1
|
Nakhaie M, Rukerd MRZ, Shahpar A, Pardeshenas M, Khoshnazar SM, Khazaeli M, Bashash D, Nezhad NZ, Charostad J. A Closer Look at the Avian Influenza Virus H7N9: A Calm before the Storm? J Med Virol 2024; 96:e70090. [PMID: 39601174 DOI: 10.1002/jmv.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/15/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The avian influenza A (H7N9) virus, which circulates in wild birds and poultry, has been a major concern for public health since it was first discovered in China in 2013 due to its demonstrated ability to infect humans, causing severe respiratory illness with high mortality rates. According to the World Health Organization (WHO), a total of 1568 human infections with 616 fatal cases caused by novel H7N9 viruses have been reported in China from early 2013 to January 2024. This manuscript provides a comprehensive review of the virology, evolutionary patterns, and pandemic potential of H7N9. The H7N9 virus exhibits a complex reassortment history, receiving genes from H9N2 and other avian influenza viruses. The presence of certain molecular markers, such as mutations in the hemagglutinin and polymerase basic protein 2, enhances the virus's adaptability to human hosts. The virus activates innate immune responses through pattern recognition receptors, leading to cytokine production and inflammation. Clinical manifestations range from mild to severe, with complications including pneumonia, acute respiratory distress syndrome, and multiorgan failure. Diagnosis relies on molecular assays such as reverse transcription-polymerase chain reaction. The increasing frequency of human infections, along with the virus's ability to bind to human receptors and cause severe disease, highlights its pandemic potential. Continued surveillance, vaccine development, and public health measures are crucial to limit the risk posed by H7N9. Understanding the virus's ecology, transmission dynamics, and pathogenesis is essential for developing effective prevention and control strategies.
Collapse
Affiliation(s)
- Mohsen Nakhaie
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Rezaei Zadeh Rukerd
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amirhossein Shahpar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Pardeshenas
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mana Khazaeli
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Zeinali Nezhad
- Clinical Research Development Unit, Afzalipour Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Person-to-Person Transmission of Avian Influenza A (H7N9) Among Family Members in Eastern China, 2016. Disaster Med Public Health Prep 2021; 15:164-169. [DOI: 10.1017/dmp.2020.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACTObjective:Human infections with avian influenza A (H7N9) virus are associated with exposure to poultry and live poultry markets, but the evidence of person-to-person transmission remains limited. This study reports a suspected person-to-person transmission of H7N9 virus, and explores what factors influenced this transmission.Methods:We interviewed 2 patients with H7N9 infection and their family members as well as health-care workers. Samples from the patients and environments were tested by real-time reverse transcription-polymerase chain reaction.Results:The index patient became ill 5 to 6 days after his last exposure to the poultry bought in the market of Weimiao town. The second patient, the sister of the index patient, who had sustained intensive and unprotected close contact with the index patient, had no exposure to poultry. This study documents that the H7N9 virus was transmitted directly from the index patient to his sister.Conclusions:Our findings suggest that person-to-person transmission may be associated with sustained close contact with the patient during his onset of early stage, when the H7N9 viral shedding increases sharply.
Collapse
|
3
|
Chen Y, Zhang Y, Xu Z, Wang X, Lu J, Hu W. Avian Influenza A (H7N9) and related Internet search query data in China. Sci Rep 2019; 9:10434. [PMID: 31320681 PMCID: PMC6639335 DOI: 10.1038/s41598-019-46898-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 07/05/2019] [Indexed: 02/07/2023] Open
Abstract
The use of Internet-based systems for infectious disease surveillance has been increasingly explored in recent years. However, few studies have used Internet search query or social media data to monitor spatial and temporal trends of avian influenza in China. This study investigated the potential of using search query and social media data in detecting and monitoring avian influenza A (H7N9) cases in humans in China. We collected weekly data on laboratory-confirmed H7N9 cases in humans, as well as H7N9-related Baidu Search Index (BSI) and Weibo Posting Index (WPI) data in China from 2013 to 2017, to explore the spatial and temporal trends of H7N9 cases and H7N9-related Internet search queries. Our findings showed a positive relationship of H7N9 cases with BSI and WPI search queries spatially and temporally. The outbreak threshold time and peak time of H7N9-related BSI and WPI searches preceded H7N9 cases in most years. Seasonal autoregressive integrated moving average (SARIMA) models with BSI (β = 0.008, p < 0.001) and WPI (β = 0.002, p = 0.036) were used to predict the number of H7N9 cases. Regression tree model analysis showed that the average H7N9 cases increased by over 2.4-fold (26.8/11) when BSI for H7N9 was > = 11524. Both BSI and WPI data could be used as indicators to develop an early warning system for H7N9 outbreaks in the future.
Collapse
Affiliation(s)
- Ying Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, China
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Yuzhou Zhang
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Xuanzhuo Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
4
|
Liu T, Kang M, Zhang B, Xiao J, Lin H, Zhao Y, Huang Z, Wang X, Zhang Y, He J, Ma W. Independent and interactive effects of ambient temperature and absolute humidity on the risks of avian influenza A(H7N9) infection in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1358-1365. [PMID: 29734613 DOI: 10.1016/j.scitotenv.2017.11.226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/27/2017] [Accepted: 11/20/2017] [Indexed: 04/13/2023]
Abstract
The emergence of avian influenza A(H7N9) virus poses a pandemic threat to human beings. It was proposed that meteorological factors might be important environmental factors favoring the occurrence of H7N9 infection, but evidence is still inadequate. In this study, we aimed to investigate the independent and interactive effects of ambient temperature (TM) and absolute humidity (AH) on H7N9 infection risks in China. The individual information of all reported H7N9 cases and daily meteorological data in five provinces/municipality (Zhejiang, Jiangsu, Shanghai, Fujian, and Guangdong) in China during 2013-2016 were collected. We employed a case-crossover study design, in which the 7-10days before the onset date of each H7N9 case was defined as the hazard period, and 4weeks before the hazard period was taken as the control period. The average levels of meteorological factors were calculated during the hazard and control periods. A Cox regression model was used to estimate the independent and interactive effects of TM and vapor pressure (VP), an indicator of AH, on H7N9 infection risks. A total of 738 H7N9 cases were included in the present study. Significantly nonlinear negative associations of TM and VP with H7N9 infection risks were observed in all cases, and in cases from northern and southern regions. There were significant interactive effects between TM and VP on H7N9 infection risks, and the risks of H7N9 infection were higher in cold-dry days than other days. We further observed different risky windows of H7N9 infection in the northern (TM: 0-18°C, VP: 313mb) and southern areas (TM: 7-21°C, VP: 3-17mb). We concluded that ambient temperature and absolute humidity had significant independent and interactive effects on H7N9 infection risks in China, and the risks of H7N9 infection were higher in cold-dry days. The risky windows of H7N9 infection were different in the northern and southern areas.
Collapse
Affiliation(s)
- Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Min Kang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Bing Zhang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Hualiang Lin
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yongqian Zhao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Zhao Huang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Xiaojie Wang
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yonghui Zhang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Jianfeng He
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China.
| |
Collapse
|
5
|
Dong W, Yang K, Xu Q, Liu L, Chen J. Spatio-temporal pattern analysis for evaluation of the spread of human infections with avian influenza A(H7N9) virus in China, 2013-2014. BMC Infect Dis 2017; 17:704. [PMID: 29065855 PMCID: PMC5655814 DOI: 10.1186/s12879-017-2781-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A large number (n = 460) of A(H7N9) human infections have been reported in China from March 2013 through December 2014, and H7N9 outbreaks in humans became an emerging issue for China health, which have caused numerous disease outbreaks in domestic poultry and wild bird populations, and threatened human health severely. The aims of this study were to investigate the directional trend of the epidemic and to identify the significant presence of spatial-temporal clustering of influenza A(H7N9) human cases between March 2013 and December 2014. METHODS Three distinct epidemic phases of A(H7N9) human infections were identified in this study. In each phase, standard deviational ellipse analysis was conducted to examine the directional trend of disease spreading, and retrospective space-time permutation scan statistic was then used to identify the spatio-temporal cluster patterns of H7N9 outbreaks in humans. RESULTS The ever-changing location and the increasing size of the three identified standard deviational ellipses showed that the epidemic moved from east to southeast coast, and hence to some central regions, with a future epidemiological trend of continue dispersing to more central regions of China, and a few new human cases might also appear in parts of the western China. Furthermore, A(H7N9) human infections were clustering in space and time in the first two phases with five significant spatio-temporal clusters (p < 0.05), but there was no significant cluster identified in phase III. CONCLUSIONS There was a new epidemiologic pattern that the decrease in significant spatio-temporal cluster of A(H7N9) human infections was accompanied with an obvious spatial expansion of the outbreaks during the study period, and identification of the spatio-temporal patterns of the epidemic can provide valuable insights for better understanding the spreading dynamics of the disease in China.
Collapse
Affiliation(s)
- Wen Dong
- School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan China
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming, Yunnan China
| | - Kun Yang
- School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan China
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming, Yunnan China
| | - Quanli Xu
- School of Tourism and Geographic Science, Yunnan Normal University, Kunming, Yunnan China
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming, Yunnan China
| | - Lin Liu
- School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan China
| | - Juan Chen
- School of Information Science and Technology, Yunnan Normal University, Kunming, Yunnan China
| |
Collapse
|
6
|
Liu B, Havers FP, Zhou L, Zhong H, Wang X, Mao S, Li H, Ren R, Xiang N, Shu Y, Zhou S, Liu F, Chen E, Zhang Y, Widdowson MA, Li Q, Feng Z. Clusters of Human Infections With Avian Influenza A(H7N9) Virus in China, March 2013 to June 2015. J Infect Dis 2017; 216:S548-S554. [PMID: 28934462 DOI: 10.1093/infdis/jix098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multiple clusters of human infections with novel avian influenza A(H7N9) virus have occurred since the virus was first identified in spring 2013. However, in many situations it is unclear whether these clusters result from person-to-person transmission or exposure to a common infectious source. We analyzed the possibility of person-to-person transmission in each cluster and developed a framework to assess the likelihood that person-to-person transmission had occurred. We described 21 clusters with 22 infected contact cases that were identified by the Chinese Center for Disease Control and Prevention from March 2013 through June 2015. Based on detailed epidemiological information and the timing of the contact case patients' exposures to infected persons and to poultry during their potential incubation period, we graded the likelihood of person-to-person transmission as probable, possible, or unlikely. We found that person-to-person transmission probably occurred 12 times and possibly occurred 4 times; it was unlikely in 6 clusters. Probable nosocomial transmission is likely to have occurred in 2 clusters. Limited person-to-person transmission is likely to have occurred on multiple occasions since the H7N9 virus was first identified. However, these transmission events represented a small fraction of all identified cases of H7N9 human infection, and sustained person-to-person transmission was not documented.
Collapse
Affiliation(s)
- Bo Liu
- Public Health Emergency Center
| | - Fiona P Havers
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Haojie Zhong
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou
| | - Xianjun Wang
- Shandong Provincial Center for Disease Control and Prevention, Jinan
| | - Shenghua Mao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai
| | - Hai Li
- Guangxi Provincial Center for Disease Control and Prevention, Nanning
| | | | | | - Yuelong Shu
- Institute for Viral Disease Control and Prevention
| | - Suizan Zhou
- China Office, US Centers for Disease Control and Prevention, Beijing
| | - Fuqiang Liu
- Hunan Provincial Center for Disease Control and Prevention, Changsha City
| | - Enfu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | | | - Marc-Alain Widdowson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Qun Li
- Public Health Emergency Center
| | - Zijian Feng
- Chinese Center for Disease Control and Prevention
| |
Collapse
|
7
|
Epidemiology of human influenza A(H7N9) infection in Hong Kong. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017. [DOI: 10.1016/j.jmii.2015.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Dong W, Yang K, Xu QL, Yang YL. A Predictive Risk Model for A(H7N9) Human Infections Based on Spatial-Temporal Autocorrelation and Risk Factors: China, 2013-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:15204-21. [PMID: 26633446 PMCID: PMC4690917 DOI: 10.3390/ijerph121214981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 10/11/2015] [Accepted: 11/10/2015] [Indexed: 12/29/2022]
Abstract
This study investigated the spatial distribution, spatial autocorrelation, temporal cluster, spatial-temporal autocorrelation and probable risk factors of H7N9 outbreaks in humans from March 2013 to December 2014 in China. The results showed that the epidemic spread with significant spatial-temporal autocorrelation. In order to describe the spatial-temporal autocorrelation of H7N9, an improved model was developed by introducing a spatial-temporal factor in this paper. Logistic regression analyses were utilized to investigate the risk factors associated with their distribution, and nine risk factors were significantly associated with the occurrence of A(H7N9) human infections: the spatial-temporal factor φ (OR = 2546669.382, p < 0.001), migration route (OR = 0.993, p < 0.01), river (OR = 0.861, p < 0.001), lake(OR = 0.992, p < 0.001), road (OR = 0.906, p < 0.001), railway (OR = 0.980, p < 0.001), temperature (OR = 1.170, p < 0.01), precipitation (OR = 0.615, p < 0.001) and relative humidity (OR = 1.337, p < 0.001). The improved model obtained a better prediction performance and a higher fitting accuracy than the traditional model: in the improved model 90.1% (91/101) of the cases during February 2014 occurred in the high risk areas (the predictive risk > 0.70) of the predictive risk map, whereas 44.6% (45/101) of which overlaid on the high risk areas (the predictive risk > 0.70) for the traditional model, and the fitting accuracy of the improved model was 91.6% which was superior to the traditional model (86.1%). The predictive risk map generated based on the improved model revealed that the east and southeast of China were the high risk areas of A(H7N9) human infections in February 2014. These results provided baseline data for the control and prevention of future human infections.
Collapse
Affiliation(s)
- Wen Dong
- School of Tourism and Geographic Science, Yunnan Normal University, Kunming 650500, China.
- School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China.
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China.
| | - Kun Yang
- School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China.
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China.
| | - Quan-Li Xu
- School of Tourism and Geographic Science, Yunnan Normal University, Kunming 650500, China.
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China.
| | - Yu-Lian Yang
- School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China.
- GIS Technology Engineering Research Centre for West-China Resources and Environment of Educational Ministry, Yunnan Normal University, Kunming 650500, China.
| |
Collapse
|
9
|
Virlogeux V, Li M, Tsang TK, Feng L, Fang VJ, Jiang H, Wu P, Zheng J, Lau EHY, Cao Y, Qin Y, Liao Q, Yu H, Cowling BJ. Estimating the Distribution of the Incubation Periods of Human Avian Influenza A(H7N9) Virus Infections. Am J Epidemiol 2015; 182:723-9. [PMID: 26409239 DOI: 10.1093/aje/kwv115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/23/2015] [Indexed: 11/14/2022] Open
Abstract
A novel avian influenza virus, influenza A(H7N9), emerged in China in early 2013 and caused severe disease in humans, with infections occurring most frequently after recent exposure to live poultry. The distribution of A(H7N9) incubation periods is of interest to epidemiologists and public health officials, but estimation of the distribution is complicated by interval censoring of exposures. Imputation of the midpoint of intervals was used in some early studies, resulting in estimated mean incubation times of approximately 5 days. In this study, we estimated the incubation period distribution of human influenza A(H7N9) infections using exposure data available for 229 patients with laboratory-confirmed A(H7N9) infection from mainland China. A nonparametric model (Turnbull) and several parametric models accounting for the interval censoring in some exposures were fitted to the data. For the best-fitting parametric model (Weibull), the mean incubation period was 3.4 days (95% confidence interval: 3.0, 3.7) and the variance was 2.9 days; results were very similar for the nonparametric Turnbull estimate. Under the Weibull model, the 95th percentile of the incubation period distribution was 6.5 days (95% confidence interval: 5.9, 7.1). The midpoint approximation for interval-censored exposures led to overestimation of the mean incubation period. Public health observation of potentially exposed persons for 7 days after exposure would be appropriate.
Collapse
|
10
|
Sarkar T, Das S, De A, Nandy P, Chattopadhyay S, Chawla-Sarkar M, Nandy A. H7N9 influenza outbreak in China 2013: In silico analyses of conserved segments of the hemagglutinin as a basis for the selection of peptide vaccine targets. Comput Biol Chem 2015; 59 Pt A:8-15. [PMID: 26364271 DOI: 10.1016/j.compbiolchem.2015.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/09/2022]
Abstract
The sudden emergence of a human infecting strain of H7N9 influenza virus in China in 2013 leading to fatalities in about 30% of the cases has caused wide concern that additional mutations in the strain leading to human to human transmission could lead to a deadly pandemic. It may happen in a short time span as the outbreak of H7N9 is more and more recurrent, which implies that H7N9 evolution is speeding up. H7N9 flu strains were not known to infect humans before this attack in China in February 2013 and it was solely an avian strain. While currently available drugs such as oseltamivir have been found to be largely effective against the H7N9, albeit with recent reported cases of development of resistance to the drug, there is a necessity to identify alternatives to combat this disease, especially if it assumes pandemic proportions. In our work, we have tried to investigate for the genetic changes in hemagglutinin (HA) protein sequence that lead to human infection by an avian infecting virus and identify possible peptide targets to design vaccines to control this upcoming risk. We identified three highly conserved regions in all H7 subtypes, of which one particular immunogenic surface exposed region was found to be well conserved in all human infecting H7N9 strains (accessed up to 27th March 2014). Compared to H7N9 avian strains, we identified two mutations in this conserved region at the receptor binding site of all post-February 2013 human-infecting H7N9China hemagglutinin protein sequences. One of the mutations is very close (3.6 Å) to the hemagglutinin sialic acid binding pocket that may lead to better binding to human host's sialic acid due to the changes in hydrophobicity of the microenvironment of the binding site. We found that the peptide region with these mutational changes that are specific for human infecting H7N9 virus possess the possibility of being used as target for a peptide vaccine.
Collapse
Affiliation(s)
- Tapati Sarkar
- Physics Department, Jadavpur University, Kolkata 700032, India.
| | - Sukhen Das
- Physics Department, Jadavpur University, Kolkata 700032, India
| | - Antara De
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Papiya Nandy
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| | - Shiladitya Chattopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Ashesh Nandy
- Centre for Interdisciplinary Research and Education, 404B Jodhpur Park, Kolkata 700068, India
| |
Collapse
|
11
|
Yang Y, Zhang Y, Fang L, Halloran ME, Ma M, Liang S, Kenah E, Britton T, Chen E, Hu J, Tang F, Cao W, Feng Z, Longini IM. Household transmissibility of avian influenza A (H7N9) virus, China, February to May 2013 and October 2013 to March 2014. ACTA ACUST UNITED AC 2015; 20:21056. [PMID: 25788253 DOI: 10.2807/1560-7917.es2015.20.10.21056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To study human-to-human transmissibility of the avian influenza A (H7N9) virus in China, household contact information was collected for 125 index cases during the spring wave (February to May 2013), and for 187 index cases during the winter wave (October 2013 to March 2014). Using a statistical model, we found evidence for human-to-human transmission, but such transmission is not sustainable. Under plausible assumptions about the natural history of disease and the relative transmission frequencies in settings other than household, we estimate the household secondary attack rate (SAR) among humans to be 1.4% (95% CI: 0.8 to 2.3), and the basic reproductive number R0 to be 0.08 (95% CI: 0.05 to 0.13). The estimates range from 1.3% to 2.2% for SAR and from 0.07 to 0.12 for R0 with reasonable changes in the assumptions. There was no significant change in the human-to-human transmissibility of the virus between the two waves, although a minor increase was observed in the winter wave. No sex or age difference in the risk of infection from a human source was found. Human-to-human transmissibility of H7N9 continues to be limited, but it needs to be closely monitored for potential increase via genetic reassortment or mutation.
Collapse
Affiliation(s)
- Y Yang
- Department of Biostatistics and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ding H, Chen Y, Yu Z, Horby PW, Wang F, Hu J, Yang X, Mao H, Qin S, Chai C, Liu S, Chen E, Yu H. A family cluster of three confirmed cases infected with avian influenza A (H7N9) virus in Zhejiang Province of China. BMC Infect Dis 2014; 14:698. [PMID: 25551435 PMCID: PMC4304124 DOI: 10.1186/s12879-014-0698-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 12/11/2014] [Indexed: 12/02/2022] Open
Abstract
Background A total of 453 laboratory-confirmed cases infected with avian influenza A (H7N9) virus (including 175 deaths) have been reported till October 2,2014, of which 30.68% (139/453) of the cases were identified from Zhejiang Province. We describe the largest reported cluster of virologically confirmed H7N9 cases, comprised by a fatal Index case and two mild secondary cases. Methods A retrospective investigation was conducted in January of 2014. Three confirmed cases, their close contacts, and relevant environments samples were tested by real-time reverse transcriptase-polymerase chain reaction (RT-PCR), viral culture, and sequencing. Serum samples were tested by haemagglutination inhibition (HI) assay. Results The Index case, a 49-year-old farmer with type II diabetes, who lived with his daughter (Case 2, aged 24) and wife (Case 3, aged 43) and his son-in-law (H7N9 negative). The Index case and Case 3 worked daily in a live bird market. Onset of illness in Index case occurred in January 13, 2014 and subsequently, he died of multi-organ failure on January 20. Case 2 presented with mild symptoms on January 20 following frequent unprotected bed-side care of the Index case between January 14 to 19, and exposed to live bird market on January 17. Case 3 became unwell on January 23 after providing bedside care to the Index case on January 17 to 18, and following the contact with Case 2 during January 21 to 22 at the funeral of the Index case. The two secondary cases were discharged on February 2 and 5 separately after early treatment with antiviral medication. Four virus strains were isolated and genome analyses showed 99.6 ~100% genetic homology, with two amino mutations (V192I in NS and V280A in NP). 42% (11/26) of environmental samples collected in January were H7N9 positive. Twenty-five close contacts remained well and were negative for H7N9 infection by RT-PCR and HI assay. Conclusions In the present study, the Index case was infected from a live bird market while the two secondary cases were infected by the Index case during unprotected exposure. This family cluster is, therefore, compatible with non-sustained person-to-person transmission of avian influenza A/H7N9. Electronic supplementary material The online version of this article (doi:10.1186/s12879-014-0698-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Ding
- Hangzhou Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Yin Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Zhao Yu
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Peter W Horby
- Oxford University Clinical Research Unit-Wellcome Trust Major Overseas Programme, Hu Chi Minh City, Vietnam. .,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom. .,Singapore Infectious Disease Initiative, Singapore City, Singapore.
| | - Fenjuan Wang
- XiaoShan District Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Jingfeng Hu
- ShangCheng District Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Xuhui Yang
- Hangzhou Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Haiyan Mao
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Shuwen Qin
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Chengliang Chai
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Shelan Liu
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Enfu Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China. .,Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, China.
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Center for Disease Control and Prevention, No. 155 Changbai Road, Changping District, Beijing, China.
| |
Collapse
|
13
|
Family clusters of avian influenza A H7N9 virus infection in Guangdong Province, China. J Clin Microbiol 2014; 53:22-8. [PMID: 25339399 DOI: 10.1128/jcm.02322-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since its first identification, the epizootic avian influenza A H7N9 virus has continued to cause infections in China. Two waves were observed during this outbreak. No cases were reported from Guangdong Province during the first wave, but this province became one of the prime outbreak sites during the second wave. In order to identify the transmission potential of this continuously evolving infectious virus, our research group monitored all clusters of H7N9 infections during the second wave of the epidemic in Guangdong Province. Epidemiological, clinical, and virological data on these patients were collected and analyzed. Three family clusters including six cases of H7N9 infection were recorded. The virus caused severe disease in two adult patients but only mild symptoms for all four pediatric patients. All patients reported direct poultry or poultry market exposure history. Relevant environment samples collected according to their reported exposures tested H7N9 positive. Virus isolates from patients in the same cluster shared high sequence similarities. In conclusion, although continually evolving, the currently circulating H7N9 viruses in Guangdong Province have not yet demonstrated the capacity for efficient and sustained person-to-person transmission.
Collapse
|