is the main source of inspiration for neuroethologists. This is illustrated by the huge diversity of investigated behaviors and species. To explain behavior at a mechanistic level, neuroethologists combine neuroscientific approaches with sophisticated behavioral analysis. The rapid technological progress in neuroscience makes neuroethology a highly dynamic and exciting field of research. To summarize the recent scientific progress in neuroethology, I went through all abstracts of the last six International Congresses for Neuroethology (ICNs 2010-2022) and categorized them based on the sensory modalities, experimental model species, and research topics. This highlights the diversity of neuroethology and gives us a perspective on the field's scientific future. At the end, I highlight three research topics that may, among others, influence the future of neuroethology. I hope that sharing my roots may inspire other scientists to follow neuroethological approaches.
Collapse
Affiliation(s)
- M Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
2
|
Medler S. Graham Hoyle (1923-1985): exploring the depths of muscle diversity. ADVANCES IN PHYSIOLOGY EDUCATION 2023; 47:893-903. [PMID: 37823190 DOI: 10.1152/advan.00098.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Graham Hoyle was an important neuroscientist, muscle biologist, and zoologist throughout much of the second half of the twentieth century. A native of England, Hoyle studied under Bernard Katz in London before earning his D.Sc. in neurophysiology from the University of Glasgow. He immigrated to the United States in the mid-1950s and worked with C.A.G. Wiersma at Caltech, with whom he shared a love for crustacean neuromuscular physiology. Hoyle accepted a position at the University of Oregon in 1961 and remained there as a professor until his death in 1985 at the age of 61. Hoyle was active scientifically at a time when the basics of muscle biology were still being discovered. He made many important contributions to the field of neuromuscular physiology, particularly in the realm of comparative physiology. Hoyle was passionate about the importance of a comparative approach in physiology and emphasized that "as a comparative physiologist, I value knowledge of the diverse forms not only for its own sake, but also because it embodies the general truth." Perhaps Hoyle's most lasting legacy is embodied in the many students and postdocs who trained with him early in their careers. Many of these young scientists went on to build prominent careers and trained numerous students of their own. In addition to offering an overview of Hoyle's career, this article revisits some of Hoyle's central contributions to muscle biology and assesses them in light of our current understanding of muscle structure and function.NEW & NOTEWORTHY Graham Hoyle was an important neuroscientist, muscle biologist, and zoologist throughout much of the second half of the twentieth century. He was trained by Bernard Katz at University College London and later worked with C.A.G. Wiersma at Caltech. As a professor at the University of Oregon, Hoyle helped found the Institute of Neuroscience and trained many prominent scientists in the fields of neuromuscular biology and neuroethology.
Collapse
Affiliation(s)
- Scott Medler
- Dennis R. DePerro School of Health Professions, St. Bonaventure University, St. Bonaventure, New York, United States
| |
Collapse
|
3
|
Dhein K. From Karl von Frisch to Neuroethology: A Methodological Perspective on the Frischean Tradition's Expansion into Neuroethology. BERICHTE ZUR WISSENSCHAFTSGESCHICHTE 2022; 45:30-54. [PMID: 35258109 DOI: 10.1002/bewi.202200003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper examines a tradition of eusocial insect research stemming from the Austrian zoologist Karl von Frisch. As I show in this paper, one of the most enduring features of the Frischean tradition has been an experimental methodology developed by Frisch in the early 1910s. By tracing this methodology's use through Frisch's student, Martin Lindauer, and two of Lindauer's students, Rüdiger Wehner and Randolf Menzel, this paper illuminates a surprising aspect of ethology's development during the last half of the 20th century. Namely, it sheds light on how the Frischean tradition, a tradition that had a complicated relationship with ethology since the discipline's formation in the 1930s, produced scientists who became leading figures in neuroethology, the most prominent contemporary field of behavioral research to retain the label of "ethology." Some of the features that distinguished Frisch's training method from the program of classical ethology and the work of his contemporaries later helped his academic descendants adapt the method to the neuroethological program.
Collapse
Affiliation(s)
- Kelle Dhein
- Lyman T. Johnson Postdoctoral Fellow at University of Kentucky
| |
Collapse
|
4
|
MacIver MA, Finlay BL. The neuroecology of the water-to-land transition and the evolution of the vertebrate brain. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200523. [PMID: 34957852 PMCID: PMC8710882 DOI: 10.1098/rstb.2020.0523] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The water-to-land transition in vertebrate evolution offers an unusual opportunity to consider computational affordances of a new ecology for the brain. All sensory modalities are changed, particularly a greatly enlarged visual sensorium owing to air versus water as a medium, and expanded by mobile eyes and neck. The multiplication of limbs, as evolved to exploit aspects of life on land, is a comparable computational challenge. As the total mass of living organisms on land is a hundredfold larger than the mass underwater, computational improvements promise great rewards. In water, the midbrain tectum coordinates approach/avoid decisions, contextualized by water flow and by the animal's body state and learning. On land, the relative motions of sensory surfaces and effectors must be resolved, adding on computational architectures from the dorsal pallium, such as the parietal cortex. For the large-brained and long-living denizens of land, making the right decision when the wrong one means death may be the basis of planning, which allows animals to learn from hypothetical experience before enactment. Integration of value-weighted, memorized panoramas in basal ganglia/frontal cortex circuitry, with allocentric cognitive maps of the hippocampus and its associated cortices becomes a cognitive habit-to-plan transition as substantial as the change in ecology. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Malcolm A. MacIver
- Center for Robotics and Biosystems, Northwestern University, Evanston, IL 60208, USA
| | - Barbara L. Finlay
- Department of Psychology, Behavioral and Evolutionary Neuroscience Group, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Liu L, He S, Tang M, Zhang M, Wang C, Wang Z, Sun F, Yan Y, Li H, Lin K. Pseudo toxicity abatement effect of norfloxacin and copper combined exposure on Caenorhabditis elegans. CHEMOSPHERE 2022; 287:132019. [PMID: 34450372 DOI: 10.1016/j.chemosphere.2021.132019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of antibiotics and heavy metals may result in complex ecotoxicological effects on living organisms. In this work, the combined toxic effects of norfloxacin (NOR) and copper (Cu) on Caenorhabditis elegans (C. elegans) were investigated due to the highly possible co-pollution tendency. The results indicated that locomotion behaviors (frequency of head thrash and body bend) of C. elegans were more sensitive as the exposure time of NOR or Cu prolonged. Meanwhile, the physiological indexes (locomotion behaviors, body length) of C. elegans were more sensitive to the combined pollution that with lower Cu dosage (0.0125 μM), in prolonged exposure experiments. In addition, the toxic effects of NOR-Cu on physiological indexes of C. elegans seemed to be alleviated during prolonged exposure when Cu was 1.25 μM. Similarly, the ROS production and apoptosis level almost unchanged with the addition of NOR compared with Cu (1.25 μM) exposure groups, but both significantly higher than the control groups. Furthermore, compared with Cu (0.0125 μM and 1.25 μM) exposure experiments, the addition of NOR had resulted in the genetic expression decrease of hsp-16.1, hsp-16.2, hsp-16.48, and the oxidative stress in C. elegans seems to be alleviated. However, the significantly decreased of ape-1 and sod-3 expression indicated the disruption of ROS defense mechanism. The irregular change in ace-1 and ace-2 gene expressions in NOR-Cu (0.0125 μM) would result in the locomotion behaviors disorders of C. elegans, and this also explains why C. elegans are more sensitive to the combination of NOR and lower concentration of Cu.
Collapse
Affiliation(s)
- Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Siqi He
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Mingqi Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhiping Wang
- School of Environment Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feifei Sun
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Conrad JA. Drive theory, redux: a history and reconsideration of the drives. THE INTERNATIONAL JOURNAL OF PSYCHOANALYSIS 2021; 102:492-518. [PMID: 34080944 DOI: 10.1080/00207578.2020.1848389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A large and significant portion of contemporary psychoanalytic theory has given up on the drives. The shift toward object relations in the 1940s and 50s, the scepticism about metapsychology in the latter half of the twentieth century, and a general confusion about the coherence of Freud's drive theory have all contributed to their slow decline in prominence. There are legitimate criticisms of the drives that deserve attention but the drives themselves require a careful examination before any successful defence of their place in the metapsychology may be mounted. The current paper provides an account of the drives informed by the intellectual history of German and English thought related to the drives and instincts as they came to Freud. This history allows us to clearly distinguish between "drive" (or Trieb) and its conceptual neighbour "instinct" (or Instinkt).
Collapse
Affiliation(s)
- Jordan A Conrad
- Center for Bioethics, New York University, New York, NY, USA.,Institute of Philosophy, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Wang Y, Liu SS, Huang P, Wang ZJ, Xu YQ. Assessing the combined toxicity of carbamate mixtures as well as organophosphorus mixtures to Caenorhabditis elegans using the locomotion behaviors as endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143378. [PMID: 33168241 DOI: 10.1016/j.scitotenv.2020.143378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/18/2020] [Accepted: 10/18/2020] [Indexed: 05/24/2023]
Abstract
Carbamate pesticides (CMs) and organophosphorus pesticides (OPs) have been widely used in agriculture and toxicologically affect non-target organisms. Although there are many reports about their toxicities, the combined behavioral toxicities of CM/OP mixtures on Caenorhabditis elegans have rarely been studied. In this study, body bend inhibition (BBI), head thrash inhibition (HTI), and swimming speed inhibition (SSI) by CMs and OPs were chosen as the toxicity endpoints. The locomotion behavioral toxicities of individual pesticides (carbofuran (CAR), methomyl (MET), chlorpyrifos (CPF), and triazophos (TAP)) and their binary mixtures on C. elegans were determined systematically and the toxicological interaction profiles of various CM/OP mixture rays constructed using the combination index. It was shown that four pesticides and their binary mixture rays have significant inhibitory effects on the locomotion behavior of C. elegans; that is, they produce locomotion behavioral toxicities and the toxicity of two OPs is higher than those of two CMs. The toxicological interactions in the binary CM and OP mixtures are different from each other. For example, one mixture ray (CAR-MET-R1) in the CM system on the SSI endpoint exhibits synergism at all concentration levels, another ray (CAR-MET-R3) displays low-dose synergism and high-dose additive action on BBI and HTI endpoints, and weak synergism at high-dose on SSI, and other rays perform additive action. Two rays (CPF-TAP-R1 and CPF-TAP-R2) in the OP mixture system display low-dose additive action and high-dose antagonism on the three endpoints. Another ray (CPF-TAP-R3) shows the additive action at all concentration levels. It can be concluded that it is not sufficient to evaluate the combined toxicity of binary CM/OP mixtures using only one concentration ratio ray and that it is necessary to examine multiple concentration ratios.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Peng Huang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
8
|
Farris SM. The rise to dominance of genetic model organisms and the decline of curiosity-driven organismal research. PLoS One 2020; 15:e0243088. [PMID: 33259560 PMCID: PMC7707607 DOI: 10.1371/journal.pone.0243088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022] Open
Abstract
Curiosity-driven, basic biological research "…performed without thought of practical ends…" establishes fundamental conceptual frameworks for future technological and medical breakthroughs. Traditionally, curiosity-driven research in biological sciences has utilized experimental organisms chosen for their tractability and suitability for studying the question of interest. This approach leverages the diversity of life to uncover working solutions (adaptations) to problems encountered by living things, and evolutionary context as to the extent to which these solutions may be generalized to other species. Despite the well-documented success of this approach, funding portfolios of United States granting agencies are increasingly filled with studies on a few species for which cutting-edge molecular tools are available (genetic model organisms). While this narrow focus may be justified for biomedically-focused funding bodies such as the National Institutes of Health, it is critical that robust federal support for curiosity-driven research using diverse experimental organisms be maintained by agencies such as the National Science Foundation. Using the disciplines of neurobiology and behavioral research as an example, this study finds that NSF grant awards have declined in association with a decrease in the proportion of grants funded for experimental, rather than genetic model organism research. The decline in use of experimental organisms in the literature mirrors but predates the shift grant funding. Today's dominance of genetic model organisms was thus initiated by researchers themselves and/or by publication peer review and editorial preferences, and was further reinforced by pressure from granting agencies, academic employers, and the scientific community.
Collapse
Affiliation(s)
- Sarah M. Farris
- Department of Biology, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
9
|
Jia Q, Zhang Y, Liu S, Li Z, Zhou F, Shao L, Feng C, Fan G. Analysis of search strategies for evaluating low-dose heavy metal mixture induced cognitive deficits in rats: An early sensitive toxicological approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110900. [PMID: 32593095 DOI: 10.1016/j.ecoenv.2020.110900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals such as lead (Pb), cadmium (Cd), and mercury (Hg) are representative neurotoxicological contaminants that can evoke cognitive dysfunctions. Low levels of these contaminants can be detected simultaneously in the human blood. In our previous study, behavioral performances were markedly impaired by exposure to these heavy metal mixtures (MM) at low levels. However, the aspects of cognitive functions involved are not well understood. Here, we further analyzed search strategies using a new algorithm named Morris water maze-unbiased strategy classification (MUST-C). Rat pups were co-exposed to low doses of Pb, Cd, and Hg during the embryonic and lactation stage. MM exposure at low doses, similar to those found in the general population, impaired search strategies even though their latency and path length were not affected in the Morris water maze task. MM-exposed rats preferred to use more directionless repetition strategies and less target orientation strategies than did vehicle-exposed animals in a dose-dependent manner. In addition, thionine staining and electron microscopy further revealed that MM exposure induced dose-dependent search strategy related place cell injures in the hippocampal CA1 and CA3 regions. These results demonstrate that the use of suboptimal search strategies underlies the early cognitive deficits in rats exposed to low doses of MM. The current study determined that search strategy analysis might be a novel sensitive assessment method for evaluating in the neurobehavioral toxicity.
Collapse
Affiliation(s)
- Qiyue Jia
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Yuanyuan Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Sisi Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Zongguang Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|
10
|
Górriz JM, Ramírez J, Ortíz A, Martínez-Murcia FJ, Segovia F, Suckling J, Leming M, Zhang YD, Álvarez-Sánchez JR, Bologna G, Bonomini P, Casado FE, Charte D, Charte F, Contreras R, Cuesta-Infante A, Duro RJ, Fernández-Caballero A, Fernández-Jover E, Gómez-Vilda P, Graña M, Herrera F, Iglesias R, Lekova A, de Lope J, López-Rubio E, Martínez-Tomás R, Molina-Cabello MA, Montemayor AS, Novais P, Palacios-Alonso D, Pantrigo JJ, Payne BR, de la Paz López F, Pinninghoff MA, Rincón M, Santos J, Thurnhofer-Hemsi K, Tsanas A, Varela R, Ferrández JM. Artificial intelligence within the interplay between natural and artificial computation: Advances in data science, trends and applications. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.05.078] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
Alicea B. Raising the Connectome: The Emergence of Neuronal Activity and Behavior in Caenorhabditis elegans. Front Cell Neurosci 2020; 14:524791. [PMID: 33100971 PMCID: PMC7522492 DOI: 10.3389/fncel.2020.524791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022] Open
Abstract
The differentiation of neurons and formation of connections between cells is the basis of both the adult phenotype and behaviors tied to cognition, perception, reproduction, and survival. Such behaviors are associated with local (circuits) and global (connectome) brain networks. A solid understanding of how these networks emerge is critical. This opinion piece features a guided tour of early developmental events in the emerging connectome, which is crucial to a new view on the connectogenetic process. Connectogenesis includes associating cell identities with broader functional and developmental relationships. During this process, the transition from developmental cells to terminally differentiated cells is defined by an accumulation of traits that ultimately results in neuronal-driven behavior. The well-characterized developmental and cell biology of Caenorhabditis elegans will be used to build a synthesis of developmental events that result in a functioning connectome. Specifically, our view of connectogenesis enables a first-mover model of synaptic connectivity to be demonstrated using data representing larval synaptogenesis. In a first-mover model of Stackelberg competition, potential pre- and postsynaptic relationships are shown to yield various strategies for establishing various types of synaptic connections. By comparing these results to what is known regarding principles for establishing complex network connectivity, these strategies are generalizable to other species and developmental systems. In conclusion, we will discuss the broader implications of this approach, as what is presented here informs an understanding of behavioral emergence and the ability to simulate related biological phenomena.
Collapse
Affiliation(s)
- Bradly Alicea
- Orthogonal Research and Education Laboratory, Champaign, IL, United States
- OpenWorm Foundation, Boston, MA, United States
| |
Collapse
|
12
|
Graña M, Aguilar-Moreno M, De Lope Asiain J, Araquistain IB, Garmendia X. Improved Activity Recognition Combining Inertial Motion Sensors and Electroencephalogram Signals. Int J Neural Syst 2020; 30:2050053. [DOI: 10.1142/s0129065720500537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human activity recognition and neural activity analysis are the basis for human computational neureoethology research dealing with the simultaneous analysis of behavioral ethogram descriptions and neural activity measurements. Wireless electroencephalography (EEG) and wireless inertial measurement units (IMU) allow the realization of experimental data recording with improved ecological validity where the subjects can be carrying out natural activities while data recording is minimally invasive. Specifically, we aim to show that EEG and IMU data fusion allows improved human activity recognition in a natural setting. We have defined an experimental protocol composed of natural sitting, standing and walking activities, and we have recruited subjects in two sites: in-house ([Formula: see text]) and out-house ([Formula: see text]) populations with different demographics. Experimental protocol data capture was carried out with validated commercial systems. Classifier model training and validation were carried out with scikit-learn open source machine learning python package. EEG features consist of the amplitude of the standard EEG frequency bands. Inertial features were the instantaneous position of the body tracked points after a moving average smoothing to remove noise. We carry out three validation processes: a 10-fold cross-validation process per experimental protocol repetition, (b) the inference of the ethograms, and (c) the transfer learning from each experimental protocol repetition to the remaining repetitions. The in-house accuracy results were lower and much more variable than the out-house sessions results. In general, random forest was the best performing classifier model. Best cross-validation results, ethogram accuracy, and transfer learning were achieved from the fusion of EEG and IMUs data. Transfer learning behaved poorly compared to classification on the same protocol repetition, but it has accuracy still greater than 0.75 on average for the out-house data sessions. Transfer leaning accuracy among repetitions of the same subject was above 0.88 on average. Ethogram prediction accuracy was above 0.96 on average. Therefore, we conclude that wireless EEG and IMUs allow for the definition of natural experimental designs with high ecological validity toward human computational neuroethology research. The fusion of both EEG and IMUs signals improves activity and ethogram recognition.
Collapse
Affiliation(s)
- Manuel Graña
- Computational Intelligence Group, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Marina Aguilar-Moreno
- Computational Intelligence Group, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Javier De Lope Asiain
- Department of Artificial Intelligence, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | | | - Xavier Garmendia
- Computational Intelligence Group, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| |
Collapse
|
13
|
Liu F, Zhang Y, Zhang M, Luo Q, Cao X, Cui C, Lin K, Huang K. Toxicological assessment and underlying mechanisms of tetrabromobisphenol A exposure on the soil nematode Caenorhabditis elegans. CHEMOSPHERE 2020; 242:125078. [PMID: 31704520 DOI: 10.1016/j.chemosphere.2019.125078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 05/19/2023]
Abstract
The widespread use of tetrabromobisphenol A (TBBPA) in industries has resulted in its frequent detection in environmental matrices, and the mechanisms of its associated hazards need further investigation. In this study, the nematode Caenorhabditis elegans (C. elegans) was exposed to environmentally relevant concentrations of TBBPA (0, 0.1, 1, 10, 100, 200 μg/L) to determine its effects. At TBBPA concentrations above 1 μg/L, the number of head thrashes, as the most sensitive physiological indicator, decreased significantly. Using the Illumina HiSeq™ 2000 sequencer, differentially expressed genes (DEGs) were determined, and 52 were down regulated and 105 were up regulated in the 200 μg/L TBBPA treatment group versus the control group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database analysis demonstrated that dorso-ventral axis formation is related to neurotoxicity; metabolism of xenobiotics by Cytochrome P450 (CYP450) and glutathione-S-transferase (GST) was found to be the vital metabolic mechanisms and were confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). GST was ascribed to the augmentation because mutations in cyp-13A7 were constrained under TBBPA exposure. Additionally, oxidative stress indicators accumulated in a dose-dependent relationship. These results will help understand the molecular basis for TBBPA-induced toxicity in C. elegans and open novel avenues for facilitating the exploration of more efficient strategies against TBBPA toxicity.
Collapse
Affiliation(s)
- Fuwen Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ying Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qishi Luo
- Branch of Shanghai, Yonker Environmental Protection Co., Ltd, Shanghai, 200051, China
| | - Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Kai Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
14
|
Finlay B. Generic Homo sapiens and Unique Mus musculus: Establishing the Typicality of the Modeled and the Model Species. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:122-136. [DOI: 10.1159/000500111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
The question of how complex human abilities evolved, such as language or face recognition, has been pursued by means of multiple strategies. Highly specialized non-human species have been examined analytically for formal similarities, close phylogenetic relatives have been examined for continuity, and simpler species have been analyzed for the broadest view of functional organization. All these strategies require empirical evidence of what is variable and predictable in both the modeled and the model species. Turning to humans, allometric analyses of the evolution of brain mass and brain components often return the interesting, but disappointing answer that volumetric organization of the human brain is highly predictable seen in its phylogenetic context. Reconciling this insight with unique human behavior, or any species-typical behavior, represents a serious challenge. Allometric analyses of the order and duration of mammalian neural development show that, while basic neural development in humans is allometrically predictable, conforming to adult neural architecture, some life history features deviate, notably that weaning is unusually early. Finally, unusual deviations in the retina and central auditory system in the laboratory mouse, which is widely assumed to be “generic,” as well as severe deviations from expected brain allometry in some mouse strains, underline the need for a deeper understanding of phylogenetic variability even in those systems believed to be best understood.
Collapse
|
15
|
Duets recorded in the wild reveal that interindividually coordinated motor control enables cooperative behavior. Nat Commun 2019; 10:2577. [PMID: 31189912 PMCID: PMC6561963 DOI: 10.1038/s41467-019-10593-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Many organisms coordinate rhythmic motor actions with those of a partner to generate cooperative social behavior such as duet singing. The neural mechanisms that enable rhythmic interindividual coordination of motor actions are unknown. Here we investigate the neural basis of vocal duetting behavior by using an approach that enables simultaneous recordings of individual vocalizations and multiunit vocal premotor activity in songbird pairs ranging freely in their natural habitat. We find that in the duet-initiating bird, the onset of the partner’s contribution to the duet triggers a change in rhythm in the periodic neural discharges that are exclusively locked to the initiating bird’s own vocalizations. The resulting interindividually synchronized neural activity pattern elicits vocalizations that perfectly alternate between partners in the ongoing song. We suggest that rhythmic cooperative behavior requires exact interindividual coordination of premotor neural activity, which might be achieved by integration of sensory information originating from the interacting partner. Recording neural activity during coordinated behaviors in controlled environments limits opportunities for understanding natural interactions. Here, the authors record from freely moving duetting birds in their natural habitats to reveal the neural mechanisms of interindividual motor coordination.
Collapse
|
16
|
Cao X, Wang X, Chen H, Li H, Tariq M, Wang C, Zhou Y, Liu Y. Neurotoxicity of nonylphenol exposure on Caenorhabditis elegans induced by reactive oxidative species and disturbance synthesis of serotonin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:947-957. [PMID: 30469289 DOI: 10.1016/j.envpol.2018.09.140] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 05/27/2023]
Abstract
The present study was performed to evaluate the neurobehavioural deficit induced by nonylphenol (NP), a well-known xenobiotic chemical. The neurotoxic mechanism from oxidative stress and serotonin-related progress was also investigated. Caenorhabditis elegans was exposed at different levels of NP ranging from 0 to 200 μg L-1 for 10 days. The results revealed that from a relatively low concentration (i.e., 10 μg L-1), significant effects including decreased head thrashes, body bends and forging behaviour could be observed, along with impaired learning and memory behaviour plasticity. The level of reactive oxygen species (ROS) in head was significantly elevated with the increase of NP concentrations from 10 to 200 μg L-1. Through antioxidant experiment, the oxidative damage caused by NP restored to some extent. At a NP concentration of 200 μg L-1, the significant increased expression of stress-related genes, including sod-1, sod-3, ctl-2, ctl-3 and cyp-35A2 gene, was observed from integrated gene expression profiles. In addition, in comparison with wild-type N2 worms, the ROS accumulation was increased significantly with the mutation of sod-3. Tryptophan hydroxylase (TPH) in ADF and NSM neurons sharply decreased at the concentrations of 10-200 μg L-1. The transcription of TPH synthesis-related genes and serotonin-related genes were both suppressed, including tph-1, cat-1, cat-4, ser-1, and mod-5. Overall, these results indicated that NP could induce neurotoxicity on Caenorhabditis elegans through excessive induction of ROS and disturbance synthesis of serotonin. The conducted research opened up new avenues for more effective exploration of neurotoxicity caused by NP.
Collapse
Affiliation(s)
- Xue Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoli Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Hui Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Muhammad Tariq
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chen Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanyuan Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongdi Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
17
|
Daunizeau J. A plea for "variational neuroethology": Comment on "Answering Schrödinger's question: A free-energy formulation" by M.J. Desormeau Ramstead et al. Phys Life Rev 2017; 24:56-58. [PMID: 29191411 DOI: 10.1016/j.plrev.2017.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Jean Daunizeau
- Institut du Cerveau et de la Moelle épinière, Paris, France; INSERM UMR S975, Paris, France.
| |
Collapse
|
18
|
Yamins DLK, DiCarlo JJ. Using goal-driven deep learning models to understand sensory cortex. Nat Neurosci 2016; 19:356-65. [PMID: 26906502 DOI: 10.1038/nn.4244] [Citation(s) in RCA: 628] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/13/2016] [Indexed: 11/08/2022]
Abstract
Fueled by innovation in the computer vision and artificial intelligence communities, recent developments in computational neuroscience have used goal-driven hierarchical convolutional neural networks (HCNNs) to make strides in modeling neural single-unit and population responses in higher visual cortical areas. In this Perspective, we review the recent progress in a broader modeling context and describe some of the key technical innovations that have supported it. We then outline how the goal-driven HCNN approach can be used to delve even more deeply into understanding the development and organization of sensory cortical processing.
Collapse
Affiliation(s)
- Daniel L K Yamins
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James J DiCarlo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Carlson BA, Gallant JR. From sequence to spike to spark: evo-devo-neuroethology of electric communication in mormyrid fishes. J Neurogenet 2013; 27:106-29. [PMID: 23802152 DOI: 10.3109/01677063.2013.799670] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mormyrid fishes communicate using pulses of electricity, conveying information about their identity, behavioral state, and location. They have long been used as neuroethological model systems because they are uniquely suited to identifying cellular mechanisms for behavior. They are also remarkably diverse, and they have recently emerged as a model system for studying how communication systems may influence the process of speciation. These two lines of inquiry have now converged, generating insights into the neural basis of evolutionary change in behavior, as well as the influence of sensory and motor systems on behavioral diversification and speciation. Here, we review the mechanisms of electric signal generation, reception, and analysis and relate these to our current understanding of the evolution and development of electromotor and electrosensory systems. We highlight the enormous potential of mormyrids for studying evolutionary developmental mechanisms of behavioral diversification, and make the case for developing genomic and transcriptomic resources. A complete mormyrid genome sequence would enable studies that extend our understanding of mormyrid behavior to the molecular level by linking morphological and physiological mechanisms to their genetic basis. Applied in a comparative framework, genomic resources would facilitate analysis of evolutionary processes underlying mormyrid diversification, reveal the genetic basis of species differences in behavior, and illuminate the origins of a novel vertebrate sensory and motor system. Genomic approaches to studying the evo-devo-neuroethology of mormyrid communication represent a deeply integrative approach to understanding the evolution, function, development, and mechanisms of behavior.
Collapse
Affiliation(s)
- Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA.
| | | |
Collapse
|
20
|
Raubenheimer D, Simpson SJ, Tait AH. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos Trans R Soc Lond B Biol Sci 2012; 367:1628-46. [PMID: 22566672 DOI: 10.1098/rstb.2012.0007] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Conservation physiology (CP) and nutritional ecology (NE) are both integrative sciences that share the fundamental aim of understanding the patterns, mechanisms and consequences of animal responses to changing environments. Here, we explore the high-level similarities and differences between CP and NE, identifying as central themes to both fields the multiple timescales over which animals adapt (and fail to adapt) to their environments, and the need for integrative models to study these processes. At one extreme are the short-term regulatory responses that modulate the state of animals in relation to the environment, which are variously considered under the concepts of homeostasis, homeorhesis, enantiostasis, heterostasis and allostasis. In the longer term are developmental responses, including phenotypic plasticity and transgenerational effects mediated by non-genomic influences such as parental physiology, epigenetic effects and cultural learning. Over a longer timescale still are the cumulative genetic changes that take place in Darwinian evolution. We present examples showing how the adaptive responses of animals across these timescales have been represented in an integrative framework from NE, the geometric framework (GF) for nutrition, and close with an illustration of how GF can be applied to the central issue in CP, animal conservation.
Collapse
Affiliation(s)
- David Raubenheimer
- Nutritional Ecology Research Group, Massey University, Albany, New Zealand.
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, USA.
| |
Collapse
|
22
|
Abstract
In this report we demonstrate that differences in cage type brought unexpected effects on aggressive behavior and neuroanatomical features of the mouse olfactory bulb. A careful characterization of two cage types, including a comparison of the auditory and temperature environments, coupled with a demonstration that naris occlusion abolishes the neuroanatomical changes, lead us to conclude that a likely important factor mediating the phenotypic changes we find is the olfactory environment of the two cages. We infer that seemingly innocuous changes in cage environment can affect sensory input relevant to mice and elicit profound effects on neural output. Study of the neural mechanisms underlying animal behavior in the laboratory environment should be broadened to include neuroethological approaches to examine how the laboratory environment (beyond animal well-being and enrichment) influences neural systems and behavior.
Collapse
|
23
|
Brockhusen-Holzer F, Curio E. Ethotypic Variation of Prey Recognition in Juvenile Anolis lineatopus (Reptilia: Iguanidae). Ethology 2010. [DOI: 10.1111/j.1439-0310.1990.tb00415.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
|
25
|
|
26
|
|
27
|
|
28
|
|
29
|
Do innate motor programs simplify voluntary motor control? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
|
31
|
|
32
|
|
33
|
|
34
|
|
35
|
|
36
|
|
37
|
On the conceptual integration of ethology and neurophysiology. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
|
39
|
|
40
|
Adaptation and mechanical impedance regulation in the control of movements. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
|
42
|
Are we asking too much of the stretch reflex? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Abstract
Abstract“Sign stimuli” elicit specific patterns of behavior when an organism's motivation is appropriate. In the toad, visually released prey-catching involves orienting toward the prey, approaching, fixating, and snapping. For these action patterns to be selected and released, the prey must be recognized and localized in space. Toads discriminate prey from nonprey by certain spatiotemporal stimulus features. The stimulus-response relations are mediated by innate releasing mechanisms (RMs) with recognition properties partly modifiable by experience. Striato-pretecto-tectal connectivity determines the RM's recognition and localization properties, whereas medialpallio-thalamo-tectal circuitry makes the system sensitive to changes in internal state and to prior history of exposure to stimuli. RMs encode the diverse stimulus conditions referring to the same prey object through different combinations of “specialized” tectal neurons, involving cells selectively tuned to prey features. The prey-selective neurons express the outcome of information processing in functional units consisting of interconnected cells. Excitatory and inhibitory interactions among feature-sensitive tectal and pretectal neurons specify the perceptual operations involved in distinguishing the prey from its background, selecting its features, and discriminating it from predators. Other connections indicate stimulus location. The results of these analyses are transmitted by specialized neurons projecting from the tectum to bulbar/spinal motor systems, providing a sensorimotor interface. Specific combinations of such projective neurons – mediating feature- and space-related messages – form “command releasing systems” that activate corresponding motor pattern generators for appropriate prey-catching action patterns.
Collapse
|
44
|
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
|
50
|
Reciprocal reflex action and adaptive gain control in the context of the equilibrium-point hypothesis. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|