1
|
Brindle HE, Choisy M, Christley R, French N, Griffiths M, Thai PQ, van Doorn HR, Nadjm B. Review of the aetiologies of central nervous system infections in Vietnam. Front Public Health 2025; 12:1396915. [PMID: 39959908 PMCID: PMC11825750 DOI: 10.3389/fpubh.2024.1396915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025] Open
Abstract
Central nervous system (CNS) infections are an important cause of morbidity and mortality in Vietnam, with many studies conducted to determine the aetiology. However, the cause remains unknown in a large proportion of cases. Although a systematic review of the aetiologies of CNS infections was conducted in the Mekong region, there are no known published reviews of the studies specifically in Vietnam. Here, we review the cause of CNS infections in Vietnam while also considering the potential aetiologies where a cause was not identified, based on the literature from the region. In particular, we focus on the most common pathogens in adults and children including Streptococcus suis which is associated with the consumption of raw pig products, and Japanese encephalitis virus, a mosquito-borne pathogen. We also discuss pathogens less commonly known to cause CNS infections in Vietnam but have been detected in neighbouring countries such as Orientia tsutsugamushi, Rickettsia typhi and Leptospira species and how these may contribute to the unknown causes in Vietnam. We anticipate that this review may help guide future public health measures to reduce the burden of known pathogens and broaden testing to help identify additional aetiologies.
Collapse
Affiliation(s)
- Hannah E. Brindle
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert Christley
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Behzad Nadjm
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- The Medical Research Council, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
| |
Collapse
|
2
|
Li G, Li Y, He C, Liu X, Lv C, Liu K, Yu X, Zhao M. Sequence analysis of the GP5 protein of porcine reproductive and respiratory syndrome virus in Vietnam from 2007 to 2023. Front Microbiol 2024; 15:1475208. [PMID: 39411437 PMCID: PMC11473425 DOI: 10.3389/fmicb.2024.1475208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent 13 of porcine reproductive and respiratory syndrome (PRRS), which is one of the most economically 14 devastating viruses in the Vietnamese swine industry. Methods With a view toward determining the 15 genetic variation among PRRSV strains in Vietnam, we examined 271 PRRSV GP5 protein 16 sequences obtained from strains isolated in Vietnam from 2007 to 2023, for which we constructed 17 phylogenetic trees. Additionally, a collection of 52 PRRSV-1 strains and 80 PRRSV-2 strains 18 isolated in different years were specifically selected for nucleotide and amino acid homology analysis 19 and amino acid sequence alignment. Results The results revealed 76.1%-100.0% nucleotide and 20 75.2%-100.0% amino acid homologies for the PRRSV-1 GP5 gene, and 81.8%-100.0% nucleotide 21 and 81.1%-100.0% amino acid homologies for the PRRSV-2 GP5 gene. Amino acid mutation sites 22 in PRRSV-2 were found to be primarily distributed in the signal peptide region, antigenic sites, two 23 T-cell antigen regions, two highly variable regions (HVRs), and in the vicinity of the neutralizing 24 epitope, with a deletion mutation occurring in the neutralizing epitope, whereas amino acid mutations 25 in the PRRSV-1 sequences were found to occur predominantly in two T-cell epitopes. Genetic 26 analysis revealed that PRRSV-1 strains in Vietnam are of subtype 1 (Global), whereas PRRSV-2 27 strains are categorized into sublineages L1A, L5A, and L8E, with L8E being the predominantly 28 prevalent strain at present. Recombination analyses indicated that no significant recombination 29 events have occurred in any of the assessed 271 Vietnamese PRRSV strains. Discussion Our 30 analyses of 271 Vietnamese PRRSV strains have yielded valuable insights regarding the 31 epidemiological trends and genetic dynamics of PRRSV in Vietnam, and will provide a theoretical 32 basis for formulating prevention and control measures for PRRS and the development of PRRS 33 vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xingang Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, China
| | - Mengmeng Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, China
| |
Collapse
|
3
|
Qiu J, Li X, Zhu H, Xiao F. Spatial Epidemiology and Its Role in Prevention and Control of Swine Viral Disease. Animals (Basel) 2024; 14:2814. [PMID: 39409763 PMCID: PMC11476123 DOI: 10.3390/ani14192814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Spatial epidemiology offers a comprehensive framework for analyzing the spatial distribution and transmission of diseases, leveraging advanced technical tools and software, including Geographic Information Systems (GISs), remote sensing technology, statistical and mathematical software, and spatial analysis tools. Despite its increasing application to swine viral diseases (SVDs), certain challenges arise from its interdisciplinary nature. To support novices, frontline veterinarians, and public health policymakers in navigating its complexities, we provide a comprehensive overview of the common applications of spatial epidemiology in SVD. These applications are classified into four categories based on their objectives: visualizing and elucidating spatiotemporal distribution patterns, identifying risk factors, risk mapping, and tracing the spatiotemporal evolution of pathogens. We further elucidate the technical methods, software, and considerations necessary to accomplish these objectives. Additionally, we address critical issues such as the ecological fallacy and hypothesis generation in geographic correlation analysis. Finally, we explore the future prospects of spatial epidemiology in SVD within the One Health framework, offering a valuable reference for researchers engaged in the spatial analysis of SVD and other epidemics.
Collapse
Affiliation(s)
- Juan Qiu
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; (X.L.); (F.X.)
| | - Xiaodong Li
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; (X.L.); (F.X.)
| | - Huaiping Zhu
- Laboratory of Mathematical Parallel Systems (LAMPS), Department of Mathematics and Statistics, Centre for Diseases Modeling (CDM), York University, Toronto, ON M3J1P3, Canada;
| | - Fei Xiao
- Key Laboratory of Monitoring and Estimate for Environment and Disaster of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China; (X.L.); (F.X.)
| |
Collapse
|
4
|
Dou BB, Yang X, Yang FM, Yan K, Peng W, Tang J, Peng MZ, He QY, Chen HC, Yuan FY, Bei WC. The VraSR two-component signal transduction system contributes to the damage of blood-brain barrier during Streptococcus suis meningitis. Microb Pathog 2022; 172:105766. [PMID: 36087689 DOI: 10.1016/j.micpath.2022.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 10/31/2022]
Abstract
Streptococcus suis (S. suis) is an important zoonotic pathogen that can cause high morbidity and mortality in both humans and swine. As the most important life-threatening infection of the central nervous system (CNS), meningitis is an important syndrome of S. suis infection. The vancomycin resistance associated sensor/regulator (VraSR) is a critical two-component signal transduction system that affects the ability of S. suis to resist the host innate immune system and promotes its ability to adhere to brain microvascular endothelial cells (BMECs). Prior work also found mice infected with ΔvraSR had no obvious neurological symptoms, unlike mice infected with wild-type SC19. Whether and how VraSR participates in the development of S. suis meningitis remains unknown. Here, we found ΔvraSR-infected mice did not show obvious meningitis, compared with wild-type SC19-infected mice. Moreover, the proinflammatory cytokines and chemokines in serum and brains of ΔvraSR-infected mice, including IL-6, TNF-α, MCP-1 and IFN-γ, were significantly lower than wild-type infected group. Besides, blood-brain barrier (BBB) permeability also confirmed that the mutant had lower ability to disrupt BBB. Furthermore, in vivo and in vitro experiments showed that SC19 could increase BBB permeability by downregulating tight junction (TJ) proteins such as ZO-1, β-Catenin, Occludin, and Clauidn-5, compared with mutant ΔvraSR. These findings provide new insight into the influence of S. suis VraSR on BBB disruption during the pathogenic process of streptococcal meningitis, thereby offering potential targets for future preventative and therapeutic strategies against this disease.
Collapse
Affiliation(s)
- Bei-Bei Dou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xia Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Feng-Ming Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jia Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ming-Zheng Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qi-Yun He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangxi Yangxiang Co., Ltd., Guangxi, 530015, China
| | - Fang-Yan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei-Cheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Guangxi Yangxiang Co., Ltd., Guangxi, 530015, China.
| |
Collapse
|
5
|
Pallerla SR, Van Dong D, Linh LTK, Van Son T, Quyen DT, Hoan PQ, Trung NT, The NT, Rüter J, Boutin S, Nurjadi D, Sy BT, Kremsner PG, Meyer CG, Song LH, Velavan TP. Diagnosis of pathogens causing bacterial meningitis using Nanopore sequencing in a resource-limited setting. Ann Clin Microbiol Antimicrob 2022; 21:39. [PMID: 36064402 PMCID: PMC9443622 DOI: 10.1186/s12941-022-00530-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Aim The aim of the present study is to compare the performance of 16S rRNA Nanopore sequencing and conventional culture in detecting infectious pathogens in patients with suspected meningitis in a resource-limited setting without extensive bioinformatics expertise. Methods DNA was isolated from the cerebrospinal fluid (CSF) of 30 patients with suspected bacterial meningitis. The isolated DNA was subjected to 16S sequencing using MinION™. The data were analysed in real time via the EPI2ME cloud platform. The Nanopore sequencing was done in parallel to routine microbiological diagnostics. Results Nanopore sequencing detected bacterial pathogens to species level in 13 of 30 (43%) samples. CSF culture showed 40% (12/30) positivity. In 21 of 30 patients (70%) with suspected bacterial meningitis, both methods yielded concordant results. About nine of 30 samples showed discordant results, of these five were false positive and four were false negative. In five of the culture negative results, nanopore sequencing was able to detect pathogen genome, due to the higher sensitivity of the molecular diagnostics. In two other samples, the CSF culture revealed Cryptococcus neoformans and Streptococcus pneumoniae, which were not detected by Nanopore sequencing. Overall, using both the cultures and 16S Nanopore sequencing, positivity rate increased from 40% (12/30) to 57% (17/30). Conclusion Next-generation sequencing could detect pathogens within six hours and could become an important tool for both pathogen screening and surveillance in low- and middle-income countries (LMICs) that do not have direct access to extensive bioinformatics expertise. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-022-00530-6.
Collapse
Affiliation(s)
- Srinivas Reddy Pallerla
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Do Van Dong
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Le Thi Kieu Linh
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Trinh Van Son
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Dao Thanh Quyen
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Phan Quoc Hoan
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Department of Molecular Biology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Ngo Tat Trung
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon
| | - Nguyen Trong The
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon
| | - Jule Rüter
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Bui Tien Sy
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Department of Microbiology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Peter G Kremsner
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Centre de Recherche Médicales de Lambaréné, Lambaréné, Gabon
| | - Christian G Meyer
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Le Huu Song
- Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam. .,108 Military Central Hospital, Hanoi, Vietnam.
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany. .,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.
| |
Collapse
|
6
|
Yang X, Peng W, Wang N, Dou B, Yang F, Chen H, Yuan F, Bei W. Role of the Two-Component System CiaRH in the Regulation of Efflux Pump SatAB and Its Correlation with Fluoroquinolone Susceptibility. Microbiol Spectr 2022; 10:e0041722. [PMID: 35638854 PMCID: PMC9241815 DOI: 10.1128/spectrum.00417-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022] Open
Abstract
Streptococcus suis is an important pathogen in both pigs and humans. Although the diseases associated with S. suis can typically be treated with antibiotics, such use has resulted in a sustained increase in drug resistance. Bacteria can sense and respond to antibiotics via two-component systems (TCSs). In this study, the TCS CiaRH was identified as playing an important role in the susceptibility of S. suis to fluoroquinolones (FQs). We found that a ΔciaRH mutant possessed lower susceptibility to FQs than the wild-type strain, with no observed growth defects at the tested concentrations and lower levels of intracellular drugs and dye. Proteomic data revealed that the levels of SatA and SatB expression were upregulated in the ΔciaRH mutant compared with their levels in the wild-type strain. The satA and satB genes encode a narrow-spectrum FQ efflux pump. The phenomena associated with combined ciaRH-and-satAB deletion mutations almost returned the ΔciaRH ΔsatAB mutant to the phenotype of the wild-type strain compared to the phenotype of the ΔciaRH mutant, suggesting that the resistance of the ΔciaRH strain to FQs could be attributed to satAB overexpression. Moreover, SatAB expression was regulated by CiaR (a response regulator of CiaRH) and SatR (a regulator of the MarR family). The ciaRH genes were consistently downregulated in response to antibiotic stress. The results of electrophoretic mobility shift assays (EMSAs) and affinity assays revealed that both regulator proteins directly controlled the ABC transporter proteins SatAB. Together, the results show that cascade-mediated regulation of antibiotic export by CiaRH is crucial for the ability of S. suis to adapt to conditions of antibiotic pressure. Our study may provide a new target for future antibiotic research and development. IMPORTANCE Streptococcus suis is a zoonotic pathogen with high incidence and mortality rates in both swine and humans. Following antibiotic treatment, the organism has evolved many resistance mechanisms, among which efflux pump overexpression can promote drug extrusion from the cell. This study clarified the role of CiaRH in fluoroquinolone resistance. A mutant with the ciaRH genes deleted showed decreased susceptibility to the antibiotics tested, an invariant growth rate, and reduced intracellular efflux pump substrates. This research also demonstrated that overexpression of the efflux pump SatAB was the main cause of ΔciaRH resistance. In addition, CiaR could combine with the promoter region of satAB to further directly suppress target gene transcription. Simultaneously, satAB was also directly regulated by SatR. Our findings may provide novel insights for the development of drug targets and help to exploit corresponding inhibitors to combat bacterial multidrug resistance.
Collapse
Affiliation(s)
- Xia Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Ningning Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Beibei Dou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fengming Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- Guangxi Yangxiang Co., Ltd., Guigang, China
| |
Collapse
|
7
|
Kerdsin A, Segura M, Fittipaldi N, Gottschalk M. Sociocultural Factors Influencing Human Streptococcus suis Disease in Southeast Asia. Foods 2022; 11:foods11091190. [PMID: 35563913 PMCID: PMC9102869 DOI: 10.3390/foods11091190] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
The public health systems of Southeast Asian countries are financially challenged by a comparatively higher incidence of human S. suis infections than other geographical areas. Efforts to improve practices in production settings, including improved meat inspection regulations, prevention of the slaughtering of non-healthy pigs, and enhanced hygiene practices at processing facilities, along with improvements in the pork supply chain, all appear promising for reducing food cross-contamination with S. suis. However, opportunities for intervention at the societal level are also needed to effect changes, as population behaviors such as the consumption of raw pork, blood, and offal products are important contributors to the increased incidence of human S. suis disease in Southeast Asia. A plethora of factors are associated with the consumption of these high-risk dishes, including traditional culture and knowledge, shared beliefs, socio-economic level, and personal attitudes associated with gender and/or marital status. Education and intervention in behavioral attitudes that are sensible to cultural practices and traditions may provide additional means to reduce the burden of S. suis human disease in Southeast Asia.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
- Correspondence: ; Tel.: +66-42-725-023
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (N.F.); (M.G.)
| | - Nahuel Fittipaldi
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (N.F.); (M.G.)
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (N.F.); (M.G.)
| |
Collapse
|
8
|
Obradovic MR, Segura M, Segalés J, Gottschalk M. Review of the speculative role of co-infections in Streptococcus suis-associated diseases in pigs. Vet Res 2021; 52:49. [PMID: 33743838 PMCID: PMC7980725 DOI: 10.1186/s13567-021-00918-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Streptococcus suis is one of the most important bacterial swine pathogens affecting post-weaned piglets, causing mainly meningitis, arthritis and sudden death. It not only results in severe economic losses but also raises concerns over animal welfare and antimicrobial resistance and remains an important zoonotic agent in some countries. The definition and diagnosis of S. suis-associated diseases can be complex. Should S. suis be considered a primary or secondary pathogen? The situation is further complicated when referring to respiratory disease, since the pathogen has historically been considered as a secondary pathogen within the porcine respiratory disease complex (PRDC). Is S. suis a respiratory or strictly systemic pathogen? S. suis is a normal inhabitant of the upper respiratory tract, and the presence of potentially virulent strains alone does not guarantee the appearance of clinical signs. Within this unclear context, it has been largely proposed that co-infection with some viral and bacterial pathogens can significantly influence the severity of S. suis-associated diseases and may be the key to understanding how the infection behaves in the field. In this review, we critically addressed studies reporting an epidemiological link (mixed infections or presence of more than one pathogen at the same time), as well as in vitro and in vivo studies of co-infection of S. suis with other pathogens and discussed their limitations and possibilities for improvement and proposed recommendations for future studies.
Collapse
Affiliation(s)
- Milan R Obradovic
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Mariela Segura
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
| | - Joaquim Segalés
- UAB, CReSA (IRTA-UAB), Campus de la UAB, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,Departament de Sanitat I Anatomia Animals, Facultat de Veterinària, UAB, 08193, Bellaterra (Cerdanyola del Vallès), Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193, Bellaterra, Barcelona, Spain
| | - Marcelo Gottschalk
- Groupe de Recherche Sur Les Maladies Infectieuses en Production Animale (GREMIP), Centre de Recherche en Infectiologie Porcine et Aviaire (CRIPA), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
9
|
Hidajat M, de Vocht F. Occupational zoonoses potential in Southeast Asia. Occup Med (Lond) 2020; 70:323-326. [PMID: 32393974 DOI: 10.1093/occmed/kqaa082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Affiliation(s)
- Mira Hidajat
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Frank de Vocht
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Huong VTL, Turner HC, Kinh NV, Thai PQ, Hoa NT, Horby P, van Doorn HR, Wertheim HFL. Burden of disease and economic impact of human Streptococcus suis infection in Viet Nam. Trans R Soc Trop Med Hyg 2020; 113:341-350. [PMID: 30809669 PMCID: PMC6580695 DOI: 10.1093/trstmh/trz004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/24/2018] [Accepted: 01/23/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Streptococcus suis is a zoonotic disease mainly affecting men of working age and can result in death or long-term sequelae, including severe hearing loss and vestibular dysfunction. We aimed to quantify the burden of disease and economic impact of this infection in Viet Nam. METHODS The annual disease incidence for the period 2011-2014 was estimated based on surveillance data using a multiple imputation approach. We calculated disease burden in disability-adjusted life years (DALYs) and economic costs using an incidence-based approach from a patient's perspective and including direct and indirect impacts of S. suis infection and its long-term sequelae. RESULTS The estimated annual incidence rate was 0.318, 0.324, 0.255 and 0.249 cases per 100 000 population in 2011, 2012, 2013 and 2014, respectively. The corresponding DALYs lost were 1832, 1866, 1467 and 1437. The mean direct cost per episode was US$1635 (95% confidence interval 1352-1923). The annual direct cost was US$370 000-500 000 and the indirect cost was US$2.27-2.88 million in this time period. CONCLUSIONS This study showed a large disease burden and high economic impact of S. suis infection and provides important data for disease monitoring and control.
Collapse
Affiliation(s)
- Vu Thi Lan Huong
- Wellcome Trust Asia Programme-Oxford University Clinical Research Unit, 78 Giai Phong, Dong Da, Ha Noi, Viet Nam
| | - Hugo C Turner
- Wellcome Trust Asia Programme-Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ward 1, District 5, Ho Chi Minh, Viet Nam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford, UK
| | - Nguyen Van Kinh
- National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da, Hanoi, Viet Nam
| | - Pham Quang Thai
- National Institute for Hygiene and Epidemiology, 131 Lo Duc, Hai Ba Trung, Hanoi, Viet Nam
| | - Ngo Thi Hoa
- Wellcome Trust Asia Programme-Oxford University Clinical Research Unit, 764 Vo Van Kiet, Ward 1, District 5, Ho Chi Minh, Viet Nam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford, UK
| | - Peter Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford, UK
| | - H Rogier van Doorn
- Wellcome Trust Asia Programme-Oxford University Clinical Research Unit, 78 Giai Phong, Dong Da, Ha Noi, Viet Nam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford, UK
| | | |
Collapse
|
11
|
Akyereko E, Ameme D, Nyarko KM, Asiedu-Bekoe F, Sackey S, Issah K, Wuni B, Kenu E. Geospatial clustering of meningitis: an early warning system (hotspot) for potential meningitis outbreak in upper east region of Ghana. Ghana Med J 2020; 54:32-39. [PMID: 33536666 PMCID: PMC7837342 DOI: 10.4314/gmj.v54i2s.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We mapped and generated hot spots for potential meningitis outbreak from existing data in Upper East region, Ghana. DESIGN This was a cross-sectional study conducted in 2017. DATA SOURCE Meningitis data in the Upper East Region from January 2007, to December 2016. MAIN OUTCOME MEASURE We used spatial tools in Quantum Geographic Information System (QGIS) and Geoda to draw choropleth map of meningitis incidence, case fatality and hotspot for potential meningitis outbreak. RESULTS A total of 2312 meningitis cases (suspected and confirmed) were recorded from 2016-2017 with median incidence of 15.0cases/100,000 population (min 6.3, max 47.8). Median age of cases was 15 years (IQR: 6-31 years). Most (44.2%) of those affected were 10 years and below. Females (51.2%) constituted the highest proportion. Median incidence from 2007-2011 was 20cases/100,000 population (Min 11.3, Max 39.9) whilst from 2012-2016 was 11.1cases/100,000 populations (Min 6.3, Max 47.8). A total of 28 significant hotspot sub-districts clusters (p=0.024) were identified with 7 High-high risk areas as potential meningitis outbreak spots. CONCLUSION The occurrence of meningitis is not random, spatial cluster with high -high-risk exist in some sub-districts. Overall meningitis incidence and fatality rate have declined in the region with district variations. Districts with high meningitis incidence and fatality rates should be targeted for intervention. FUNDING Author EA was supported by the West Africa Health Organization (Ref.: Prog/A17IEpidemSurveillN°57212014/mcrt).
Collapse
Affiliation(s)
- Ernest Akyereko
- Ghana Field Epidemiology and Laboratory Training Program, School of Public Health, University of Ghana, Accra
- Disease Surveillance Department, Ghana Health Service, Accra, Ghana
| | - Donne Ameme
- Ghana Field Epidemiology and Laboratory Training Program, School of Public Health, University of Ghana, Accra
| | - Kofi M Nyarko
- Ghana Field Epidemiology and Laboratory Training Program, School of Public Health, University of Ghana, Accra
| | | | - Samuel Sackey
- Ghana Field Epidemiology and Laboratory Training Program, School of Public Health, University of Ghana, Accra
| | - Kofi Issah
- Brong Ahafo Regional Health Directorate, Ghana Health Service, Sunyani, Ghana
| | - Baba Wuni
- Upper East Regional Health Directorate, Ghana Health Service, Bolgatanga, Ghana
| | - Ernest Kenu
- Ghana Field Epidemiology and Laboratory Training Program, School of Public Health, University of Ghana, Accra
- Disease Surveillance Department, Ghana Health Service, Accra, Ghana
| |
Collapse
|
12
|
Rieckmann K, Pendzialek SM, Vahlenkamp T, Baums CG. A critical review speculating on the protective efficacies of autogenous Streptococcus suis bacterins as used in Europe. Porcine Health Manag 2020; 6:12. [PMID: 32391166 PMCID: PMC7201539 DOI: 10.1186/s40813-020-00150-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus (S.) suis is a major porcine pathogen causing high morbidity worldwide. This includes well-managed herds with high hygiene standards. In Europe, no licensed vaccine is available. As practitioners are obliged to reduce the use of antibiotics, autogenous S. suis vaccines have become very popular in Europe. Main body Autogenous vaccines (AV) are generally neither tested for safety, immunogenicity nor protective efficacy, which leads to substantial uncertainties regarding control of disease and return on investment. Here, S. suis publications are reviewed that include important data on epidemiology, pathologies and bacterin vaccination relevant for the use of AV in the field. Differences between herds such as the porcine reproductive and respiratory syndrome virus infection status and the impact of specific S. suis pathotypes are probably highly relevant for the outcome of immunoprophylaxis using autogenous S. suis bacterins. Thus, a profound diagnosis of the herd status is crucial for management of expectations and successful implementation of AV as a tool to control S. suis disease. Induction of opsonizing antibodies is an in vitro correlate of protective immunity elicited by S. suis bacterins. However, opsonophagocytosis assays are difficult to include in the portfolio of diagnostic services. Conclusion Autogenous S. suis bacterins are associated with limitations and risks of failure, which can partly be managed through improvement of diagnostics.
Collapse
Affiliation(s)
- Karoline Rieckmann
- 1Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Sophia-Mareike Pendzialek
- 1Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Thomas Vahlenkamp
- 2Institute of Virology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, Leipzig, Germany
| | - Christoph G Baums
- 1Institute of Bacteriology and Mycology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Chase-Topping M, Xie J, Pooley C, Trus I, Bonckaert C, Rediger K, Bailey RI, Brown H, Bitsouni V, Barrio MB, Gueguen S, Nauwynck H, Doeschl-Wilson A. New insights about vaccine effectiveness: Impact of attenuated PRRS-strain vaccination on heterologous strain transmission. Vaccine 2020; 38:3050-3061. [PMID: 32122719 DOI: 10.1016/j.vaccine.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 01/15/2023]
Abstract
Vaccination is the main tool for controlling infectious diseases in livestock. Yet current vaccines only provide partial protection raising concerns about vaccine effectiveness in the field. Two successive transmission trials were performed involving 52 pigs to evaluate the effectiveness of a Porcine Reproductive and Respiratory Syndrome (PRRS) vaccinal strain candidate against horizontal transmission of a virulent heterologous strain. PRRS virus, above the specified limit of detection, was observed in serum and nasal secretions for all but one pig (the exception only tested positive for serum), indicating that vaccination did not protect pigs from becoming infected and shedding the heterologous strain. However, vaccination delayed the onset of viraemia, reduced the duration of shedding and significantly decreased viral load throughout infection. Serum antibody profiles indicated that 4 out of 13 (31%) vaccinates in one trial had no serological response (NSR). A Bayesian epidemiological model was fitted to the data to assess the impact of vaccination and presence of NSRs on PRRS virus transmission dynamics. Despite little evidence for reduction in the transmission rate, vaccinated animals were on average slower to become infectious, experienced a shorter infectious period and recovered faster. The overall PRRSV transmission potential, represented by the reproductive ratio R0 was lower for the vaccinated animals, although there was substantial overlap in the credibility intervals for both groups. Model selection suggests that transmission parameters of vaccinated pigs with NSR were more similar to those of unvaccinated animals. The presence of NSRs in a population, however, seemed to only marginally affect the transmission dynamics. The results suggest that even when vaccination can't prevent infection, it can still have beneficial impacts on the transmission dynamics and contribute to reducing a herd's R0. However, biosecurity and other measures need to be considered to decrease contact rates and lower R0 below 1.
Collapse
Affiliation(s)
- Margo Chase-Topping
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK; Usher Institute, University of Edinburgh, Edinburgh, EH8 9AG Scotland, UK.
| | - Jiexiong Xie
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Christopher Pooley
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK; Biomathematics and Statistics Scotland (BIOSS), The King's Buildings, Edinburgh, EH9 3FD Scotland, UK
| | - Ivan Trus
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Caroline Bonckaert
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Kelly Rediger
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Richard I Bailey
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Helen Brown
- Roslin Institute, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | | | - Maria Belén Barrio
- INRAE Département Santé Animale, UAR 0564 - ISP Bât 213, 37380 Nouzilly, France
| | - Sylvie Gueguen
- Biological Development Department, VIRBAC, 13ème rue, LID, BP27, 06511 Carros cedex, France
| | - Hans Nauwynck
- Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | | |
Collapse
|
14
|
Lee HS, Bui VN, Nguyen HX, Bui AN, Hoang TD, Nguyen-Viet H, Grace Randolph D, Wieland B. Seroprevalences of multi-pathogen and description of farm movement in pigs in two provinces in Vietnam. BMC Vet Res 2020; 16:15. [PMID: 31937298 PMCID: PMC6958752 DOI: 10.1186/s12917-020-2236-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/08/2020] [Indexed: 11/12/2022] Open
Abstract
Background In Vietnam, lack of animal health information is considered a major challenge for pig production. The main objective of this study was to assess the seroprevalences of five pathogens [porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), mycoplasma hyopneumoniae (M. hyo), Japanese encephalitis virus (JEV) and leptospirosis] and to better characterize the farm movements through a survey. Results A total of 600 samples were collected from 120 farms from Bac Giang and Nghe An. Among unvaccinated herds, the highest seroprevalence was found for JE with 73.81% (95% CI: 68.39–78.74) in Bac Giang and 53.51% (95% CI 47.68–59.27) in Nghe An. Seroprevalences for PCV2 and M.hyo were 49.43% (95% CI: 45.06–53.80) and 46.06% (95% CI: 41.48–50.69) among unvaccinated animals. Accumulative co-infections for JE (86.25%) showed the highest level followed by M. hyo (66.25%) and PCV2 (62.50%). Three co-infections with JE had the highest positive rate (28.75%) followed by four co-infections (25.0%). Medium farms had relatively higher herd prevalences for all pathogens, except from leptospirosis. Overall, farmers exported/imported their pigs at the most 1–2 times every 6 months. Some respondents (5% for exportation and 20% for importation) had moved pigs more than 6 times over the last 6 months. Conclusions Our study provided another pool of evidence that showed that PCV2, PRRS and H. hyo are endemic in pigs in Vietnam. Given the economic impacts of these pathogens elsewhere, the findings confirm the need for studies to evaluate the association between antibody response and clinical relevance as well as to assess the economic impact of co-infections at farm level. We also found that high seroprevalences of JE and leptospirosis were detected in pigs. From a pubic health point of view, it is crucial to raise public awareness especially for high risk occupations (mainly pig farm workers).
Collapse
Affiliation(s)
- Hu Suk Lee
- International Livestock Research Institute (ILRI), Room 301-302, B1 Building, Van Phuc Diplomatic Compound, 298 Kim Ma Street, Ba Dinh District, Hanoi, Vietnam.
| | - Vuong Nghia Bui
- National Institute of Veterinary Research, 86 Truong Chinh, Phuong Mai, Dong Da, Hanoi, Vietnam
| | - Huyen Xuan Nguyen
- National Institute of Veterinary Research, 86 Truong Chinh, Phuong Mai, Dong Da, Hanoi, Vietnam
| | - Anh Ngoc Bui
- National Institute of Veterinary Research, 86 Truong Chinh, Phuong Mai, Dong Da, Hanoi, Vietnam
| | - Trung Duc Hoang
- National Institute of Veterinary Research, 86 Truong Chinh, Phuong Mai, Dong Da, Hanoi, Vietnam
| | - Hung Nguyen-Viet
- International Livestock Research Institute (ILRI), Room 301-302, B1 Building, Van Phuc Diplomatic Compound, 298 Kim Ma Street, Ba Dinh District, Hanoi, Vietnam
| | | | - Barbara Wieland
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Rayanakorn A, Katip W, Goh BH, Oberdorfer P, Lee LH. Clinical Manifestations and Risk Factors of Streptococcus suis Mortality Among Northern Thai Population: Retrospective 13-Year Cohort Study. Infect Drug Resist 2019; 12:3955-3965. [PMID: 32021313 PMCID: PMC6941973 DOI: 10.2147/idr.s233326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Streptococcus suis (S. suis) is an emerging zoonotic disease mainly in pigs, causing serious infections in humans with high prevalence in Southeast Asia. Despite a relatively high mortality rate, there are limited data regarding the risk factors of this life-threatening infection. Therefore, a 13-year retrospective cohort study in Chiang Mai, Thailand during 2005-2018 was conducted to explore risk factors associated with S. suis mortality and to update the outcomes of the disease. Patients and methods S. suis positive cases were derived from those with positive S. suis isolates from microbiological culture results and Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF). Potential risk factors of mortality were identified using univariate and multivariate logistic regression. Results Of 133 patients with culture-proven S. suis infection identified, there were 92 males and 41 females. The mean age was 56.47 years. Septicemia (55.64%) was the most common clinical manifestation followed by meningitis (37.59%) and infective endocarditis (25.56%). Alcohol drinking and raw pork consumption were documented in 66 (49.62%) and 49 (36.84%) cases respectively. The overall mortality rate was 12.03% (n=16). According to the multivariate analysis, the independent risk factors for mortality were prolonged bacteremia ≥ 6 days (OR = 43.57, 95% CI = 2.46-772.80, P =0.010), septic shock (OR = 13.34, 95% CI = 1.63-109.03, P =0.016), and direct bilirubin > 1.5 mg/dL (OR = 12.86, 95% CI = 1.91-86.59, P =0.009). Conclusion S. suis is not infrequent in Northern Thailand, where the cultural food habit of raw pork eating is still practiced. To the best of our knowledge, this is the largest series focusing on risk factors of S. suis mortality which has been conducted in Thailand. Prolonged bacteremia ≥ 6 days, septic shock, and direct bilirubin > 1.5 mg/dL were strong predictors associated with S. suis mortality. The mortality risk factors identified may be further utilized in clinical practice and future research to improve patient outcomes.
Collapse
Affiliation(s)
- Ajaree Rayanakorn
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wasan Katip
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), Biomedicine Research Advancement Centre (BRAC), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway, 47500, Malaysia
| | - Peninnah Oberdorfer
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Learn Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
16
|
Dai Y, Chen L, Chang W, Lu H, Cui P, Ma X. Culture-Negative Streptococcus suis Infection Diagnosed by Metagenomic Next-Generation Sequencing. Front Public Health 2019; 7:379. [PMID: 31921744 PMCID: PMC6928000 DOI: 10.3389/fpubh.2019.00379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/26/2019] [Indexed: 12/02/2022] Open
Abstract
Background:Streptococcus suis is a zoonotic pathogen that can cause severe infections such as meningitis and septicemia in both swine and humans. Rapid and accurate identification of the causative agent is very important for guiding clinical choices in administering countermeasures. Case Report: Here, we report a case of fatal S. suis infection in a patient who worked as a butcher in China. The 59-year-old man, who had previously undergone splenectomy, injured his finger while processing pork and developed severe sepsis. While blood cultures were negative following antibiotic treatment, S. suis was determined to be the causative agent by metagenomic next-generation sequencing (mNGS) and Sanger sequencing. Conclusion: Identification of etiological agents using techniques such as blood culture prior to antibiotic treatment is very important. mNGS may represent a useful method for diagnosis of infectious diseases, especially post-antibiotic treatment.
Collapse
Affiliation(s)
- Yuanyuan Dai
- Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Li Chen
- Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Wenjiao Chang
- Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Huaiwei Lu
- Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Peng Cui
- Infectious Disease Research and Development, Beijing Genomics Institute-Shanghai, Shanghai, China
| | - Xiaoling Ma
- Department of Clinical Laboratory, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| |
Collapse
|
17
|
Li J, Wang J, Liu Y, Yang J, Guo L, Ren S, Chen Z, Liu Z, Zhang Y, Qiu W, Li Y, Zhang S, Yu J, Wu J. Porcine reproductive and respiratory syndrome virus NADC30-like strain accelerates Streptococcus suis serotype 2 infection in vivo and in vitro. Transbound Emerg Dis 2018; 66:729-742. [PMID: 30427126 DOI: 10.1111/tbed.13072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/27/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), an economically significant pandemic disease, commonly results in increased impact of bacterial infections, including those by Streptococcus suis (S. suis). In recent years, PRRS virus (PRRSV) NADC30-like strain has emerged in different regions of China, and coinfected with S. suis and PRRSV has also gradually increased in clinical performance. However, the mechanisms involved in host innate responses towards S. suis and their implications of coinfection with NADC30-like strain remain unknown. Therefore, the pathogenicity of NADC30-like strain and S. suis serotype 2 (SS2) coinfection in vivo and in vitro was investigated in this study. The results showed that NADC30-like increased the invasion and proliferation of SS2 in blood and tissues, resulting in more severe pneumonia, myocarditis, and peritonitisas well as higher mortality rate in pigs. In vitro, NADC30-like strain increased the invasion and survival of SS2 in porcine alveolar macrophages (PAM) cells, causing more drastic expression of inflammatory cytokines and activation of NF-ĸB signalling. These results pave the way for understanding the interaction of S. suis with the swine immune system and their modulation in a viral coinfection.
Collapse
Affiliation(s)
- Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jinbao Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China.,School of Life Sciences, Shandong University, Jinan, China
| | - Yueyue Liu
- School of Life Sciences, Shandong University, Jinan, China
| | - Jie Yang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lihui Guo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhaoshan Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong University, Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenbin Qiu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yubao Li
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shujin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China.,School of Life Sciences, Shandong University, Jinan, China.,School of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
18
|
Streptococcus suis biofilm: regulation, drug-resistance mechanisms, and disinfection strategies. Appl Microbiol Biotechnol 2018; 102:9121-9129. [PMID: 30209548 DOI: 10.1007/s00253-018-9356-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
Streptococcus suis (S. suis) is a major swine pathogen and an important zoonotic agent. Like most pathogens, the ability of S. suis to form biofilms plays a significant role in its virulence and drug resistance. A better understanding of the mechanisms involved in biofilm formation by S. suis as well as of the methods to efficiently remove and kill biofilm-embedded bacteria can be of high interest for the prevention and treatment of S. suis infections. The aim of this literature review is to update our current knowledge of S. suis biofilm formation, regulatory mechanisms, drug-resistance mechanisms, and disinfection strategies.
Collapse
|
19
|
Risk factors for Streptococcus suis infection: A systematic review and meta-analysis. Sci Rep 2018; 8:13358. [PMID: 30190575 PMCID: PMC6127304 DOI: 10.1038/s41598-018-31598-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/16/2018] [Indexed: 11/08/2022] Open
Abstract
Streptococcus suis (S. suis) is a gram-positive bacterial pathogen in pigs which can cause serious infections in human including meningitis, and septicaemia resulting in serious complications. There were discrepancies between different data and little is known concerning associated risk factors of S. suis. A systematic review and meta-analysis was conducted to investigate on S. suis infection risk factors in human. We searched eight relevant databases using the MeSH terms "Streptococcus suis" OR "Streptococcus suis AND infection" limited in human with no time nor language restriction. Out of 4,999 articles identified, 32 and 3 studies were included for systematic review and meta-analysis respectively with a total of 1,454 Streptococcus suis cases reported. S. suis patients were generally adult males and the elderly. The mean age ranged between 37 to 63 years. Meningitis was the most common clinical manifestation, and deafness was the most common sequelae found among survivors followed by vestibular dysfunction. Infective endocarditis was also noted as among the most common clinical presentations associated with high mortality rate in a few studies. Meta-analyses categorized by type of control groups (community control, and non-S. suis sepsis) were done among 850 participants in 3 studies. The combined odd ratios for studies using community control groups and non-S. Suis sepsis as controls respectively were 4.63 (95% CI 2.94-7.29) and 78.00 (95% CI 10.38-585.87) for raw pork consumption, 4.01 (95% CI 2.61-6.15) and 3.03 (95% CI 1.61-5.68) for exposure to pigs or pork, 11.47, (95% CI 5.68-23.14) and 3.07 (95% CI 1.81-5.18) for pig-related occupation and 3.56 (95% CI 2.18-5.80) and 5.84 (95% CI 2.76-12.36) for male sex. The results were found to be significantly associated with S. suis infection and there was non-significant heterogeneity. History of skin injury and underlying diseases were noted only a small percentage in most studies. Setting up an effective screening protocol and public health interventions would be effective to enhance understanding about the disease.
Collapse
|
20
|
Chen Y, Hammer EE, Richards VP. Phylogenetic signature of lateral exchange of genes for antibiotic production and resistance among bacteria highlights a pattern of global transmission of pathogens between humans and livestock. Mol Phylogenet Evol 2018; 125:255-264. [DOI: 10.1016/j.ympev.2018.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023]
|
21
|
Vötsch D, Willenborg M, Weldearegay YB, Valentin-Weigand P. Streptococcus suis - The "Two Faces" of a Pathobiont in the Porcine Respiratory Tract. Front Microbiol 2018; 9:480. [PMID: 29599763 PMCID: PMC5862822 DOI: 10.3389/fmicb.2018.00480] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/28/2018] [Indexed: 11/16/2022] Open
Abstract
Streptococcus (S.) suis is a frequent early colonizer of the upper respiratory tract of pigs. In fact, it is difficult to find S. suis-free animals under natural conditions, showing the successful adaptation of this pathogen to its porcine reservoir host. On the other hand, S. suis can cause life-threatening diseases and represents the most important bacterial cause of meningitis in pigs worldwide. Notably, S. suis can also cause zoonotic infections, such as meningitis, septicemia, endocarditis, and other diseases in humans. In Asia, it is classified as an emerging zoonotic pathogen and currently considered as one of the most important causes of bacterial meningitis in adults. The “two faces” of S. suis, one of a colonizing microbe and the other of a highly invasive pathogen, have raised many questions concerning the interpretation of diagnostic detection and the definition of virulence. Thus, one major research challenge is the identification of virulence-markers which allow differentiation of commensal and virulent strains. This is complicated by the high phenotypic and genotypic diversity of S. suis, as reflected by the occurrence of (at least) 33 capsular serotypes. In this review, we present current knowledge in the context of S. suis as a highly diverse pathobiont in the porcine respiratory tract that can exploit disrupted host homeostasis to flourish and promote inflammatory processes and invasive diseases in pigs and humans.
Collapse
Affiliation(s)
- Désirée Vötsch
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren Willenborg
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yenehiwot B Weldearegay
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Center for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
22
|
Kerdsin A, Akeda Y, Takeuchi D, Dejsirilert S, Gottschalk M, Oishi K. Genotypic diversity of Streptococcus suis strains isolated from humans in Thailand. Eur J Clin Microbiol Infect Dis 2018; 37:917-925. [PMID: 29417311 DOI: 10.1007/s10096-018-3208-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/30/2018] [Indexed: 11/29/2022]
Abstract
The purpose of this study is to characterize Streptococcus suis isolates recovered from human infections regarding serotype distribution, genotypic profile, clinical manifestations, and epidemiology. A total of 668 S. suis isolates recovered from human infections in Thailand were characterized based on serotyping by multiplex PCR and co-agglutination, genotypic profiles by multilocus sequence typing, and PCR for virulence-associated genes, as well as review of medical records. Serotype 2 (94.6%) was predominant, followed by serotype 14 (4.5%), 24 (0.45%), 5 (0.3%), and 4 (0.15%). Multilocus sequence typing analyses revealed seven clonal complexes (CC): CC1 (56.43%), CC104 (31.74%), CC233/379 (5.4%), CC25 (4.5%), CC28 (0.9%), CC221/234 (0.6%), CC94 (0.15%), and two singletons. The CC1 group contained serotype 2 and 14 isolates, while CC25, 28, 104, and 233/379 consisted of serotype 2 isolates only. CC221/234 contained serotype 5 and 24 isolates, whereas the single serotype 4 isolate belonged to CC94. Two singletons contained serotype 5 (ST235) and 2 (ST236) isolates. Our data showed that ST1 isolates were more associated with meningitis than those of other STs (p < 0.001). The major route of infection was shown to be close contact with infected pigs or contaminated raw pork-derived products, including occupational exposure and recent consumption of raw pork products. This study revealed a relatively large number of CCs of S. suis causing human infection in Thailand. Among them, CC1 followed by CC104, with serotype 2 isolates, are predominant. Food safety campaigns and public health interventions would be important for controlling the S. suis infection in humans.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
| | - Yukihiro Akeda
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Dan Takeuchi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Surang Dejsirilert
- Department of Medical Sciences, National Institute of Health, Nonthaburi, Thailand
| | | | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
23
|
Koziel JA, Frana TS, Ahn H, Glanville TD, Nguyen LT, van Leeuwen J(H. Efficacy of NH3 as a secondary barrier treatment for inactivation of Salmonella Typhimurium and methicillin-resistant Staphylococcus aureus in digestate of animal carcasses: Proof-of-concept. PLoS One 2017; 12:e0176825. [PMID: 28475586 PMCID: PMC5419515 DOI: 10.1371/journal.pone.0176825] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Managing the disposal of infectious animal carcasses from routine and catastrophic disease outbreaks is a global concern. Recent research suggests that burial in lined and aerated trenches provides the rapid pathogen containment provided by burial, while reducing air and water pollution potential and the length of time that land is taken out of agricultural production. Survival of pathogens in the digestate remains a concern, however. A potential answer is a 'dual'-barrier approach in which ammonia is used as a secondary barrier treatment to reduce the risk of pathogen contamination when trench liners ultimately leak. Results of this study showed that the minimum inhibitory concentration (MIC) of NH3 is 0.1 M (~1,468 NH3-N mg/L), and 0.5 M NH3 (~7,340 NH3-N mg/L) for ST4232 & MRSA43300, respectively at 24 h and pH = 9±0.1 and inactivation was increased by increasing NH3 concentration and/or treatment time. Results for digestate treated with NH3 were consistent with the MICs, and both pathogens were completely inactivated within 24 h.
Collapse
Affiliation(s)
- Jacek A. Koziel
- Dept. of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
- Dept. of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa, United States of America
- Dept. of Food Science and Human Nutrition, Iowa State University, Iowa State University, Ames, Iowa, United States of America
| | - Timothy S. Frana
- Dept. of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Heekwon Ahn
- Dept. of Animal Biosystems Science, Chungnam National University, Daejeon, Republic of Korea
| | - Thomas D. Glanville
- Dept. of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - Lam T. Nguyen
- Dept. of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
| | - J. (Hans) van Leeuwen
- Dept. of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa, United States of America
- Dept. of Civil, Construction and Environmental Engineering, Iowa State University, Ames, Iowa, United States of America
- Dept. of Food Science and Human Nutrition, Iowa State University, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|